• Nie Znaleziono Wyników

Fault geometry and evidence of depocentre migration within a transtensional intra-basinal high – a case study from the Łączna Anticline (Intrasudetic Synclinorium, SW Poland)

N/A
N/A
Protected

Academic year: 2022

Share "Fault geometry and evidence of depocentre migration within a transtensional intra-basinal high – a case study from the Łączna Anticline (Intrasudetic Synclinorium, SW Poland)"

Copied!
16
0
0

Pełen tekst

(1)

Geo log i cal Quar terly, 2017, 61 (4): 779–794 DOI: http://dx.doi.org/10.7306/gq.1372

Fault ge om e try and ev i dence of depocentre mi gra tion within a transtensional intra-basinal high – a case study from the £¹czna Anticline

(Intrasudetic Synclinorium, SW Po land)

Aleksander KOWALSKI1, *

1 Uni ver sity of Wroc³aw, In sti tute of Geo log i cal Sci ences, De part ment of Struc tural Ge ol ogy and Geo log i cal Map ping, pl. M. Borna 9, 50-204 Wroc³aw, Po land

Kowalski, A., 2017. Fault ge om e try and ev i dence of depocentre mi gra tion within a transtensional intra-basinal high – a case study from the £¹czna Anticline (Intrasudetic Synclinorium, SW Po land). Geo log i cal Quar terly, 61 (4): 779–794, doi:

10.7306/gq.1372

The pa per pres ents the re sults of geo log i cal map ping and a de tailed struc tural anal y sis car ried out in the £¹czna Anticline.

This el e vated re gion co in cides with the Zawory (Cz. Závora) moun tain range in the Cen tral Sudetes (SW Po land). The

£¹czna Anticline sep a rates two mi nor geo log i cal units (de pres sions) within the north west ern part of the Intrasudetic Synclinorium – the Krzeszów and the Po lice brachysynclines. In nu mer ous ex po sures of Tri as sic and Up per Cre ta ceous sed i men tary rocks, sev eral brit tle and a few soft-sed i ment de for ma tion struc tures have been rec og nized. Their ori en ta tion and spa tial dis tri bu tion sug gest that the £¹czna Anticline is a horst-like, intra-basinal high, formed due to per ma nent ex ten - sion, dextral strike-slip move ments within fault zones, and neg a tive flower struc tures. The stud ies did not con firm the oc cur - rence of con tin u ous de for ma tions such as an ti cli nal bends and flex ures. The re sults show that the pres er va tion of some lithological va ri et ies of sed i men tary rocks within mod ern mor pho log i cal and struc tural el e va tions re flects the mi gra tion of cen tres of max i mum sub si dence within a pull-apart ba sin sys tem. A new struc tural and geodynamic in ter pre ta tion for the

£¹czna Anticline area is pro posed.

Key words: pull-apart bas ins, intra-basinal highs, brit tle tec ton ics, strike-slip tec ton ics, Sudetes, Intrasudetic Synclinorium.

INTRODUCTION

Intra-basinal highs, also known as cen tral ba sin horsts (Sims et al., 1999; Dooley and Schreurs, 2012), are very com - mon struc tural el e ments ob served within extensional bas ins, par tic u larly in a transtensional set ting (An ders and Schlische, 1994; Hölzel et al., 2008; Wu et al., 2009). Their evo lu tion and ge om e try are linked with cross-ba sin fault zones (CBFZs;

Dooley et al., 2004) that led to the for ma tion of up lifted, horst-like struc tures in the cen tral part of the ba sin. Sim i larly to intra-basinal “pop-up struc tures” (McClay and Bonora, 2001) formed in a transpressional re gime, transtensional intra-basinal highs are top o graphic el e va tions with older rocks ex posed in the core (Sylvester, 1988; Sugan et al., 2014). They have strongly in flu enced the sed i men ta tion and mi gra tion of depocentres within pull-apart bas ins (Wu et al., 2009). Sev eral mor pho log i cal, intra-basinal el e va tions (Ulièný, 2001;

Wojewoda, 2007, 2009) have been rec og nized and de scribed within the Intrasudetic Synclinorium (IS) – a dis tinct intra - montane de pres sion sit u ated in the north east ern ter mi na tion of

the Bo he mian Mas sif (Fig. 1). The IS is the larg est geo log i cal unit (70 km long and 35 km wide) of the Sudetes and is built of a weakly de formed sed i men tary suc ces sion of the Intrasudetic Ba sin. The ba sin infill com prises Mis sis sip pian to Lower Perm - ian volcaniclastic rocks, which are un con form ably over lain by Tri as sic con ti nen tal and Cre ta ceous ma rine sed i ments. De vel - op ment of the Intrasudetic Ba sin as a nar row intramontane trough (Wojewoda and Mastalerz, 1989) was ini ti ated prob a bly in the Mid dle or Early to Late Visean times (Nemec et al., 1982;

Turnau et al., 2002), es pe cially in an extensional strike-slip set - ting (Porêbski, 1980; Wojewoda, 1997; Aleksandrowski, 1998).

The Intrasudetic Ba sin was filled with clastic, mainly con ti nen tal de pos its dur ing Mis sis sip pian to Early Perm ian times. The ba - sin in fill ing pro cess was in ter rupted by sub-vol ca nic in tru sions and tec tonic de for ma tions be fore the end of the Penn syl va nian (the first stage of ba sin in ver sion; ac cord ing to ¯elaŸniewicz et al., 2011). The youn gest, Late Cre ta ceous (Ziegler, 1987;

Mazur et al., 2006) and Neo gene (Wojewoda, 2004) in ver sions of the ba sin re sulted in the for ma tion of nu mer ous struc tural de - pres sions (“sub-bas ins”; Ulièný, 1999) bounded by NW–SE-trending nor mal and strike-slip faults (Wojewoda, 1997; Ulièný, 2001; Grygar and Jelinek, 2003; Wojewoda, 2007). The sub-bas ins within the IS are in ter preted as in di vid ual pull-apart bas ins (Ulièný, 2001; Wojewoda, 2007) sep a rated by trans versely ori ented el e va tions (Wojewoda and Mastalerz, 1989). This pa per pres ents the re sults of geo log i cal map ping and struc tural anal y sis of the £¹czna Anticline area (LA; Ger.

* E-mail: aleksander.kowalski@uwr.edu.pl

Received: January 31, 2017; accepted: June 2, 2017; first published online: August 1, 2017

(2)

Raspenauer Sattel; Petrascheck, 1933; Jerzykiewicz, 1969).

The pre sented in ves ti ga tions sug gest that the £¹czna Anticline con sti tutes an intra-basinal high that sep a rates two mi nor, NW–SE-trending de pres sions within the IS: the Krzeszów and Po lice brachysynclines (KB and PB sub-bas ins, re spec tively;

Jerzykiewicz, 1969; Tásler et al., 1979).

GEOLOGICAL SETTING

The study area is lo cated at the Czech-Pol ish bor der, within the north west ern part of the Intrasudetic Synclinorium, be tween the towns of Lubawka and Mieroszów (Fig. 1). Ac cord ing to re - gional physiographical di vi sions (Kondracki, 2002), the re gion is Fig. 1. Simplified geological sketch-map of the northern part of the Intrasudetic Synclinorium

with location of the £¹czna Anticline (LA)

BM – Bo he mian Mas sif; EK – East Karkonosze Meta mor phic Unit; HPFZ – Hronov–Poøièi Fault Zone; IS – Intrasudetic Synclinorium; KB – Krzeszów Brachysyncline; KG – Karkonosze Gran ite Pluton; KM – Kaczawa Meta mor phic Com plex; KPB – Karkonosze Piedmont Ba sin; LF – Lipienica–£¹czna Fault; PB – Po lice Brachysyncline; SM – Góry Sowie Gneiss Mas sif; SMF – Sudetic Mar ginal Fault; ŒD – Œwiebodzice De pres sion;

WF – Wójtowa Fault; sim pli fied af ter Grocholski (1971), Don et al. (1981) and Cymerman (2004)

(3)

as signed to the Zawory Range (Cz. Závora) that con sti tutes the north ern most part of the Sto³owe Moun tains in the Cen tral Sudetes. Sed i men tary rocks ex posed in the area rep re sent Perm ian (Rotliegend), Tri as sic (Buntsandstein) and Cre ta - ceous (Up per Cenomanian) de pos its (Fig. 2). In the pe riph eral parts of the ba sin oc cur the old est, Lower Perm ian sed i ments, in cluded in the Radków For ma tion in the Pol ish part of the IS (Nemec et al., 1982) or in the Trutnov For ma tion in the Czech part of the IS (Tásler, 1964). Lower Perm ian sed i ments con sist mostly of coarse-grained con glom er ates (“fanglomerates”;

Dziedzic, 1961) and con glom er atic sand stones in ter preted as al lu vial fan and braided river de pos its (Aleksandrowski et al., 1986; Wojewoda, 2008). Sed i ments of the Radków (Trutnov) For ma tion pass up ward into sandy con glom er ates with cal car e - ous in ter ca la tions and dolomites of the Che³msko Œl¹skie Beds (Dziedzic, 1961; Œliwiñski, 1984) or of the Bohuslavice For ma - tion in the Czech part of the IS (Tásler et al., 1964). These de - pos its are clas si fied as late Saxonian (Œliwiñski, 1984) or Thuringian (Holub, 1972) in age, re spec tively. They are in ter - preted as flu vial and lac us trine de pos its (Tásler, 1979) with cal - crete (caliche) and trav er tine ho ri zons (Œliwiñski, 1981, 1984).

Lower Tri as sic arkosic sand stones of the Bohdašín For ma tion (Tásler, 1964; Prouza et al., 1985) nearly con cor dantly over lie Perm ian de pos its and are con sid ered as typ i cal braided river and al lu vial fan de pos its (Mroczkowski, 1977; Prouza et al., 1985). The top most part of the Bohdašín For ma tion con sists of strongly kaolinized, weakly lithified sand stones of un de fined age (Mid dle Tri as sic?), which oc cur only lo cally in the IS (Wojewoda et al., 2016). They were first dis tin guished in the Czech part of the IS as the Devìt køížù or the Barchoviny Mem - ber sand stones (Holub, 1966; 1972). Kaolinitic sand stones were in ter preted as shal low ma rine (Holub, 1966; Wojewoda et al., 2016), lac us trine (Prouza et al., 1985) or even ae olian sed i - ments (Mikulaš et al., 1991; Ulièný, 2004). In the study area, the sand stones of the Bohdašín For ma tion crop out mainly in the vi - cin ity of £¹czna (Czarna Struga Val ley) and are dis cor dantly cov ered by Cre ta ceous strata. The bound ary be tween the Tri - as sic and Cre ta ceous sed i ments cor re sponds to the bot tom of the “basal con glom er ates” (Skoèek and Valeèka, 1983) that mark a nearly hor i zon tal transgressive sur face. Cre ta ceous ma - rine sed i ments oc cur in the cen tral parts of the brachysynclines and build the hills sur round ing them. Be tween the Krzeszów and Po lice brachysynclines, the sandy fa cies of these strata (glauconitic and cal car e ous sand stones) are as signed to the Up per Cenomanian (Peruc-Koryèany For ma tion; Dvoøák, 1968; Jerzykiewicz, 1971). The sand stones pass up ward into glauconitic and si li ceous mudstones (gaizes and spongiolites) as signed to the Up per Cenomanian (Jerzykiewicz, 1971) and Lower Turonian (Bílá Hora For ma tion; Dvoøák, 1968).

Mudstones build the high est el e va tions of the re gion.

Glauconitic mudstones (“glauconite ho ri zon”; Berg, 1909) thin out to the south within the si li ceous mudstones (Berg, 1909;

Jerzykiewicz, 1971; Zió³kowska, 1990). The fine-grained de - pos its pass up ward into Mid dle and Up per Turonian cal car e ous mudstones and sand stones out crop ping in the cen tral parts of the KB and PB. Cre ta ceous rocks, which crop out within the IS, con sti tute the west ern part of a larger re gional geo log i cal unit – the Bo he mian Cre ta ceous Ba sin (Skoèek and Valeèka, 1983), lo cated in the cen tral part of the Bo he mian Mas sif. It is worth men tion ing that the Tri as sic and Cre ta ceous strata of the Krzeszów Ba sin con sti tute also the north ern most part of the ex - ist ing Me so zoic sed i men tary cover of the IS.

The tec tonic set ting of the £¹czna area is poorly rec og nized.

Ac cord ing to Jerzykiewicz (1969) and Don et al. (1981), the north ern part of the Zawory Range (a moun tain belt com pris ing the Róg, Drogosz and Chocho³ hills; Puc and Traczyk, 2006),

Fault geometry and evidence of depocentre migration within a transtensional intra-basinal high... 781

Fig. 2. Stratigraphy and lithology of the £¹czna Anticline area

(4)

along with the Czarna Struga Val ley, in di cate the axis of the

£¹czna Brachyanticline. Jerzykiewicz (1971) ar gued that the well-ex posed Buntsandstein sed i ments mark here the core of an open fold (dome). The hy po thet i cal axis of the £¹czna Brachyanticline is per pen dic u lar to the axis of the Krzeszów and Po lice brachysynclines (Petrascheck, 1933; Jerzykiewicz, 1971). Ac cord ing to these au thors, Cre ta ceous and Tri as sic strata in the £¹czna re gion lie hor i zon tally or dip gently to wards the north within the South ern Mar ginal Flex ure of the Krzeszów Brachysyncline (Jerzykiewicz, 1971). Jerzykiewicz (1971) spec u lated also that the South ern Mar ginal Flex ure si mul ta - neously con sti tutes the north ern limb of the £¹czna Brachyanticline. Ac cord ingly, the south ern slopes of the Mielna and Róg hills co in cide with the north ern flex ure of the PB (SF – Fig. 3; south ern limb of the LA). The pres ence of flex ure-re lated bends was pos tu lated, among oth ers, on the north ern slope of the Drogosz Hill. Tu³aczyk (1992) claimed that the struc ture of the £¹czna Brachyanticline is com pli cated and de ter mines the shape of scarps and cuesta ridges. It is im por tant to note that the Krzeszów Brachysyncline was al ways con sid ered as a sin - gle brachyfold (Jerzykiewicz, 1971; Don et al., 1981), al though the Po lice Brachysyncline (Po lice subbasin sensu Ulièný, 2001) was sub di vided by some au thors into three mi nor tec tonic units:

the Adršpach, Po lice (Wojewoda et al., 2016) and Batorów brachysynclines (Radwañski, 1966).

All lithological va ri et ies of sed i men tary rocks that crop out in the KB and PB are de formed by ver ti cal or sub-ver ti cal sets of joints. Or thogo nal and nearly or thogo nal joint sys tems can be ob served, among oth ers, in the ex po sures of Cre ta ceous strata, es pe cially within jointed glauconitic sand stones. The term “Jointed Sand stones” (Ger. Quadersandstein; here in af ter:

Quader) has al ready been ap plied to the Cre ta ceous sand - stones crop ping out in the north ern part of Bo he mia, Sax ony and Silesia (Raumer, 1819; Geinitz, 1848; Flegel, 1904). These sand stones are sub di vided into three main ho ri zons: Lower, Mid dle and Up per Quader, re spec tively (e.g., Geinitz, 1848;

Flegel, 1904; Wojewoda, 1997). Joints within the glauconitic sand stones in the £¹czna re gion are grouped in NNW–SSE and WSW–ENE-trending con ju gate sets. Their ori en ta tion highly co in cides with the re gional di rec tion of or thogo nal joint sys tems in other parts of the IS (Jerzykiewicz, 1968). Frac tures cut ting the glauconitic and si li ceous mudstones are denser and less reg u lar than the joints within the sand stones.

Both nor mal and strike-slip NW–SE-ori ented faults are also sig nif i cant struc tural el e ments of the study area. Sev eral faults were iden ti fied us ing car to graphic meth ods be tween the KB and PB. The most im por tant fault zone rec og nized in the vi cin ity of £¹czna is the Lipienica–£¹czna Fault (LF; Fig. 1; Don et al., 1979; 1981), which was marked on geo log i cal maps as a sin gle NW–SE-trending fault (Berg and Dathe, 1905/1906;

Jerzykiewicz, 1971; Grocholski, 1971, Don et al., 1979). The sec ond im por tant fault zone, called the Wójtowa Fault (WF;

Fig.1; Don et al., 1981), cuts Perm ian sed i ments on the west ern slope of Róg Hill. Fur ther more, there are a few un named faults cut ting the sed i men tary strata be tween the KB and PB (Jerzykiewicz, 1971; Don et al., 1979), es pe cially on the west - ern slopes of Róg Hill, and be tween Rogal and Dziób hills to the south of the vil lage of £¹czna.

METHODS

Geo log i cal and struc tural map ping of the £¹czna re gion was con ducted in nu mer ous lo cal i ties in clud ing aban doned and pe ri od i cally ac tive quar ries, road cross cuts and nat u ral ex po - sures. Rep re sen ta tive sam ples of the main lithological types

were col lected. Tex tural and struc tural fea tures of se lected Tri - as sic and Cre ta ceous sand stones were ana lysed dur ing field - work and sup ple mented with petrographic mi cro scopic ob ser - va tions. Struc tural map ping in volved mea sure ments and de - scrip tion of joints, fault planes, and pre served fault scarps. Nu - mer ous mesostructural ki ne matic in di ca tors (Pe tit, 1987), such as stri ated ridges, grooves, slick en sides, low-an gle shears, hack les and en ech e lon cracks, were de scribed and mea sured (Ta ble 1). The mea sure ments were plot ted us ing a lower hemi - sphere ste reo graphic pro jec tion.

Dur ing field work, much at ten tion was paid to ac cu rate lo ca l i - za tion and type of lithological bound aries (tec tonic and sed i - men tary con tacts). In many cases, ba sic geomorphological map ping and ob ser va tions were car ried out. Struc tural fea tures were iden ti fied and pre cisely lo cal ized in the field with ap pli ca - tion of the No mad Trimble GPS and Pentagram Path Finder Log ger P3106. The ef fect of the in ves ti ga tions – a geo log i cal map at the scale of 1:10,000, was su per im posed on a shaded LiDAR Dig i tal Ter rain Model (DTM) of ~1 m res o lu tion (Fig. 3).

Con tours gen er ated from the DTM had a 0.5 m in ter val and were ap plied to con struct re gional strati graphic and struc tural sur faces with the use of Microdem Soft ware v. 2015.8. (de vel - oped by Pe ter Guth) and Global Map per v. 15.0. This al lowed ex am i na tion of the ac cu racy of the cur rent geo log i cal maps.

LiDAR-based geomorphometric anal y sis was also made.

TECTONICS OF THE £¥CZNA REGION

LIPIENICA–£¥CZNA FAULT (LF)

Al most the en tire KB area is seg mented by NW–SE-ori - ented and mi nor ENE–WSW-trending faults. The Cre ta ceous rocks of the KB, Tri as sic out crops of the Czarna Struga Val ley, and the sur round ing hills (Mielna and Dziób) are cut by the LF that con tin ues also to the NW of the KB within the Perm ian vol - ca nic rocks of the IS (Krucze Mts.). The vi cin ity of this fault is not well-ex posed, thus es pe cially car to graphic and geomorpholo - gical ev i dences of fault ing can be ob served. The LF dips steeply to the north-east and the max i mum pos tu lated throw on the fault reaches 30 m (Jerzykiewicz, 1971; Don et al., 1981). In the north ern part of the study area, the tec tonic con tact be tween si li ceous mudstones and older sand stones of Cenomanian age in di cates am pli tude of ~23 m within this fault seg ment (lo cal - ity no. 1).

Sev eral geomorphic ev i dences of tec tonic ac tiv ity along the LF were iden ti fied, es pe cially dur ing field in ves ti ga tions and geomorphometric anal y sis based on LiDAR data. To the north, they in clude, e.g., split ting val leys (loc. 2) formed above two seg ments of NNW–SSE-trending faults. The east ern seg ment of the LF strikes obliquely to the main fault in ter sec tion trace.

Ex po sures of glauconitic mudstones con sti tute in this case part of a north east ward tilted, wedge-shaped block bounded by fault splays. On the south east ern slope of Drogosz Hill, the LF di - verges into two link age fault seg ments (loc. 3). The north west - ern branch of this fault, es pe cially on the north ern slopes of Drogosz Hill, was in ter preted ear lier as the main fault zone of the LF (Berg and Dathe, 1905/1906) and as the “South ern Mar - ginal Flex ure Fault” (Jerzykiewicz, 1971). De tailed map ping of this area has shown that the north ern, fault-af fected slopes of Drogosz Hill are cov ered by a land slide col lu vium (loc. 4;

Kowalski, 2017). The sur face of rup ture of this land slide prob a - bly co in cides with the up per part of a listric-shaped fault plane (Kowalski, 2017). More over, the area be tween the syn thetic fault splays rep re sents a re lay ramp struc ture (loc. 3; e.g., Pea -

(5)

Fault geometry and evidence of depocentre migration within a transtensional intra-basinal high... 783

Fig. 3. Detailed geological map superimposed on a LiDAR DTM showing the main structural features of the £¹czna area (author: A. Kowalski)

SF – “Southern Marginal Flexure”; other explanation as in Figure 1; contours generated from LiDAR data (interval 10 m)

(6)

cock and San der son, 1991) that af fects the lo cal drain age pat - tern of the north ern slopes of Drogosz Hill. A sim i lar case is pres ent within the south ern es carp ment of the Zawory Ridge, where the east ern fault block is tilted to the NE and dis placed ap prox i mately 500 m to wards the SW (loc. 5). A tilted block is as so ci ated with a re lay ramp be tween two over step ping nor mal faults with a small strike-slip com po nent (e.g., Pea cock and San der son, 1995; Hus et al., 2005). The off set be tween the Cre ta ceous ex po sures in di cates a ca. 20 m throw and a dextral strike-slip move ment on this seg ment of the fault. Fault-re lated mor pho log i cal and struc tural ef fects are well vis i ble to the south of £¹czna, where the north ern part of Mielna and Dziób hills are dis sected by the LF. Its oc cur rence is ev i denced by poorly pre - served fault scarps and a ca. 20 m dis place ment of the Lower Quader out crops across the cuesta ridge (loc. 6; Fig. 3).

More over, a wa ter shed zone was formed within the south - east ern part of the LF be tween Mielna and Dziób hills (loc. 6).

The oc cur rence of horse tail and low-an gle Riedel shear frac - tures in ex po sures within this sec tion of the fault in di cates NW–SE-trending dextral strike-slip move ments. This is also con firmed by ob ser va tions of steep ex ten sion frac tures with hack les (Herman, 2009) and oblique pin nate joints (Han cock, 1985; Engelder, 1989), which oc cur in ar ti fi cial ex po sures of the Lower Quader on the north ern slopes of Mielna Hill (loc. 7).

RÓG FLOWER STRUCTURE

NW- and NNW-trending, both strike-slip and dip-slip faults, were also rec og nized in the south west ern ter mi na tion of the KB. The great est con cen tra tion of these faults is ob served in ar -

ti fi cial ex po sures of the Lower Quader around Róg Hill – the most prom i nent ta ble hill (712.8 m a.s.l.) within the Zawory Ridge. Ac cord ing to Jerzykiewicz (1969, 1971), the south ern part of the Róg pla teau is re lated to the axis of the £¹czna Anticline.

Fault planes crop out mainly in ex po sures along for est roads tra vers ing the north east ern and north ern slopes of Róg Hill (here in af ter: N Róg faults). The first dam age zone (loc. 8;

Fig. 4A, B) com prises nu mer ous NW–SE-trending, both dextral strike-slip and nor mal faults. Fault sur faces are ver ti cal or steeply in clined at 50–90° and strike obliquely to the main lithological bound aries (Fig. 3). Low-an gle R-shears, hack les and slick en sides ob served on the frac ture sur faces in di cate mostly dextral strike-slip move ments. The am pli tude of hor i zon - tal move ments is dif fi cult to es ti mate here, al though a pre cise car to graphic de lim i ta tion of the Tri as sic–Cre ta ceous con tact (Fig. 3) al lows de ter min ing a ca. 5 m down throw of the NW limb of the fault(s). To the north-east (north ern slopes of Róg Hill), the az i muth of the dip di rec tion of faults and frac tures changes mark edly (loc. 9). The dis tri bu tion of fault planes var ies be tween az i muth 230 and 250°. Sub-ver ti cal and ver ti cal faults are char - ac ter ized by a ca. 100 m wide brec cia zone (Fig. 4C) that com - prises nu mer ous strongly frac tured blocks of sand stones, in some cases bounded by an ti thetic faults. Fault sur faces are gen er ally pol ished, rarely stri ated. Dextral dis place ments pre - vail in these faults. Close to the fault planes, contractional, faulted hy brid joints (Fig. 4D; Marín-Lechado et al., 2004) can be ob served. The south west ward off set of the Tri as sic and Cre - ta ceous con tact in di cates a ca. 13 m ver ti cal dis place ment within this fault zone. Nu mer ous de for ma tions are re flected in the mor pho log i cal fea tures of the slopes. Es carp ments bor der - Lo cal ity (no.) Stra tig ra phy and

li thol ogy Co or di nates Fault ge om e try Fault plane

ori en ta tion Ki ne matic in di ca tors and other di ag nos tic struc tures N Chocho³ (2) UC; G&SM 50°41’01.65" N

16°08’02.65" E strike-slip, nor mal fault 100/70 D, S, R’

N Mielna (7) UC; GS 50°39’56.62" N

16°08’05.77" E strike-slip, nor mal fault 280/85 H, R’

NW Róg (8) UC, MT; KS, GS 50°40’31.81" N

16°05’43.14" E strike-slip, nor mal faults 40/80 D, H, R’, S N Róg (9) UC, MT; KS, GS 50°40’35.04" N

16°05’55.14" E strike-slip, nor mal faults 240/80 B, D, P, R

S Róg (11) UC; GS 50°39’51.80" N

16°07’01.43" E strike-slip, nor mal faults 240/85 D, H, P, R, R’

SW Róg (12) UC; GS 50°39’53.73" N

16°06’52.52" E strike-slip, nor mal faults 230/85 D, E, R E £¹czna (13) LT; KS 50°40’28.44" N

16°08’56.21" E strike-slip; nor mal faults 282/85

80/80 H, R’, S, D, Fe

Samotna (14) LT; KS 50°40’26.40" N

16°08’58.45" E strike-slip faults 90/55 E, S

N Dziób (15) UC; GS 50°40’11.10" N

16°08’48.80" E strike-slip fault 100/85 R, S

Zdoòov 1 (16) LT; KS 50°39’19.98" N

16°08’57.85" E nor mal fault 170/50 D, Fe

Zdoòov 2 (16) LT; KS 50°39’21.86" N

16°09’02.70" E nor mal fault 186/30 E, U

Libná (Lev.

Lomy) (17) UC; GS 50°39’09.43" N

16°06’17.66" E nor mal fault, strike-slip 260/90

284/85 D, G, H, R’, S, U

Stra tig ra phy and li thol ogy: UC – Up per Cre ta ceous; MT – Mid dle Tri as sic; LT – Lower Tri as sic. GS – glauconitic sand stones; G&SM – glauconitic and si li ceous mudstones; KS – kaolinitic sand stones. Ki ne matic in di ca tors and other di ag nos tic struc tures: B – brec cia; D – dense frac tures; E – en ech e lon cracks; Fe – iron com pounds within frac tures; G – gouge; H – hack les; P – pol ished fault sur faces; R – ridges and steps, R’ – Riedel shears; S – slick en sides; U – soft-sed i ment de for ma tion

T a b l e 1 Lo ca tion and fea tures of ma jor faults and fault zones ob served in the ex po sures from the £¹czna re gion

(7)

ing the Róg pla teau are cut by nar row, rec ti lin ear, N–S and NNW–SSE-trending deep val leys (loc. 10), whose for ma tion was prob a bly in duced by a large con cen tra tion of frac tures within brit tle shear/fault zones.

Sim i larly to the N Róg faults, brit tle de for ma tions, which crop out in the south ern part of the Róg pla teau (Fig. 3), show a NNW–SSE trend (320 ± 340), with fault dips rang ing within 80–90° (loc. 11). Ver ti cal fault planes were ob served in sev eral aban doned quar ries of the Lower Quader. Char ac ter is tics of the fault planes and their ori en ta tion sim i lar to that of the re - gional sys tem of extensional frac tures in di cate that the fault zones are strictly re lated to joints (Fig. 5A, C, G). Some of the ver ti cal NNW–SSE-trending joints with a max i mum spac ing of 30 cm con sist of pack ages of in tensely sheared and de formed sand stones (Fig. 5E). They should be re ferred to as ten sile cracks re ac ti vated as cataclastic shear zones (e.g., Pluijm and Marshack, 2004). Frac ture sur faces are vis i bly af fected by low-an gle, short R-shear frac tures (Fig. 5F), hack les and en ech e lon cracks (Fig. 5B), which in di cate dextral move ments with a nor mal com po nent. Most of these faults led to a change in the ori en ta tion of Cre ta ceous strata (cf. Fig. 3).

Fault sur faces, con trary to the N Róg strike-slip and nor mal faults, are usu ally stri ated (Fig. 5A) and dis play the pres ence of asym met ric steps, ridges (Fig. 5D) and slick en sides (Fig. 5A).

In ad di tion, plumose struc tures can be ob served on ad ja cent joint sur faces (Fig. 5G). Nearly ver ti cal strike-slip faults are strictly as so ci ated with listric or nearly pla nar nor mal faults and

their splays (Fig. 5D) that form con ju gate fault sets. Listric faults trend mainly par al lel, less oblique to the strike-slip fault planes (Fig. 5F). In a small aban doned quarry (loc. 12) lo cated to the west of the pre vi ously de scribed ex po sures, en ech e lon fault-ar rays were rec og nized. They are re lated to left-step, strike-slip faults de ter mined also by car to graphic meth ods. In this quarry, the sand stones are strongly frac tured, which was prob a bly the main rea son of its aban don ment.

The fault pat tern and their ki ne mat ics in di cate that sev eral splay and en ech e lon faults formed a neg a tive flower struc ture that runs in a NNW–SSE di rec tion across the Róg ta ble moun - tain (Fig. 6).

OTHER EVIDENCES OF FAULTING IN THE £¥CZNA REGION

Apart from the ma jor faults de scribed above, sev eral mi nor faults and fault zones were iden ti fied in the £¹czna area. They are man i fested in the mor phol ogy of the val leys and ridges and ex posed in nu mer ous quar ries and nat u ral ex po sures sur - round ing the high est hills of the re gion. Dis tinct ev i dence of fault ing was found within the Buntsandstein ex po sures in the west ern ter mi na tion of the Czarna Struga Val ley, be tween Dziób and Chocho³ hills. In a small quarry lo cated to the north of the road con nect ing the vil lages of Ró¿ana and £¹czna, nearly ver ti cal NNW–SSE-trending joint sets and ex ten sion frac tures linked with nor mal faults can be ob served. Strongly frac tured sand stones oc cur in the east ern part of the quarry (loc. 13;

Fault geometry and evidence of depocentre migration within a transtensional intra-basinal high... 785

Fig. 4. Structural features of the N Róg faults

A – dextral fault (sf on the di a gram) with low-an gle R-shears and the per pen dic u lar joint sur face (j on the di a gram) af - fected by nor mal fault (nf on the di a gram) – west ern limb of the Róg Flower Struc ture (loc. 8); B – set of nor mal faults with a strike-slip com po nent – west ern limb of the Róg Flower Struc ture (loc. 8); C – brec cia zone within the west ern limb of the Róg Flower Struc ture (loc. 9), the sym bols Ä and 8 show mo tion be tween blocks bounded by strike-slip faults: away and to ward an ob server, re spec tively; D – contractional faulted hy brid joints within the brec cia zone (loc. 9)

(8)

Fig. 7A). Frac tures are re lated to the N–S and NNW–SSE-ori - ented sinistral strike-slip faults that cause a change in ori en ta - tion of arkosic sand stones. The ori en ta tion of these frac tures strongly co in cides with the elon ga tion of well-pre served tors (Samotna, BliŸniaczki and Czartowskie Ska³y groups) on the con vex slopes of Dziób and Chocho³ hills (Fig. 3; loc. 14). On the east ern wall of the Samotna tor (Fig. 7B) oc cur left-step -

ping, en ech e lon cracks and low-an gle R-shears. Low-an gle frac tures and slick en sides were rec og nized also on the steep walls of the Czartowskie Ska³y group. Tec toni cally af fected tors form N–S-ori ented ridges (Dziób and Rogal hills), which are per pen dic u lar to the axis of the Czarna Struga Val ley and em - pha size the struc tur ally con trolled lo cal wa ter shed zone be - tween the Nysa K³odzka and Metuja River bas ins.

Fig. 5. Structural features of the S Róg faults (Lower Quader exposures, loc. 11)

A – nearly ver ti cal planes of strike-slip faults (fp, sf on the di a grams) with vis i ble slick en sides (s) and ridges (r); note the SW-dip ping nor mal fault (dot ted line) linked with strike-slip de for ma tion; B – en ech e lon cracks as so ci ated with nor mal fault; C – set of nor mal- and dextral strike-slip faults as so ci ated with joints (j); low-an gle R-shears (R) are vis i - ble and in di cate dextral sense of move ments; D – fault splays (= sec ond ary faults; marked with ar rows) as so ci ated with strike-slip fault (slick en sides marked with dot ted lines), per pen dic u lar joint sur face (j) af fected also by strike-slip fault with ridges (r); E – cataclastic shear zone be tween ver ti cal joint sur faces; F – dextral strike-slip fault with as so ci - ated frac tures and oblique nor mal, listric-shaped fault (fp); G – part of a plumose struc ture (pl) on nearly ver ti cal plane (fp) of strike-slip fault; other ex pla na tions as in Fig ure 4

(9)

Fault geometry and evidence of depocentre migration within a transtensional intra-basinal high... 787

Fig. 6. Block diagram of the northern part of the Róg Flower Structure (vertical exaggeration 1.5)

Geology and localities according to Figure 3; explanations as in Figure 4

Fig. 7. Deformations within arkosic sandstones (Buntsandstein)

A – sinistral strike-slip faults in an aban doned quarry (E £¹czna, loc. 13); B – left-step ping en ech e lon cracks and R-shears on the tor sur face (Samotna – loc. 14); C – low-an gle listric fault (fp); D – synsedimentary microfaults and cracks (marked with ar rows and dot ted lines) within coarse-grained sand stones; lower part of layer is undeformed (loc. 16); other ex pla na tions as in Fig ure 4

(10)

The N–S-trending ridge of Dziób Hill, un typ i cal for this area, is bounded by steep es carp ments (40°) and con sti tutes prob a bly the pro lon ga tion of this dis place ment zone (Fig. 3). It is also con firmed by poorly ex posed cataclasites and fault brec cias that oc cur within the Lower Quader ex po sures of the north ern slopes of Dziób hill (loc. 15).

Sev eral meso-scale de for ma tions were also rec og nized in the Buntsandstein ex po sures near Zdoòov (loc. 16). They in - clude, for ex am ple, low-an gle listric faults with a throw up to

~0.5 m (Fig. 7C) and synsedimentary microfaults with a few centi metres throw (Fig. 7D).

Sev eral mesofault planes and de for ma tion struc tures were also ob served in aban doned quar ries of the Lower Quader in the Czech part of the study area, es pe cially in the Libná re gion. In pe - ri od i cally ac tive pits (“Levobøežní lomy u Libné”; loc. 17) sit u ated on the south ern slopes of an un named hill (659 m a.s.l.; Fig. 3), dis tinct fault mesostructures were ob served. Sim i larly as in the N Róg faults, the fault planes are mainly ver ti cal, N–S-trending and strictly co in cid ing with or thogo nal joints (Fig. 8). Dam age zones re - lated to nor mal- and strike-slip faults con tain clay gouges that de - vel oped within brit tle shear zones. Fea tures of fault planes (stri - ated ridges, slick en sides and grooves) in di cate dextral move - ments be tween sand stone blocks.

KAOLINITIC SANDSTONES – DISTINCT HORIZON

WITHIN THE INTRASUDETIC SYNCLINORIUM

Kaolinitic sand stones oc cur only lo cally in the top most part of the Bohdašín For ma tion. In the study area, they were rec og - nized in ex po sures on the west ern slopes of Róg Hill, on the south ern slopes of Drogosz Hill and on the west ern slopes of Strážný Vrch and Mielna hills (Fig. 3). In the Krzeszów Brachysyncline, kaolinitic sand stones were also doc u mented in aban doned quar ries lo cated near Jawiszów and Krzeszów (Góra Œwiêtej Anny lo cal ity). De spite the fact that ar ti fi cial ex po - sures of kaolinitic sand stones are small and lim ited only to road cross cuts in the study area, nar row ex po sures of these sed i - ments are high lighted by the oc cur rence of dis tinct kaolinitic soils with dis persed peb bles. Re sults of geo log i cal map ping sug gest that the pre served thick ness of the kaolinitic sand - stones is be tween 10 and 15 m (Fig. 3).

Kaolinitic sand stones (Ger. Weißer Kaolinsandstein) were marked as a sep a rate lithological unit on the first de tailed geo - log i cal map of the £¹czna re gion by Berg and Dathe (1905/1906), and as signed to the Mid dle Buntsandstein.

Mroczkowski (1977) as sumed that they might con sti tute a relic of an an cient weath er ing cover de vel oped at the top of the Buntsandstein de pos its from the Early Tri as sic to the Late Cenomanian. Don et al. (1981) marked these sed i ments also on top of Buntsandstein arkosic sand stones in the Róg area and spec u lated that they might rep re sent Lower Tri as sic sed i - ments that were re worked dur ing the Late Cre ta ceous ma rine trans gres sion. Ac cord ing to Prouza et al. (1985), the kaolinitic sand stones that crop out in the Zawory Ridge are lithologically sim i lar to the Devìt køížù sand stones (Holub, 1966) de scribed in de tail by Ulièný (2004) and Wojewoda et al. (2016). The Devìt køížù sand stones are ex posed in the close vi cin ity of the south west ern bound ary of the Intrasudetic Synclinorium (the Hronov–Poøíèí Fault Zone HPFZ, cf. Fig. 1), within the mor pho - log i cal el e va tion be tween the Náchod and Trutnov bas ins (Wojewoda et al., 2016). Both the or i gin and age of these de - pos its re main con tro ver sial (see: Geo log i cal Set ting), al though based on re gional strati graphic sub di vi sions and the lithological sim i lar ity to the kaolinitic sand stones from the ad ja cent North Sudetic Synclinorium area, they are prob a bly late Early or early Mid dle Tri as sic in age (Chrz¹stek, 2002).

In the lower part of the suc ces sion, kaolinitic sand stones are rep re sented by coarse-grained, weakly lithified and strongly kaolinised arkosic wackes. To wards the top of the pro file, sand - stones are whit ish to light grey and re veal dis tinct platy part ing, which is usu ally bed ding-par al lel. They rep re sent mod er ately to well-sorted, me dium- and coarse-grained, sub-lithic and sub-arkosic arenites. Most of frame work grains range from 0.5 to 0.8 mm, rarely 1 mm in size (Fig. 9). Based on the clas si fi ca - tion of Pettijohn (1975), the grains are usu ally sub-an gu lar, in - ter mit tently sub-rounded and rounded. Monocrystalline quartz is the ma jor min eral com po nent of these de pos its. Its con tent var ies be tween 70 and 80%. Strongly frac tured and kaolinised feld spar grains con sti tute up to 10% of the frame work grains.

Lithic frag ments are rep re sented by meta mor phic (mostly gneiss es and quartzites) and ig ne ous rocks (gran ites, granodiorites, rarely rhyolites), which are also af fected by kaolinisation pro cesses. Most of the lithic grains, prob a bly rem - nants of mica schists, are strongly sericitised and kaolinised.

The sand stone ma trix is com posed of kaolinite-group min er als with a small ad mix ture of illite.

Fig. 8. Damage zone consisting of normal and dextral strike-slip faults in the Libna region (“Levobøežní lomy u Libné”, loc. 17)

Note cataclasites and gouge between conjugate, vertical and sub-vertical faults with visible slickensides (s) and grooves

(gr) on the fault planes; other explanations as in Figure 4

(11)

Jerzykiewicz (1971) and Mroczkowski (1977) ar gued that the top most part of the Bohdašín For ma tion is rep re sented by mas sive coarse-grained sand stones. The re sults of field in ves - ti ga tions did not con firm this opin ion (Fig. 10). Kaolinitic sand - stones show dif fer ent types of struc tures that vary within the ver ti cal suc ces sion. Struc tural fea tures of the low er most part of the kaolinitic sand stones are sim i lar to the sand stones from the lower and mid dle part of the Bohdašín For ma tion. They are rep - re sented mostly by cross-strat i fied sand stone and con glom er - ate fa cies, in ter preted as braided river chan nel-fill de pos its (Prouza et al., 1985; Fig. 10A). In di vid ual beds of these fa cies are 1–2 m thick and show a fin ing-up ward pat tern. The lower bound aries of the beds are marked by scoured, ero sional sur - faces over lain by thin (0.1–0.3 m) con glom er atic lay ers. Con - glom er ates usu ally pass up ward into me dium- and large-scale, trough- and pla nar-strat i fied sand stones with dis persed peb - bles. Overbank de pos its are less abun dant and rep re sented by par al lel-lam i nated silty-clayey in ter ca la tions rang ing from 0.05 to 0.2 m in thick ness.

The up per part of the kaolinitic sand stones con sists of large-scale cross-bed ded strata (“slab sand stones”). The lower bound ary of these de pos its is marked by a thin, ~0.1 m thick con glom er ate bed that con tains strongly kaolinised peb bles of meta mor phic and ig ne ous rocks up to 6 cm in size. Con glom er - ates pass up ward into cross-strat i fied sand stones. In di vid ual beds range be tween 0.1 and 0.2 m in thick ness and are in clined up to ~5° to wards the north and north-west (Fig. 10B, D). The bed ding bound aries are marked by grain-size changes. In a small ex po sure on the west ern slopes of Strážný Vrch Hill, me - dium-grained kaolinitic sand stones dis play small-scale, sym - met ri cal rip ple-lam i na tion within large-scale bed ded strata.

Sym met ri cal, partly bi fur cated rip ples oc cur on top of the bed - ding sur faces (Fig. 10C). Me dium-scale trough-strat i fi ca tion is also com mon, es pe cially in small tors in the north ern part of Róg Hill (Fig. 10B). They are re stricted to the top most part of the kaolinitic sand stones and were ob served only ~0.5 m be low the Tri as sic/Cre ta ceous un con formity. It is worth men tion ing that in ter ca la tions of strongly bioturbated coaly mudstones oc cur within kaolinitic sand stones in the north ern part of the KB near Krzeszów (Góra Œwiêtej Anny lo cal ity; Fig. 11; Jerzy kiewicz, 1971; Kowalski, 2016).

DISCUSSION AND SUMMARY

The ge om e try and ki ne mat ics of ma jor de for ma tion struc - tures cut ting the study area in di cate mainly a nor mal and dextral strike-slip com po nent of the move ments. The old est de for ma - tions of the area in clude pre-lithification (synsedimentary) faults and fis sures, which were formed due to NE–SW ten sion and co in cide with the ori en ta tion of the youn gest brit tle de for ma tion struc tures: joints, nor mal faults and strike-slip faults.

NNW–SSE-ori ented joints de vel oped pre sum ably as open ing mode (mode I) frac tures (Pol lard and Aydin, 1988) that are par - al lel to the s1 axis and per pen dic u lar to the max i mum ten sile stress (Ramsay, 1980). The prob lem of joints for ma tion within the IS has not been ex am ined in de tail so far and their compressional or i gin can not be ex cluded. How ever, many au - thors con sider that joints formed in an extensional set ting (Jerzykiewicz, 1968; Stejskal et al., 2012; Wojewoda, 2012).

Well-ex posed plumose struc tures and hack les oc cur ring on the joint sur faces con firm this view and their ten sile or i gin (cf.

Mierzejewski, 2015). Sig nif i cant changes in the joint ori en ta tion are caused by shear ing along joint sur faces (Wilkins et al., 2001; Myers and Aydin, 2004), which pro duced frac tures and fault planes oblique to the pre-ex ist ing joints. Hence, most of the ob served fault planes should be clas si fied as re ac ti vated joints (“faulted joints”; Wilkins et al., 2001). Shear ing of joints is con firmed by nu mer ous NNW–SSE-trending ver ti cal strike-slip and nor mal faults, which are par al lel and sub-par al lel to the joint sur faces. ESE–WNW-ori ented sys tem atic sets of joints, per - pen dic u lar to the joints de scribed above, were also re ac ti vated with a small nor mal com po nent. Short low-an gle R-shears and en ech e lon frac tures, rec og nized in the study area, have been formed obliquely to the strike-slip faults and sug gest per ma nent dextral move ments oc cur ring in a transtensional set ting.

Sinistral dis place ments oc cur ring in ex po sures to the east of

£¹czna rep re sent high-an gle R’-shears, an ti thetic to the main, NW–SE-trending dextral strike-slip faults. Contractional struc - tures com prise only faulted hy brid joints (Marin-Lechado et al., 2004), formed due to lo cal com pres sion within the neg a tive flower struc tures.

Fault geometry and evidence of depocentre migration within a transtensional intra-basinal high... 789

0.1 mm

A B

Fig. 9. Kaolinitic sandstones in a thin section (A; crossed polars), note strong kaolinisation of the matrix and lithic fragments; on the microphotograph to the right (B; crossed polars):

strongly kaolinised and sericitised grain of igneous rock, marked with arrow

(12)

Struc tural anal y sis has shown that the £¹czna Anticline area dis plays dis tinc tive struc tural, mor pho log i cal and lithological fea - tures typ i cal of intrabasinal el e vated ar eas bounded by extensional strike-slip and nor mal faults. The south ern branch of the LF and the oblique faults con sti tute the prin ci pal dis place - ment zone (PDZ; Chris tie-Blick and Biddle, 1985) that sub di - vides this part of the IS into two rhomb-shaped, half-graben units with dis tinct sub si dence cen tres (Fig. 11). The PDZ is as so ci ated with neg a tive flower struc tures (Róg Flower Struc ture) to the west and nor mal- and strike-slip faults to the east. The LF af - fected the de vel op ment and ge om e try of the en tire KB area. This is con firmed by dif fer ences in to tal ver ti cal dis place ments on this fault ob served within the KB and LA, which are ~40–50 m within the KB and 20–25 m within the LA.

Kaolinitic sand stones con sti tute a dis tinct ho ri zon in the north ern part of the IS. Their dis tri bu tion is strictly re lated to tec - tonic zones that oc cur within the south ern limb of the KB and is also lim ited to a mor pho log i cal el e va tion (Zawory Range).

More over, kaolinitic sand stones do not oc cur be low the Cre ta - ceous de pos its in ad ja cent, pres ent-day ba sin struc tures, which is con firmed by bore hole data (Wojtkowiak et al., 2011). Dur ing the Early Tri as sic, the KB and PB con sti tuted a sed i men tary ba - sin with a sin gle, cen tral depocentre formed above the strike-slip fault (Fig. 11A). This is con firmed by Early Tri as sic and even Perm ian palaeogeographic re con struc tions of fered by Mroczkowski (1977) and Œliwiñski (1981). Per ma nent transtension of the ba sin base ment re sulted in the for ma tion of

dual-depocentre ge om e tries (Dooley and Schreurs, 2012) within the in te rior of a pull-apart ba sin (the KB in this case, Wojewoda, 2007). Dur ing late Early and prob a bly Mid dle Tri as - sic times, the south west ern and north east ern ter mi na tions of the KB con sti tuted nar row ba sin depocentres sep a rated by an elon gated, NW–SE-ori ented el e va tion (Fig. 11B). This pro cess is well-doc u mented by an a logue mod el ling of transtensional bas ins (Wu et al., 2009). Prob a bly in the late Early Tri as sic, strongly kaolinitic, regolith-type weath er ing cov ers de vel oped on the sand stones of the Bohdašín For ma tion. The regolith suc - ces sion in the top most part of the sand stones de vel oped with - out dis in te gra tion of their pri mary struc ture. It is doc u mented by sed i men tary struc tures ob served in the low er most part of the kaolinitic sand stones suc ces sion, sim i lar to the Buntsandstein de pos its. Strong kaolinisation of the up per most part of the Buntsandstein de pos its was claimed by many au thors (Jerzykiewicz, 1971; Mroczkowski, 1977; Don et al., 1981). Dur - ing the Early to Mid dle Tri as sic, the KB re gion was a flat plain area pe ri od i cally flooded by a shal low sea (Wojewoda et al., 2016). A con glom er ate bed in the bot tom of the “slab sand - stones” is in ter preted herein as a transgressive de posit.

Small-scale, wave-rip ple lam i na tion ob served on the bed ding sur faces of kaolinitic sand stones shows that the depth of in di - vid ual, prob a bly iso lated wa ter bod ies, did not ex ceed a few decimetres. It is there fore quite prob a ble that the lo cal de pres - sions were oc cu pied by shal low ephem eral salt lakes. The playa-like de pressed area was oc ca sion ally cut by nar row river Fig. 10. Structural features of kaolinitic sandstones

A – strongly weath ered and kaolinised chan nel-fill de pos its (Se) in the lower part of the pro file; B – me dium-scale trough-strat i fi ca tion (St) within kaolinitic sand stones over lain by Up per Cenomanian basal con glom er ates (Gm), note the layer of con glom er ates (Gm) un der ly ing the “slab sand stones” in the lower part of the ex po sure; C – sym - met ri cal (Sr), partly bi fur cated rip ples (bi fur ca tions marked with ar row) on the top of the bed ding sur face; D – ero - sional bound ary be tween large-scale, pla nar-strat i fied (Sp) kaolinitic sand stones and glauconitic sand stones (west ern slopes of Róg Hill, loc. 8), note that the ero sional sur face is marked by a bed of basal con glom er ates (Gm)

(13)

chan nels. This is doc u mented by shal low ero sional scours within the kaolinitic sand stones. Strongly bioturbated coaly mudstones that oc cur within the kaolinitic sand stones in the vi - cin ity of Krzeszów (Jerzykiewicz, 1971) rep re sent salt marsh en vi ron ment de pos its (Kowalski, 2016) linked with a shal low sea trans gres sion. Af ter re gres sion and a long pe riod (~140 My) of de nu da tion, in the Late Cre ta ceous (Late Cenomanian), the study area was flooded by a shal low epicontinental sea. At that time, the KB area was a flat, low-ly ing peneplained land built of older sed i men tary rocks (Wojewoda, 1997; Ulièný, 2004). Pres er va tion of kaolinitic sand stones be - low the transgressive Up per Cenomanian clastic de pos its was

pos si ble only within lo cal struc tural de pres sions near £¹czna and Krzeszów.

Re gional palaeogeographic re con struc tions and struc tural anal y sis con ducted in the KB and LA ar eas re flect gen eral con - sis tency and per ma nent geodynamic de vel op ment of this area in a transtensional strike-slip set ting. Pre sented re sults of the struc tural and sedimentological stud ies do not co in cide with palaeo- and re cent stress re con struc tions pro posed by Nováková (2014) and Prouza et al. (2015) for the west ern bor - der of the Po lice Brachysyncline (the HPFZ). Ac cord ing to these au thors, the HPFZ and ad ja cent fault zones con sist of in - verse faults and even gently dip ping thrusts, as so ci ated with Fault geometry and evidence of depocentre migration within a transtensional intra-basinal high... 791

Fig. 11A–C – schematic evolution of the £¹czna Anticline area

Ellipsoids indicate depocentres (-) and elevations (+) during Triassic and post-Cretaceous times; blue arrows indicate flow directions; other explanations as in Figure 1

Fig. 12. Block diagram of the £¹czna Anticline showing changes in dip angles caused by strike-slip and normal faulting that produce visual and apparent effects of anticlinal bend

Geology according to Figure 3

(14)

pop-up struc tures (Kozdrój and Cymerman, 2003). Apart from the re sults of struc tural anal y sis con ducted only in a few in di vid - ual lo cal i ties (Cymerman, 1999; Nováková, 2014) there are no ev i dences of thrust fault ing in the IS area. More over, dis tinct faults and fault zones within the IS (e.g. HPFZ) were in ter preted by dif fer ent au thors as fault zones con trolled by in ver sion (e.g., Nováková, 2014), strike-slip (Wojewoda and Kowalski, 2016) and even flex ural (Valenta et al., 2008) tec ton ics. The to tal ab - sence of in verse faults and pop-up struc tures in the study area, es pe cially in the vi cin ity of the LF and other rec og nized faults, sig nif i cantly con tra dicts the opin ion about strong subhorizontal com pres sion (Prouza et al., 2015) pro duced by the “Al pine orog eny” (Tásler et al., 1979; Kozdrój and Cymerman, 2003) within in ves ti gated part of the IS. De scribed struc tures con firm the the sis about the per ma nent extensional de vel op ment of the IS, pro posed by other au thors (Wojewoda, 2007; Wojewoda et al., 2016). It should be also em pha sized that the Tri as sic and Cre ta ceous sed i ments do not show any ev i dence of con tin u ous de for ma tions. Changes in dip ori en ta tions of the sed i men tary rocks are caused only by brit tle fault ing (Fig. 12) linked with the Ce no zoic (Mio cene?) stage of ba sin in ver sion. This stage of the IS de vel op ment was termed ear lier as the “Saxonian

tectonogenesis” (Jerzykiewicz, 1971; Tásler et al., 1979;

Stejskal et al., 2012). The terms brachyanticline or brachysyncline are usu ally ap plied to folds whose am pli tude de - creases to zero in both di rec tions (Park, 2005). There is no ev i - dence of the pres ence of brachyfolds or folds in the study area.

Hence, the term “£¹czna El e va tion” is ad e quate and cor rect in the case of the study area and re flects its mor pho log i cal and struc tural po si tion.

Ac knowl edge ments. I am grate ful to J. Wojewoda for his strong sup port and in spir ing sug ges tions. I would like to thank A. ¯yliñska for the lin guis tic im prove ment of the fi nal ver sion of this pa per. Many thanks go to S. Madej for help with petrographic anal y ses. The three anon y mous re view ers are ac - knowl edged for their crit i cal read ing and valu able com ments to the first ver sion of the manu script. Fi nally, I am grate ful to T.M.

Peryt, for his help dur ing the re view pro cess. LiDAR data have been used for this study on the ba sis of the ac a demic li cense No. DIO.DFT.DSI.7211.1619.2015_PL_N is sued for the Uni - ver sity of Wroc³aw by the Head Of fice of Ge od esy and Car tog - ra phy in Po land.

REFERENCES

Aleksandrowski, P., 1998. The Intra-Sudetic Fault Zone and the Variscan strike-slip tec ton ics in the West Sudetes. Geolines, 6:

6–8.

Aleksandrowski, P., Œliwiñski, W., Wojewoda, J., 1986. Fron tally and surficially fluidized slump to de bris flow sheets in an al lu vial se quence, Lower Perm ian, Intrasudetic Ba sin. 7th IAS Re gional Meet ing: 9–29. Pol ish Acad emy of Sci ences, Ossolineum, Kraków.

An ders, M.H., Schlische, R.W., 1994. Over lap ping faults, intrabasin highs, and the growth of nor mal faults. The Jour nal of Ge ol ogy, 102: 165–180.

Berg, G., Dathe, E., 1905/1906. Geologische Karte von Preußen und benachbarten Bundesstaaten (in Ger man). Blatt Schömberg. Preußischen Geologischen Landesalstalt, Berlin.

Berg, G., 1909. Erläuterungen zur Geologischen Karte von Preußen und benachbarten Bundesstaaten. Lieferung 145.

Schömberg (in Ger man). Königlich Geologische Landesanstalt, Berlin.

Chris tie-Blick, N., Biddle, K.T., 1985. De for ma tion and ba sin for - ma tion along strike-slip faults. SEPM Spe cial Pub li ca tion, 37:

1–34.

Chrz¹stek, A., 2002. Stra tig ra phy and sed i men ta tion con di tions of Röt and Lower Muschelkalk of the North Sudetic Ba sin (in Pol - ish with Eng lish sum mary). Acta Universitatis Wratislaviensis, 2383, Prace Geologiczno–Mineralogiczne, 73: 1–112.

Cymerman, Z., 1999. Al pine transpression in the Sudetes (SW Po - land) (in Pol ish with Eng lish sum mary). Przegl¹d Geologiczny, 47: 942–945.

Cymerman, Z., 2004. Tec tonic map of the Sudetes and the Fore-Sudetic Block. Pol ish Geo log i cal In sti tute, War saw.

Don, J., Jerzykiewicz, T., Teisseyre, A.K., Wojciechowska, I., 1979. Szczegó³owa mapa geologiczna Sudetów 1:25 000, arkusz Lubawka (in Pol ish). Wyd. Geol., Warszawa.

Don, J., Jerzykiewicz, T., Teisseyre, A.K., Wojciechowska, I.

1981. Objaœnienia do Szczegó³owej mapy geologicznej Sudetów, arkusz Lubawka 1:25 000 (in Pol ish). Wyd. Geol., Warszawa.

Dooley, T., Schreurs, G., 2012. An a logue mod el ling of intraplate strike-slip tec ton ics: a re view and new ex per i men tal re sults.

Tectonophysics, 574–575: 1–71.

Dooley, T., Monastero, F.C., Hall, B., McClay, K., Whitehouse, P., 2004. Scaled sandbox mod el ing of transtensional pull-apart bas ins – ap pli ca tions to the Coso Geo ther mal Sys tem. Geo ther - mal Re sources Coun cil Trans ac tions, 28: 637–642.

Dvoøák, J., 1968. Stratigrafie, litologie a podloží svrchni køídy ve vnitrosudetské pánvi (in Czech). Vìstník Èeského geologického ústavu, 43: 423–430.

Dziedzic, K., 1961. Lower Perm ian of the Intra Sudetic Ba sin (in Pol ish with Eng lish sum mary). Studia Geologica Polonica, 6:

1–121.

Engelder, T., 1989. Anal y sis of pin nate joints in the Mount Desert Is - land gran ite: im pli ca tions for postintrusion ki ne mat ics in the coastal vol ca nic belt, Maine. Ge ol ogy, 17: 564–567.

Flegel, K., 1904. Heuscheuer und Adersbach-Weckelsdorf. Eine Studie über die obere Kreide im böhmisch-schlesischen Gebirge. Jahres-Bericht Schlesischen der Gesellschaft für vaterländische Kul tur, 82: 114–144.

Geinitz, H. B., 1848. Über obern Quader (in Ger man). Neues Jahrbuch für Mineralogie, Geognosie, Geologie und Petrefaktenkunde: 778–780.

Grocholski, A., 1971. Szczegó³owa mapa geologiczna Sudetów 1:25 000, arkusz Mieroszów (in Pol ish). Wyd. Geol., Warszawa.

Grygar, R., Jelinek, J., 2003. Up per Morava and Nysa pull-apart grabens: im pli ca tion for neotectonic dextral transtension on Sudetic faults sys tem. Geolines, 16: 35–36.

Han cock, P.L., 1985. Brit tle microtectonics: prin ci ples and prac tice.

Jour nal of Struc tural Ge ol ogy, 7: 437–457.

Herman, G.C., 2009. Steeply-dip ping ex ten sion frac tures in the New ark ba sin, New Jer sey. Jour nal of Struc tural Ge ol ogy, 31:

996–1011.

Holub, V., 1966. Geologické Pomìry Východního Podkrkonoší (in Czech). Un pub lished re port. Geofond ÈR, Prague.

Holub, V., 1972. Perm ian of the Bo he mian Mas sif. In: Rotliegend Es says on Eu ro pean Lower Perm ian (ed. H. Falke): 137–188.

Brill, Hol land.

(15)

Hölzel, M., Wagreich, M., Faber, R., Strauss, P., 2008. Re gional sub si dence anal y sis in the Vi enna Ba sin (Aus tria). Aus trian Jour nal of Earth Sci ences, 101: 88–98.

Hus, R., Acocella, V., Funiciello, R., De Batist, M., 2005. Sandbox mod els of re lay ramp struc ture and evo lu tion. Jour nal of Struc - tural Ge ol ogy, 27: 459–473.

Jerzykiewicz, T., 1968. Re marks on the or i gin and ori en ta tion of joints in the Up per Cre ta ceous rocks of the Intrasudetic Ba sin (in Pol ish with Eng lish sum mary). Geologia Sudetica, 4: 465–478.

Jerzykiewicz, T., 1969. The brachysyncline of Krzeszów as a tec - tonic unit (Mid dle Sudetes). Bul le tin de l’Académie Po lo naise des Sci ences, Serie des Sci ences Geologiques et Geographiques, 17: 37–41.

Jerzykiewicz, T., 1971. Cre ta ceous in the vi cin ity of Krzeszów (in Pol ish with Eng lish sum mary). Geologia Sudetica, 5: 281–318.

Kondracki, J., 2002. Geografia Regionalna Polski, wyd. 3. PWN, Warszawa.

Kowalski, A., 2016. Granica trias-kreda na obszarze brachysynkliny Krzeszowa i elewacji £¹cznej (synklinorium œródsudeckie) (in Pol ish). VI Polska Konferencja Sedymentologiczna POKOS 6 –

“Granice Sedymentologii”, 28.06.2016–1.07.2016, Chêci - ny– Rzep ka: 161–162. Instytut Geologii Podstawowej Wydzia³u Geologii Uniwersytetu Warszawskiego, Warszawa.

Kowalski, A., 2017. Im pact of mass move ments on geo log i cal in ter - pre ta tion – an ex am ple of the Drogosz hill land slide within the Zawory Range (Cen tral Sudetes) (in Pol ish with Eng lish sum - mary). Przegl¹d Geologiczny, 65: 96–104.

Kozdrój, W., Cymerman, Z., 2003. Al pine tec tonic in ver sion – prin - ci pal mech a nism of the Variscan base ment up lift and ex hu ma - tion in the Sudety Mts. Geolines, 16: 59–60.

Marín-Lechado, C., Galindo-Zaldívar, J., Rodríguez-Fernández, L.R., González-Lodeiro, F., 2004. Faulted hy brid joints: an ex - am ple from the Cam po de Dalias (Betic Cor dil leras, Spain).

Jour nal of Struc tural Ge ol ogy, 26: 2025–2037.

Mazur, S., Aleksandrowski, P., Kryza, R., Oberc-Dziedzic, T., 2006. The Variscan Orogen in Po land. Geo log i cal Quar terly, 50 (1): 89–118.

McClay, K., Bonora, M., 2001. An a log mod els of re strain ing stepovers in strike-slip fault sys tems. AAPG Bul le tin, 85:

233–260.

Mierzejewski, M., 2015. Plumose and conchoidal struc tures on the joint sur faces of the Mid dle Turonian sand stone of the Sto³owe Mts., Sudetes (SW Po land) (in Pol ish with Eng lish sum mary).

Przegl¹d Geologiczny, 63: 426–428.

Mikuláš, R., Plièka, M., Skalický, J., 1991. A find of mud scrolls in Lower Tri as sic sand stone at the lo cal ity Devìt køýžu (NE Bo he - mia). Véstník Ústøedního ústavu geologického, 66: 247–249.

Mroczkowski, J., 1977. Lower Tri as sic sand stones in the north ern part of the Intra-Sudetic trough (in Pol ish with Eng lish sum - mary). Annales Societatis Geologorum Poloniae, 47: 49–72.

Myers, R., Aydin, A., 2004. The evo lu tion of faults formed by shear - ing across joint zones in sand stone. Jour nal of Struc tural Ge ol - ogy, 26: 947–966.

Nemec, W., Porêbski, S.J., Teisseyre, A.K., 1982. Ex plan a tory notes to the lithotectonic molasse pro file of the Intra-Sudetic Ba - sin, Pol ish part (Sudety Mts., Car bon if er ous–Perm ian).

Veröffentlichung der Zentralinsitut für Physik der Erde, 66:

267–278.

Nováková, L., 2014. Evo lu tion of paleostress fields and brit tle de for - ma tion in Hronov–Poøíèí Fault Zone, Bo he mian Mas sif. Studia Geophysica et Geodaetica, 58: 269–288.

Park, R.G., 2005. Foun da tions of Struc tural Ge ol ogy (3rd edi tion).

Aingdon, Eng land.

Pea cock, D.C.P., San der son, D.J., 1991. Dis place ments, seg ment link age and re lay ramps in nor mal fault zones. Jour nal of Struc - tural Ge ol ogy, 13: 721–733.

Pea cock, D.C.P., San der son, D.J., 1995. Strike-slip re lay ramps.

Jour nal of Struc tural Ge ol ogy, 17: 1351–1360.

Pe tit, J.P., 1987. Cri te ria for the sense of move ment on fault sur - faces in brit tle rocks. Jour nal of Struc tural Ge ol ogy, 9: 597–608.

Petrascheck, W., 1933. Der böhmische Anteil der Mittelsudeten und sein Vorland (in Ger man). Mitteilungen der Geologischen Gesellschaft, 26: 1–136.

Pettijohn, F.J., 1975. Sed i men tary Rocks (3rd edi tion). Harper and Row, New York.

Pluijm, van der, B., Marshak, S., 2004. Earth Struc ture. An In tro - duc tion to Struc tural Ge ol ogy and Tec ton ics. WW Norton &

Com pany, New York.

Pol lard, D.D., Aydin, A., 1988. Prog ress in un der stand ing joint ing over the past cen tury. GSA Bul le tin, 100: 1181–1204.

Porêbski, S.J., 1980. Œwiebodzice suc ces sion, Up per De vo nian- low er most Car bon if er ous, West ern Sudetes: a prograding mass-flow dom i nated fan-delta com plex (in Pol ish with Eng lish sum mary). Geologia Sudetica, 16: 101–192.

Prouza, V., Tásler, R., Valin, F., Holub, V., 1985. Grav elly to sandy braidplain de po si tion in the Buntsandstein-fa cies Bohdašín For - ma tion in North east ern Bo he mia (Czecho slo va kia). In: As pects of Flu vial Sed i men ta tion in the Lower Tri as sic Buntsandstein of Eu rope (ed. D. Mader): 397–410. Springer, Berlin.

Prouza, V., Coubal, M., Adamoviè, J., 2015. Spe cific ar chi tec ture of the Hronov–Poøíèí Fault (in Czech). Zprávy o geologických výzkumech v roce 2014. Geoscience Re search Re ports, 48:

13–18.

Puc, B., Traczyk, A., 2006. RzeŸba strukturalna Zaworów w okolicach Che³mska Œl¹skiego (Sudety Œrodkowe) (in Pol ish).

Przyroda Sudetów, 9: 169–178.

Radwañski, S., 1966. Up per Cre ta ceous fa cies and fau nas in the cen tral part of the Sudety Mts. (in Pol ish with Eng lish sum mary).

Annales Societatis Geologorum Poloniae , 36: 99–119.

Ramsay, J.G., 1980. The crack-seal mech a nism of rock de for ma - tion. Na ture, 284: 135–139.

Raumer, K., 1819. Das Gebirge Nieder-Schlesiens, der Grafschaft Glatz und eines Theils von Böhmen und der Ober-Lausitz geognostisch dergestelt (XVI) (in Ger man). Berlin.

Sims, D., Ferrill, A., Stamatakos, J.A., 1999. Role of a duc tile décollement in the de vel op ment of pull-apart bas ins: ex per i - men tal re sults and nat u ral ex am ples. Jour nal of Struc tural Ge ol - ogy, 21: 533–554.

Skoèek, V., Valeèka, J., 1983. Paleogeography of the Late Cre ta - ceous Quadersandstein of Cen tral Eu rope. Palaeo ge ogra phy, Palaeoclimatology, Palaeo ec ol ogy, 44: 71–92.

Stejskal, V., Valenta, J., Vilímek, V., 2012. Us ing geomorpho - logical and geo phys i cal sur vey to re search re la tions be tween land forms and joint tec ton ics in the Broumovská vrchovina (Czech Re pub lic). AUC Geographica, 47: 73–83.

Sugan, M., Wu, J.E., McClay, K., 2014. 3D an a logue mod el ling of transtensional pull-apart bas ins: com par i son with the Cinarcik ba sin, Sea of Marmara, Tur key. Bollettino di Geofisica Teorica ed Applicata, 55: 699–714.

Sylvester, A.G., 1988. Strike-slip faults. GSA Bul le tin, 100:

1666–1703.

Œliwiñski, W., 1981. Dolomites in the Che³msko Œl¹skie Beds (Perm ian, Intra-Sudetic Ba sin), a rem i nis cence of the Perm ian vol ca nism (in Pol ish with Eng lish sum mary). In: Prob lems of Hercynian Vol ca nism in Cen tral Sudetes (ed. K. Dziedzic), Ab - stracts: 106–110. Wydawnictwo Uniwersytetu Wroc³awskiego.

Œliwiñski, W., 1984. Pro posed re vi sion of the strati graphic po si tion of Che³msko Œl¹skie Beds (Perm ian, Intra-Sudetic Ba sin) (in Pol ish with Eng lish sum mary). Geologia Sudetica, 18: 167–174.

Tásler, R., 1964. Permokarbon vnitrosudetské pánve a podkrkonošské panve (in Czech). In: Regionální geologie ÈSSR. Díl I, Èeský masív, sv. 2. Algonkium až kvartér: 204–232.

Ústøední ústav geologický, Praha.

Tásler, R., Èadková, Z., Dvoøák, J., Fediuk, F., Chaloupský, J., Jetel, J., Kaiserová-Kalibová, M., Prouza, V., Schovánková- Hrdlièková, D., Støeda, J., Støída, M., Šetlík, J., 1979. Ge ol ogy of the Bo he mian part of the Intra-Sudetic Ba sin (in Czech with Eng lish sum mary). Oblastní regionální geologie CSR. Ústøední ústav geologický, Praha.

Tu³aczyk, S., 1992. Cuesta land scape in the mid dle part of the Sudetes Mts. Geographia Polonica, 60: 137–150.

Fault geometry and evidence of depocentre migration within a transtensional intra-basinal high... 793

(16)

Turnau, E., ¯elaŸniewicz, A., Franke, W., 2002. Mid dle to early late Viséan on set of late orogenic sed i men ta tion in the Intra-Sudetic Ba sin, West Sudetes: miospore ev i dence and tec tonic im pli ca - tion. Geologia Sudetica, 34: 9–16.

Ulièný, D., 1999. In ter play of strike-slip tec ton ics and eustasy in coarse-grained delta sys tems, Bo he mian Cre ta ceous Ba sin.

Geolines, 8: 72.

Ulièný, D., 2001. Depositional sys tems and se quence stra tig ra phy of coarse-grained del tas in a shal low-ma rine, strike-slip set ting:

the Bo he mian Cre ta ceous Ba sin, Czech Re pub lic.

Sedimentology, 48: 599–628.

Ulièný, D., 2004. A dry ing-up ward ae olian sys tem of the Bohdašín For ma tion (Early Tri as sic), Sudetes of NE Czech Re pub lic: re - cord of sea son al ity and long-term palaeoclimate change. Sed i - men tary Ge ol ogy, 167: 17–39.

Valenta, J., Stejskal, V., Štìpanèíková, P., 2008. Tec tonic pat tern of the Hronov-Poøièi Trough as seen from pole-di pole geoelectrical mea sure ments. Acta Geodynamica et Geomaterialia, 5: 185–195.

Wilkins, S.J., Gross, M.R., Wacker, M., Eyal, J., Engelder, T., 2001. Faulted joints: ki ne mat ics, dis place ment-length scal ing re la tions and cri te ria for their iden ti fi ca tion. Jour nal of Struc tural Ge ol ogy, 23: 315–327.

Wojewoda, J., 1997. Up per Cre ta ceous lit to ral-to-shelf suc ces sion in the Intrasudetic Ba sin and Nysa Trough, Sudety Mts. Obszary Ÿród³owe: Zapis w Osadach, 1: 81–96.

Wojewoda, J., 2004. Tensyjny rozwój strefy Jawor-Z³otoryja w neogenie (in Pol ish). In: Sudety Zachodnie: od wendu do czwartorzêdu (ed. A. ¯elaŸniewicz): 127–135. WIND, Wroc³aw.

Wojewoda, J., 2007. Neotectonic as pect of the Intrasudetic Shear Zone. Acta Geodynamica et Geomaterialia, 4 (148): 31–41.

Wojewoda, J., 2008. Diffusional cells – an ex am ple of dif fer en ti ated rhe o log i cal re ac tion of gran u lar sed i ment to seis mic shock (in Pol ish with Eng lish sum mary). Przegl¹d Geologiczny, 56:

842–847.

Wojewoda, J., 2009. Žïarky-Pstr¹¿na Dome: a strike-slip fault-re - lated struc ture at the east ern ter mi na tion of the Poøíèí–Hronov Fault Zone (Sudetes). Acta Geodynamica et Geomaterialia, 6:

273–290.

Wojewoda, J., 2012. Joints in Cre ta ceous sand stones of the Góry Sto³owe moun tains: tec tonic and non-tec tonic. 13th Czech-Pol - ish Work shop On Re cent Geodynamics of the Sudeten and Ad - ja cent Ar eas. Wroc³aw-Paw³owice, Po land, No vem ber 22–24, 2012: 61. In sti tute of Ge od esy, Brno Uni ver sity of Tech nol ogy, Brno.

Wojewoda, J., Kowalski, A., 2016. Rola po³udniowo-sudeckiej strefy œcinania w ewolucji Sudetów (in Pol ish). In: Wyzwania polskiej geologii, 3, Polski Kongres Geologiczny (eds. J.

Wojewoda and A. Kowalski), Przewodnik do Wycieczek Kongresowych, wycieczka 2.3: 21–43. Polskie Towarzystwo Geologiczne.

Wojewoda, J., Mastalerz, K., 1989. Cli mate evo lu tion, allo- and autocyclicity of sed i men ta tion: an ex am ple from the Permo-Car - bon if er ous con ti nen tal de pos its of the Sudetes, SW Po land (in Pol ish with Eng lish sum mary). Przegl¹d Geologiczny, 37:

173–180.

Wojewoda, J., Rauch, M., Kowalski, A., 2016. Synsedimentary seismotectonic fea tures in Tri as sic and Cre ta ceous sed i ments of the Intrasudetic Ba sin (U Devíti køížù lo cal ity) – re gional im pli - ca tions. Geo log i cal Quar terly, 60 (2): 355–364.

Wojtkowiak, A., Zawistowski, K., Ihnatowicz, A., Biel, A., 2011.

Dokumentacja geologiczna z wykonania hydrogeologicznych otworów badawczych dla projektowanej Stacji Hydrogeolo - gicznej I Rzêdu w Dobromyœlu (in Pol ish). Pol ish Geo log i cal In - sti tute – Pol ish Re search In sti tute.

Wu, J.E., McClay, K., Whitehouse, P., Dooley, T., 2009. 4D an a - logue mod el ling of transtensional pull-apart bas ins. Ma rine and Pe tro leum Ge ol ogy, 26: 1608–1623.

Ziegler, P.A., 1987. Late Cre ta ceous and Ce no zoic intra-plate compressional de for ma tions in the Al pine fore land – a geodynamic model. Tectonophysics, 137: 389–420.

Zió³kowska, M., 1990. Glauconite from the Up per Cre ta ceous de - pos its of the In ner Sudetic De pres sion (in Pol ish with Eng lish sum mary). Przegl¹d Geologiczny, 38: 433–437.

¯elaŸniewicz, A., Aleksandrowski, P., Bu³a, Z., Karnkowski, P.

H., Konon, A., Oszczypko, N., Œl¹czka, A., ¯aba, J., ¯ytko, K., 2011. Regionalizacja Tektoniczna Polski (in Pol ish). KNG PAN, Wroc³aw.

Cytaty

Powiązane dokumenty

(1994); genetic boundary after Hunt (1996); key for sample codes see Appendix 1.. These sam ples rep re sent sed i ments de pos ited likely in pe lagic, anoxic parts of

Rare Earth Element mobility in a weathering profile – a case study from the Karkonosze Massif (SW Poland)..

The pres ence of the trace fos sils stud ied (Rosarichnoides sudeticus, Thalassinoides paradoxicus) and body fos sils (star fish Astropecten scupini, inoceramids: Inoceramus

The investigation included aqueous chemical and isotopic composition, chemistry of mineral phases, geochemical modelling, and tritium and radiocarbon groundwater dating..

Hydrogeochemical anal y sis may al low for iden ti fi - ca tion of the shal lower and deeper as cent re charge zones from the Me so zoic base ment.. Com pre hen sive

Thick solid lines show approximate inclination and direction of inclination of slope plane; numbering of measurement sites as in Figure 3.. In ad di tion, less in clined

Non-planar strike-slip Gnieêdziska – Brzeziny fault (SW Mesozoic margin of the Holy Cross Mountains, central

The de pos its of the Wałbrzych For ma tion in the vi cin ity of Wałbrzych were stud ied paly no logi cal ly, with 13 sam ples, taken from mudstones, siltstones and bi tu mi