• Nie Znaleziono Wyników

Ore-filled hydrothermal karst features in the Triassic rocks of the Cracow-Silesian region

N/A
N/A
Protected

Academic year: 2022

Share "Ore-filled hydrothermal karst features in the Triassic rocks of the Cracow-Silesian region"

Copied!
23
0
0

Pełen tekst

(1)

A CT A

GEOLOGICA

P O L O N I C A Vol. X~, No. ~

W fJIrSZ8Nla '197Q

Ore-filled hydrothermal karst features in the Triassic rocks of the Cracow-Silesian region

ABSTRACT: 'I'be ore-bearmg dolomite of Triaes.lc age :reveaJs evidence Of phreat1e circulation 'Of acid 'solurtioos .. T,lJis circulation ,gave rise to a 'Variety of karst features such as solution 100000ti~ iI'E!sid'l.la:l .clays,coHapse breccias .and reU5ted disturbances consequent upan the remOVl8J. <if al'l'bonates. The karst rfeatu:res are ore-Dned or tined with suLfide ares. lit is slI'.gIg'ested that these lea.tures were ~ by hot, ore-bea,r.Ing salutions and th91t the pr.ec!ipitation of ores proceeded ean~tantly

with the cavity-molllkin'g and the fOll'ination of cdUapse stTu.ctures. The lP09Sible age of sullfide minera1:izarMon is briefly dioSOUlS&ed.

Qpinilon today is still dirvided upon the question of origi.n of zilnc and lead ores ;in the Craoow-8:Uesian Il'egion. '!his controversy lasthlg already . DlOil'e than ihumred yea,rs reflects the two opposing trends in the mterpre-

taotion of'ores, namely the syngenetic (e.g. BemhaTdi 18:89; Gilridh 1903;

Kell 1956; Gruszczyk 1956, 19&7; Smolarska 1968) and E!P.igenetic (e.g.

Michael 1904, Duwensee 1929, Sclmeiderhooo 119130, Wemioke 1931, Zwie- rzyclti 1950, Gallkiewicz 1'956, KrajewSki 1967, Ha:ranczyik'1'965).

The present palpE!'l' aims to sutbm.it 6Olll€ new or previously ~m­

phasized. evidence,to

support

the bytJlrothermaJ. dnlt;eb:pretatioo. It is li.nJ]Wd in scope to ore-lin.ed structures directly or indirectly related to ifihe re.tt?-o- val'of crubanart;es bytlhe ore1beadng solutions. These strUdbuTes, iOOicat€fd here as "hydrothermal karst" are importan1t for understanding the origin of ores and may beLp to resolve the ar.gwnent between :the ,two OODlflicting interpxetatiOllB.

The !problem of tkarst phenomena in 'OOIlID.ecmn with sulfide ores has been repeatedly ,raised, mostly on premises that it was ,1heordinary me- teoric water .tJb:a.t diSsolved the dissemilnated: sullides

am

reprecipi tated

(2)

248 KAZIMIEBZ iBOGAa, STANLSl..A'W DZtn.YA'SKI & OZESLAIW HAlBANCZYK

them ID more concentrated form at ·greater depth I(e.g. Althans 1691, Ford

& King 1966).

Ca·vi'ty-matkmg by Ibot Ol'e-tbealrlallg solutions. has been implicitly or explicitly :invoked as an important factor ID the forma·tilan of "cavity- -filling" deposits I(e.g, Loughlin 11926, Heyl et a1. 1955, Food 1'969'}. This factor has not iOOen ignored in connection with the Cracow-S]lesian sulfide ores, but only a lirttle a'Mention was girven to: it.

Adlmowledgemen:ts: This study was made possible ,by the friendly cooperation of many nrilnilng geologists whose assistance and help is grate- fully aCimowledged.

GIEOLOGIC SETTliNG

Zinc and lead deposits in the Triassic rooks are essentially confined.

to the so called "ore-beaTing dolomite". Figu:re 1 shows Ithe generalized relationship between:the dolomite and 1Jhe stratigra.phic members di!fferen- tiated in ~e Th-iassic sequence I(for details see ·e.·g. Assmann 1944, Si~

diecki 1948, SliwiDSki ·1969).

KEUPER

tt BORUSZOWICE

~ BEDS

g; TARNOWICE

~ DIPLOPORA

~ 9 DOLOMITES

...J KARCHOWICE ~

et TEREBRATULA

~ tt BEDS ...J

W LW G6RAZDiE

~.~ BEDS

~ o~---+---~~~~~~~~~~~~~~--~~

~ Xy~~~

~ ....

GOGOllN BEDS

~~---~---I W lE

... W

Z ~

::I .....

III

Fig.ll

Generalized picture showing the distribution of the ore-bearing dolomite within the Tria'Ssic 6eque~e; modified after $liwiDski ~1969)

(3)

The lower cal"bonate members of the sequence, ie. the 'ROt and .the Gogolin Beds contailD. abundant ma-rly intercalations. Wi1lh a few, but no- table exceptions, these beds are devoid of any significant mineralization.

The overllyilng G6raZdZe ami Karchowice Beds, which Btratig-raphically correspond ,to the ore--bearing dolomite consist mainly of relatively iPul1'e limestones.

Major caTfbona'te sedim.entatilcXn. ended aJt the close of the Muschel- kallk. The Boruszowice Beds (see fig . .1) consist dhiefly of argillaceous marine sediments. The Keu;per is made up of non-marine clays which in places oontain lenses of pure limestones (the Womiiki Limestone).

'In much of1lhe Sillesian area, the Triassic overlaps the Upper Car- boniferOlUS Coal Measures, arui it is :here where fully developed succession of members is found, the :Bunter included. Along :the :oorth-eaBtem mar- gin of the SHesian Basin, the Triassic rests upon a d~ly dissected stir- face of bard limestones and dolomiltes of Lower -Carboniferous and De- vonUm a·ge. Here, :t:he lower members Of i'he sequence are locally missing and the strata corresponding·to the upper p8.Tt-of :the Lower Muschelkalik and, even the Middle Muschelkalk, may rest upon the Paleozoic '('Sli- wiIlSki 11969).

The overlap reflects the primary cOn.fig,uratioo. of the IPre-TriassilC land surface, on which the resistalIl:t rooks stood rela tilVely high .in t0po- graphy, -~ may !h:arve formed eo fll".inge df islaOOs in tlle see IWIhich at that time occupied mueih of 'file SilesiaJn Basin (see Sli'Wi:Mi 1969).-

!At the close of Triassictime ·tiheOracow-Bilesian area was subjec-

too

to tectonic movements related to tihe Early Cimmerian !phase. These movements, heralded ,by ·the appea'l"alllCe of an ;oooonfonruty between the Keuper and' the Musche1k:aLk, resulted :in Ibroad fol<img Of the Triassic rocks (e.g. Piekarski 1965, Bogacz 19-6'7, Alexand·rowicz 1969, SliwiIiSki 1969). One of the effects o!f the Eatt"ly Ci:mmerian movements was also an uplift of the at'ea situated east of the Silesian 'Basin. Across the uplifted area an erosion surface was produced. The sediments oorrespooding to the Il1!Plift ami to 1Jhe subsequent erosion -are flurvial gravels of Lowermost Jurass:ic age ~Zn.osko 19515, Utnru:g-& Calikowski 1:9(0).

The Middle Jurassic marine sediments rest discordanily upon a tbrun- ca ted surface of 1ihe Paloozoic and Trlassic rooks so that various members of -the "l1riaasic sequ-ence, /the ore-bearing dolomite included, are !fownki in contact with sandstones a:nd gravels of tIbe Middle Jurassic age.

At the close of the JUirassic and during Cretaceous time, the Tlrias- sic rooks and their lPa-loeozoic substratum were again involved in tectonic movemetn'ts. Significant faultmg occum-ed BIt 'the opendJng of the Cenozoic (Dzulyilski 1900'). The recently discovered mgh-a:ngle 1hruMaults ·show- .ing evidences of post-Jurassic me and lead mmeralization (Haranczyk et a1. 19661) 'belong presumably rto (tihese movements. However, the precise

age of these faults has IllOt yet ·been deternrlneci.

(4)

350 KAZliMil"mRZ 'BOGAC2:. STANI&A'W nZtn..YNSiKI & CZl!lS~AW HA.RANCZYK

DUlri~ early Tertiary time, the Oracow-BUesian Il'egion was reduced to a low relief" sod tihe penepladneci su1'tfac~, ,was locally covered with a fine quarltzitic sand and various iProducts of chemical Iweatherilng (Ale- xandrowicz 197(0). Later, but still prior to the MiOcene transgression, nu- merous si!nIk-lboles were fortmeld on :the SlJlrlface of !:tlhe eXipOsed caJlbanate rocks. The sinlk-holes were filled with the above mentioned sand, g.reen clays, and witlh partly deca1cified 'l'OcIk-.debris (Gra<i.z:inSki 119621).

The Miocene transg·ression whiCh came aliter th,a·t, and affected. most of the Cracow-5ilesiain region, was associated with, and followed by an intensive faulrtiln.g which resulted in :the formation of n~rous !horsts and ~raJbens (DZuIyDski 19513, Alexaruirowicz 1004, iBogacz 1967).

. 'Ibis, in brre!f, is the outline of geological hiStory of !fu.e Qraoow""Si- Iesian region: wb1bh w.i:ll serve as a framework for the followilng conside-

!l'a-tions. Before entering mto these considerati<ms it may lbe useful to make a few statements concernmg Ithe ore-:beariln·g dolomite and the com- position of the ores.

There has been much controversial wriltilng on the subject of the (life-hearing dolomite, aIIld no agreemetn.t Ihas been Il'eacbed as to its origin and the processes by which the dolomitization occurred ~for references see SliwiDski 1~).

r.t

is beyond the scope ofthiis article to en tell' mto the question 9f validity of the existing arguments in ifarvour of the secondary or primary origin of rthe dolomirte. In '6h.e presenrt authors'

qpwoo,

there is DO evi-

dence whildh would justify the tendency of some mV'estiga tors to consider

·the ore--bea!I'mg dolomite as a primary deposit.

Alrtbougb :the iboundary tbetween the dolomite arnd. Umest.ane is usual- ly gradational,

rfue

oonrtacts are tnarI'lOw (from a few up to several 'tens of meterS) and go dbliquely to the bedding. 'It is 'even possible, in a single 'bed, to see ·the sedilmentary struciul!'eS extend:i!ng uninteN"Ujptedly from limestone to dolomite. '!be passage does not affect the outline of the struc- tures 1hough a ma.I'Iked decrease iIn their size is sometimes obsel"Ved. Furt- her away from 1he oonrtacts, particularly .iIn the areas of significant ore millleralilzatiOlll, the sedimenltary structures tend to disawearj and only

~e primary cbert IlliOdIules, if present !bea·r !fu.e .record of primarystructu- res and fossils. The above indicated. features a·re characteristic of empla- cement aIDd point out to a seoondaTy origin of the ore-;bearlng dolomite (e.g. Mildhael 190113; Duwensee 1'928; Wemticke 1931; SiedlOOki 194J8, 19512).

Short lIlotice needs be given to the composition of the primary sul- fide ores (for detai·ls see Haranczyik 1.9162). They oansist mainly of simple

. sulfides of zinc, (lead and ironsucl1 as ~haJ.eri!te, ·wurtzite, b.runckite,

gaQena, iboleslav.ite, maroasite and pyrite, with rBl1'e sul:fJosalts,

e.g.

jordanite

and gratonite.

The ores occur as 1) replacements rund 2) cavity-filling deposits. It is the second -type of occurrences to Which this paper is devoted.

(5)

·OBE-FILLED RYDBOTHEBMAL IKAiRST· FEA'l1UR!lS ,zN T.m!l 'l'RIASSIC ftJOiCK8 251·

Various solutioo effeds ·related to diIDferent karst developments are among the striking features of the ore-'beari!Ilg dolomite. Karstic processes iInvolving ·the action of caM meteoric waters have been ~atedly ope- rating at different time .intervals, whenever :the Triaasicrocks became eX1pOSed ·to the ciroulation of ~ !\Vater (e.g. Mdchae'l'1913, GilewSka

IFig. ~

Solution channel partly filled with ore-cemented rock debris; Trzebionka

196'0). These pa-ocesses are eX!C1Juded from :the followm.g ooc.sideraitions which are limi'ted to 'the solution features contemporaneous or peIiooon-

temporaneous with the emplacement of sulf.ide ores and which are othought to l'edlresen.t the work ,of hot ore-hearin·g fluids.

Solution cavities with intact roofs

Smau

ore-lined. conduits, evidently produced by circulation of acid solutions, aTe very common in rthe ore-bea·rmg dol()mite. They tEnd to appear as a llletwQ1'lk of irregular passages devoid ()f visible jomt-oontrol.

Roofed solution cavities, large enough

to

admit human body, Le. proper carves (see Curl 1004) a·re raa-e. '!bey also·:1;end to occur as Illeat'ly .horimn'ts:1 galleries or irreg,ular chambers fiilled partly or entirely with tumbled rock - .fragme:n'ts (fig.

2,

derived from the iIleaatby collapse structures. The walls of cavities as well as -the ·rook f.ragments are coated witfh sulfide ()res.

Collapse breccias

The caves merge mto a system of structures with collapsed roofs (figs. 3 md ~ and 'these into 2lOD.es <Yl ibrecclas .In iWhicl1lthe collapse pl'!O-

(6)

iFig. ;3

Solution cavity with collapse roof filled with ore-cemented brecciaj By tom

cesses have so modified ifue origlnalpa:ttem of caves that their outlines are ihardly recognisable. The :breccias consist of rlWdomly distributed blocks 8IDd fragmenJts of rtlhe are-tbea.ring dolomite cemenited wiltftl galena, sphale- riteSllld marcasite crystals. The cement may not fill the whole space

between

ifh.e rook-illragments,

am

unfilled cavities may occur. These aTe coated with idilOmorpbic sulfide crysta1s.

'Dhe breccias 000Ulr wldeI.ly ever Id:ilflfelrent palrts of 1Ihe ore-bearing do- lOomi:te, a!Dki !frequently are saaiwitJhed 'between ,the _ undisturbed beds . . They rest ei'tiher on solution-made surfaces or upon residual clays (see below). Th~ore their 'lower boundaries are IIlsually a,brupt. I'll con,trast, shaJrply detined !Il!P',Per boudaries · seldom

exist,

and the breccias pa'SS upwards into a shattered and fractured dolomite.

The breccias Il'ange from a :few ·tensof ceMimeters to severa-l meters in vertical extension, and cm be traced hOrizootally over a considerable disbance wbidl is diffifiault to assess. The geomebricS1 form of the breccias bea·rs no (['elation tOo their extension. FOor instance, 1he small breeda 'body depicted in fig. 4 finds many ,geometrical replicas among much larger accumulations of iblocks. '

·Extensive 'ZOneS of brecda occur Blt ,the oonltact of Ithe ore-lbea:ring dolomite wi'tib ,the tmderl.yiDg Gogo1:iJn. Limestones. Of particuJar inlterest, here are large ibloc!ks of ilhe dolomite or parts of the colla.psed cave roof which settled.

m1:o

1'.h€ so1ution pockets develOoped

m

,the limestone (Du-

(7)

ORE-Fl\LLED HYiIJIBO'I'BEHMAL IKAlRST FEATURES iN THE TRIASSIC ROCKS 253

Fig. 4

Small solution channels filled with ore~emented breccia; By tom

wensee 192'9, oom,p. also fig. 4 in iHorzemSki 1962). Local disoordances that arise, may ,bea,r a· remonte. sim!ila-rity 'to ,,diashrophic" or "sedimentary"

discordances. Such disooIda;nces are easily distinguishable from the tec- tonic or syn-deposilti<ma1 con1lacts .by l~ ill'IregUlar oonca'Ve sol'll tioo sudaces dilviding the dJolom.ite .from limestones, 2) comman ooowrrence of residual clays, and 3) 1ihe ahsence of t€ctoglypbs."

ConvilIlcmg evidence that the Ibreccias dlscussed a·re of. collapse ori- gin is provi(ledby :the way some of the blocks fit the wall from which ·they were broken apart (fig. 3).

In bedded carbonate .r<lCiks, the cavity-m~ and Ibreccia-maiking are ·usually oontempormoous. Th'llsthe production of large open cham- bers whioh BUIffered from. l'OQf tfailure is not necessary for the formation of breccias Showing a C()Il'lsiJderaible vertical extent.

The breccias ,UIIlder ooosideratioo have been variously interpreted.

There is a good J.'ea~ to believe :that they were frequently confused with tectonic breccias or mistalken fQ[' sedimentary and/or early diagenetic breccias. The possibility of b i r collapse origm has lIlot been ignored,hut illliormation pertilIlent on .this problem. was, in the past, very fragmentary (e.g. Kumiar' 1'926). Parenthetically it may he noted that similar collapse breccias from other ore deposits have 'been repeatedly mentioned by various authors (e.g. Loughlin 19:26, Heyl et sI. 1955, Ford 1'9169).

Zcmes

of

ore-lined fractures

The ibreccias may pass upwards atnd laterally

moo

a network ~f ore- -lined fractures and smaU faults cutting up the or~earilIlg dolomite in

(8)

2514 KAZIlMIlDRZ IBOGAOZ. iSTANISl.A'W OZtJZ.YNSlKI & CZESZ.AIW· HA.RAJ.Il"CZYK

all possible dirrecti'Ons. Same 'Of :these fractures are only a few centimeters in lengtlh, ·others can be traced over a distance of several 'Or several tens of meters. Only a few of 11Jhem. are regu!aJr, and a consiidlerable' p.Wt of these fractures appeaTS to be oblique or roug!h:ly !parallel toO the beddIDg.

They also may OCC'U[" in !parallel aIIld crossing sets which d'O lIlot necessarily conform to :the pa'ttem 'Of regional joOiInting. The f,ractures are filled with sulfide 'O~ and the longer is the fraC'turethe thicker is the sulfide vein in it.

The problem of the kactures and veins awaits systematic measure- ments. The data hirfiherto available are still ilIlSUfficlent for generalization (Duwensee 1'94l3:). Some of these .ore-lined rfissures may 'be interpreted, at least partly, in terms .of a solution alOlllg bedding planes and preexisting :liraotuJres (fiJgs. 5 acd &). Other presumalbly resulted from stress reldis-

A·---'-

,

Solution-made cavities filled with sulfide ores; Trzebionka

tribution conseqUerl·t upon 1ihe collapse of caverns ami the subsidence .of' the overlying 1i:'000s l{Kumiar 1'926, KrajewSki 1957).

Of par-ticular interest are Ihorimnrtal fissures developed alQng the bedding planes and internal parting surfaces: Such fissures a~e 'Of com- mon occurrence among karst fea.tu:res and tend to dev:elop preferentially above the C8vern0U8 horizons :in bedded rooks. The subsidence may then·

serve to widen the fissures whidh may ibe filled with tihe marterial rtha t crystallizes from the diSsolving solutions or whiCh is carried in suspension {e.g. residual clays).

It seems that the whole case of SYIIl-Sedbnentall'Y intel'iPreta tioo. 'Of zhnc a·nd lead ores in the 'Craoow-8ilesian region rests ()IIl the assump.tion tfhalt ithe hori.'zootal fractwres Wed wilfh sulfide19 aa'e sedimetnt layers deposited

m

the same environment as the carb<mate ·beds. However, as indicated. 'by several authors I(e.g. Gdkiewicz et a1. 19.60), the aUegoo

"layers" if 'traced over a sufficiently long distance, ,brmch i1nto a system

(9)

QRE.;Fl'LLED ~AL IKAJRST TEATtlIBES rN THE 'lUUASSIC ROCKS 255

of oblique and pe1jpendicular subordinate veins cutting across a number of beds (fig. 7). These bTanc'hlng veins

and

veinlets are in every respect identical. in composition. with the horiz·onial ()(Il:es, .and. cannot be regar- ded as secondary off-sprIDgs oresuJlting :from a Il'emdbi1izatian of su'Mides, as

Fig. 6

SulfIde veins partly developed along bedding planes (fragment of the exposure shown in fig. '5)

it is claimed 'by the advocates of the syngenetic origin of ores {Smola!I'ska 1968). One of the diagnostic features iJn this respect is the "comb struc- ture" wbiclh !!'€SUUs from interlodki.ng of crystals growing from oppoSite walls of . tbe fract'llre. 'The comb strudures of ibraJIlClh-vems join 1lhose of the main ones, so 1/hat :the mineral filling passes ifrom OOie veiJn iIIlto another without 'brea!k.

The above indicated mte~reta tion of the ore-filled fractures is substantiated by the fact that identkal wnes of shattered rooks n-om above the ca'Vity-filling ore deposits of unqUestionalbly epigenetic .origin are of co~mon OOOUTl"eIICe I{see e.g. Loughlin 1926). Clrose analogous are also fQW1d in recent !kaxst xegiOlDS wher-e the format-km of openings is due to the circula:tion of oromary meteoric waters.

Residual clays

The BOlutional removal of ear-boIlartes leaves a ·residue of a'rgillacoous matter. Sudh :residual clays do occur in the TTiassic rooks and are known as "virtriol clays". The residual character of these clays has been recogniz- ed ~y a number of authors (Kumiar 19-28, Sta;ppenbook 1928, Krajewski

(10)

Fig.?

Idealized and schematic picture showing ore-filled brst structures and related disturbances at the boundary between the ore-bearing dolomite (D) and the Gogolin

Limestone (L). Vertical dimensions and the s'ize of blocks greately exagerated

19&7, Cibis & Cibis 11960) and their mtimate association with lkarSt features was deaTly demonstrated by Horzemski (1962). Admit~ly, oppoSlite views are ·beilng held. The advocates' ,of sytDigenetic origin d ores regard them as ordinary sedimen:tM'y intercalations within :the 'r.riassic sequence (Giirlc!h 1903, Gruszczyik 195'6). The factual lbasis for this view is 1hat the vitriol clays emrbit lanrlJnatioo aOO contain pollen of T-riassic age (Zs.wiSlak 19(5). It Shou1d be born. in mind, however, that residual days seldom rem.aitn in iPlace of their ·leaching. They are usually ca-rried away by the dissollVilng fluids and tend to settt'le in cavities with stagnant or slowly movi!Dg solutions. In t'his respect, 1ihe residual days aq-e sedimen-

tary rocks, ami may Show' all the struct'Ulres . which are diagnostic of sediments. They arJso contain all other :insoluble Ilamticles, wh1cll may

OCC'UT :in -the .rock 8U!bjected to 'leaclh.mjg, the iPollen ilnduded. M'Oreover the .. vilbrinl clays" do not occur as con.timwlls layers hut fill the solution pockets, cavities and crevices (see HorzemSki 1962). '1bese clays tend to appeal' at tire base of the collapse breccias

too.

may be squeezed upwaros as smaJ.I idiapirs between the !fal~en Ibliooks.

Considerable lateral extension of some of -the "vitriol days" in the Bytom

area

may find its explmati.oo in the fact that the accumulation of residual clays does cot prooeed. simultaneously at different places. More- over, the clays once deposited, behave in a mamloEl1' similar to that of the sand fill'ing in mm-es, i.e. -they prevent the closure of .openings md make their :£urther lateral ext€!IlSion possible.

(11)

OBE...:FJLLED HYDRIO'IlHERlMAL IKAJRST FEATUiRES !IN 'lIBE T.BlASSIC ROOKS 25'1

The "vitriol clays" contain fragments of the ore-'bearing dolomite and scattered idiomor,phic crystals -of sulfides. 'Dhese latter grew up in a soft deposit as evidenced by 'the faC'!; -that the clay laminae are bent down and up over isolated crystals.

The "vitTiiol clays" are thus residual deposits and are contempora- neous with the solution -of cavities and the forma1tian 'of collapse hreccias.

INTEXmArmID .AIND NICXN'-INT.IOOiRATED ClIRCULArl'JON OF F!JUIDS IN mE

~ING [)I()L()MI'llE

Solution ch-oonels, collapse ,breccias and residual clays testify to extensive, horlzoIi,tal arui integrated cilrculatioo of acid solution:s. In sc- cC-Mance with wha1t is known of equivalent features !produced by the action of meteoric wa,ters (see e.g. \Bretz 1942), one can assume tha;t the solution StructuTes .iJn the ore-.'bealf'.Lng dolomite !have been. made under phreatic conditilOns. StalacUtic forms of sulfideS, indicative of vadose con-

d'i.Jhi.ons, are f~uOO only in the ~ lP8,nt ~ the ore /bodies aiIld, presumably post;iate tlhe main period of caw formation.

An .integrated flow under phlf'eatic conditions is' preceded by a non- -in teg-ra'ted circulat100l throu'gh:

'1) primary .openings; i.e. voids lbetween :iJndivildua'1 c-rystals

and

de- tiital paortides, clea'Visge planes of individual crystals, .bedding plan-es etc.

2) secondary .openings; jl.e. joints, faults and related tectonic fractu- res (see Hohlt 1948).

Seoonklary opeaingB offer thelbest rouJtes fur l!iiss<>lvl!ng so1utioos and it seems clear that the faults provided the pathways lorthe solutions mi- neralizing fue I'riaBsic rooks. However, -the relation of faults and joints 1;0 the kaTst features discussed has not yet been. esta-bliBhed, and little . can be said on ,this subject.

The ore-bearing dolomite provides yet another recotrd of Illonintegra- ted flow which is mdica:ti'Ve of a circulation through prima1'Y open.i:nlgs.

This i'8 a ~wOl'lk Of irreguLa,r, milnute conduits devoid of jo.int-<OOIltl'lol.

It is ilmown fua1t one of ·the effects of a circulation through :primary openimg is a sqlutioil1Bl widenilng of V'Oids between. individual grains which ultimately may lose their original framework and change into an inco- herent aggregate of particles. The presumptive evidence pomtitng to the exis1ence .of .non.-integ,rated circulation through the pore..,space merits paorticular a,tte.ntion. The solutiOOlal widening of such openilngs permits an easy ingress of fluids for replacements into the imlermost parts of the 'host rook.

(12)

258 KAZIMlEoRZ BOGAcrz, STANI~AW D2UI;YlQ'SKI & CZESI.AIW BABAlQCZYX

Althoug!h isolated ore bodies, show specific 'Properties and ilndilVi-

dua~ variations in mineral assemlil.ages and in the ratio of particula~ oon- stitu,ents, they also I'eveal sigtn.i!.ficaDit similarities regaruiIllg their' p8l'age- nesis and geochemistry.

Four'principal generations of primary sulfide ores have been distin- guished ~see e.g. Wernicke '1'931, Harailczyik 1962).

First generation consists almost exclusively of disseminated coarse orysta1lline

sPhalerilte

Oil'maaocasilte genetically 'l'elalted: 1;0 dolamitizaition and aJnikeritiza tion.

Second generation is 1Jhat of crustified ores in which four types have been .diStiInguished: 1~ The "Schailen'Mende" made up of baJnds of sphalerite, w-urtzite and 9nmckite inter.gro~. with galena, boles1alVite (pI. I, fig. 11) and, rarely, with jordllnilte, gratonite 8IIld ra:th:Lte.2) 'TIhe

"Strahlenblende" which con&sts mostly or exclusilVely of 'W1Jl'l'tzite show- ing a cradlia:l StructUlre and, occasionally, 1Jhe .ilnitergrowtbS df gaJena (Ipl. fl, fig. 1). 3) The "Schalanlkies" made

up

of bands of anomaloOus melrrlkOlVite- -pyrilte and marcasite which tend to coat the types 1 ami 2 (!PI. I, fig. 1).

4) Galena filling, sometimes wi1!h obscured c,rustification and comb-struc- tures .. ToO ;this generation ibelong alSo sulfide ores (sphalerite, bru:nc!ldte and ,,skeletal galena" showing colloform structure (pI. 1'1, fig. 2).

Third generation oonsists of .galena formilng mainly replacement de-. posits. lit has heen ,given the name of "main gal,ena" ~ernicke 19311).

Fourth generation is made iUp of sulfides (sphalerite, galena and mar- casite) in !pa·ragenesis withbarite.

The question :1lha.rt ariSes is tiherelation ·between the ore generations and the ikarst featuTeB described in the preceding chapters. It will be Tea- lized that a rationa·l solution. to this question .requires further :hwestiga- tions and that the followilng rema'l'lks must ,be talken tentatively.

'1.1le .first .generation of ores is maiJnly of the :repiacement ,type wnd does not show visi!ble oonnectionwi th the in teg.ra,ted solution' !features and breccias. It is poBSible, however, that the .emplacement of 1ih1jJg gene- ration was associated with a non-integrated ch-Culation through primary openings com'htned with a partial ,reIIlOlVal of 'the replaced cEWbona"tes. The Shrin'ka.ge consequent 'Upon dojomitization, as it is assumed' by many a.uthors (e.g. Wemicke '1'931), may have served to widen the primary ope- rungs and;to develqp new C<llDltraction fractu'res. This might halVe provided the supply routes for iricipient integTated flow ·of nrlneralizilng solutiOlllS.

lindeed, the minute Ifracrures <whlch may ,be inlterpreted as resulting fu'am.

shrin!kage are cr.ustified wi1lh the ,,strahlooblende" (second geonera;t'Jono!

:the' ores).

'Crustifioaiions a're iknoW1Il to dhamcterize the cSlvity-fill':Lng deposilts 8IIld, it is the second generatm of Oll'es :tbat shows the closest and most

(13)

ORJI).oFlLLlllD HYDROT.H1!2RaoIAL KAlBSTFEA'NmlllS :IN 'IlBE TRIASSIC BOCKS 259

intimate relation to the karst features desc·ribed previously. This genera-

tion:

fHls the cavities, ooates the solution surfaces, ceIIl€llts the oolla.pse

b1"eCcias, and fonns cr.ustilDcations al'01.mld the rook-fragments· found· in the solution calVities.

It shOuld be added that :the galena mterg·rowths mentioned. previou- sly (type 1 8Illd 2) tend to concentrate on .1he tIQp siu'faces of !the crusflified rock fragments, ·1ibough this applies to 1lhe· :imlermost ba;nds '!ll1ly .(tihe

80 called ,,shadow structure" see fig; 1 :in pI. '1'1). Such a oo.ncentratilon is indicative of grav'i:ty settling of galenai,rom :f1Juiijs fiJHing the voids between the rook-1:ragmen!ts.

Sulfides ibelan.gmg to ,the secand generation occur as eu:hed·ra·l cry- stals iIn residual clays. They also malke 'll!P 'l'are stalacti:tic forms.

Alilhou,g:h the thirdgen.eration of ores is mainly of the replacement type it may occur as the latest cavity filling, ooa tmg the crustified ores of 1he seoond: generatiOlIl.

Little i$

mown

a'bout the relati<m. of the fourth generation of sul- fides to the !ka·rat featuo:-es described. FIrom ,the pulb1i.cation. by W.m.c·za.k!ie- wicz (1969) one can infer t'hat also this generation may occur in cavity.,.

-:filled deposits.

This

problem, however, awaits turther investigations. Also the question of 1Ihe "nest-like" ore .podies in limestones aoo primary do- :lomUes (Rot) is not yet ripe for discussion though

trese

ore bodies have distilnct karst :rea tures of their 0WlIl.

A definite relation between the Ika'l'st rfeatures and the prima'l'Y ores is at tpa"esen.t recognized only in CQ1'lI[lectioo wHlh the fWst ~ seoond ge- neration of suhfides. The ikarst structures Me evidently younger than "the first .genera twn of ores though it is not moWlIl how long was the time

span be'tween. the two phenomena.

There is a iPr~ptive evidence 1balj; the cavities in the ore-bearirig dolomite were made 'by the ·ore-bearing solutions. The relation of idiomorphi.c sulfide crystals (seoond. genera,tilan of ores) -to residual clays indicates :that ·these crystals grew 'Up iIIl a soft unlirthified sediment i.e .•

'the crystallization was contemporaneous or pen.eoo.n tempora.neous with the deposition of clays /(pI. N, fig. 1). Such a deposition, however, PI'OC€- ed.ed ooncomitantly with the formaiion of solultian cavities. Moreover the karst features discussed, could IDIOt have 'been ilnherited rfrom an ea1"lie'l' and different solutional processes antedating the emplacement o,f

ores (as it is the ca~ with the deposits described. by 'Fersman & SceTIbakov 1'925, fide iKunsky 119516) since the loose framewor!k of collapse sbruc1lures and QpeIl fissures could not have staOO intact and empty over any conSl.(ierable time interval.

The conclusion is that ·the ore-lined kam features in the ore-beari!IlJg dolomite resulted from the action of acid ore-bearing solutions and that the emplacement of the second generation of ores ,took place concomi- tantly with the dervelq>m€lllt of these ikarst features. This questilOn touches

(14)

260 KAZI.MlIERZ BCGACZ, STANI9l.A'W nztn.YNsKI &. CZESl.,AoW HA.B~CZ'Y\K

upon the character of :the ore-bearing solutions which could not have ascended as cold meteoric waters. The KlIVestigations of liquid inclusiOlIlS f.a,und in. the sulfide minerals and pr~ted ID the publication by Gal- kiewicz (1007) iruiicate that 1ihese mineTals were deposited witJhin the range of temperaru.res lbebween 5'0.0 and 150°C. It may ,be added, ihoweve-r, that the rteIIliperatuTeS close to, or slightly above ~e lower limit are sufficient to e:x.plailo. the lP:recipi.tation in karst carvities aIlld fit with . the general picture of the goologica;l conditions attending the deposition of sulfide ores in 'the'I'riasSic rocks.

Evidence is accumulating that the sulfide ores .iJn the Triassic rooks must be older ;than Miocene. The Miocene faults Which cut up the ore- -bearing dolomite are devoid of amy traces of syn-'tectonic mineralization, . and apparently Ipost-da'te the emplacement of 'the ores.

ConclrusiV'e evidence .in thiS TeSjpeCt comes from one of the pre- -'Miocene siInlk-holes which developed at the 'bottom of a Lower Tertia·ry

river valley (eJq)OSure in 1!he iMatylda m:.iJne); Here, 1he !fragments of galena crustifications ooour .iJn a pooket of whilte quatrtzitic sand. One side of ,these fragments is ;the cast O<f a solution surface developed in the doloOmite, w'hile 'the other consists oi idiomorph:ic crystal faces projecting outwards. This indicMes that the fra.gments were broken f·fee fr.am ore- -lined solution. cavUies. exposed .an 'the wall of ·the sink-hole ,by the time of its fHling wi'th clays aIIld sands.

The oonclusion drawn from the foregoing is that the sulfide .areS were already formed before 11he end of Lower Tertiary time. This renders the hypotiheses of the IMiocene amJor Pliocene 9rigin of fue ores (e.g.

SeidI19'57, G.dkiewicz 1967) untmable.

The discovery of high-angletbrust faults which provided the access

f·c~ nrlneraliz.iJn·g .solutions, and consequently gave rise to the emplacement of zinc and lead sullfides into the Uwer Jura:ssic limestones, Shows that

some .are milne·ralization occuITed after Jurassic 'time.

Here the direct evildetnce so fa.r collected ends. There is, however, a certain amOOiIllt of :indirect evidence, admittedly of varyiJng de.gree of persuasiveness, . that the extensive sulfide mineraliza tioo of the TriassilC rocks may 'belong to aJIl earlier Stage, corresponding ·to the Early CimmeriaJIl

!Phase

of tee·tonic movements.

The fau.} ts men1ioned above poIrt-date r1Jhe fonnation of 1he ore- ...;beariing dolomite which is displaced by them. Furthemlore the trans- g·ressive satnds and ·gravels of Middle Jurassic age which are entkely ba·rroo, rest Ujpo.n a' truncated surlface of the ()r~bearing dolomite. This relat10n Shows that Ithe ore ... bearing dolomite was formed 'before 1ihe tramgressioo of 1h.e J'IlI1'assic sea. UmortUJnartely the JlIlll'assic marine

(15)

ORE-Fn.LED BYDROTHl!nlIM:AL IKAlBST FEA'l.1tmlES !IN '11HI!l TalASSIC ROOKS 261

sediments in known exposu·res are nowhere directly trUlllca-ting the ore- -bodies.

The fact 'that the ore-bearing dolomirte :is' truncated by the trans- gressive sed.iments o~ the 'Middle JU'ra&Sic, indicates, however, that at least the fiTst generation of su'lfide ores wlhich apip€'8tI'sto ,be directly aJIld genetically related .to dolomitiza'tion occur.red prior to ·the Jurassic tmte.

The age of >the second generation of ores; and that of the C9rr~

karst featur.es, is still open to discussioo.. It may·be younger than Jurassic (see also Bobrowski 1950) hut anly on "1he premises that tbe emplacemerrt of the first

am

second generati.oo. of ores occurred coiIncidently :in the same place iIn widely separated time iJlItervalls. It is not yet possible to present unqueStionaible evidence that Iflhe dolomltizatioo 8IDd the empla~

cement of the <first genera tkm of ores was forer.UillIIling the emplacement of .fue second generation, withoutappreciaible time lapse. Such a jpOSSibi- lity, however, is logically defensible a!Ild has 'been implicitly or explicitly mdicated ;by the authOl'6 .regardiJng otihe sulJ.fide ores as emplacsd between the Triassic and JU'rassic i.(IPetrasclh.eck 1918, Ku2Jn.W' 1-928, Duwensee 1929, KrajewSki 1957). It also has been taken for .granted 'by those who e~presse(i' the view that the SU'1!fdde ores in 1he TtI'iassic Il'OOks had been already 'swbjedted to wea'1lher~ arul oxidation dming Lower JllJll'a9Sic time (e.'g. Pi:eikaiTSki 1965).

Although it is 'DOt of immediate cansequence for the subject disc'U'ssed,. it ism be 'Doted ,that by assu.mmg pre-..Jurassic age of the sulfide ores a new light may be Shed upon ,tihe WoZniiki Limestones ('Upper Keuper). These pure limestones Which oontain inBi.gnj!fi.cant amount of zinc and lead suolf]des are ,best expla·iIIled in terms of lake deposits receiving large qUallltities of calcium carbonate fl'9ll1 springs. The la,tter might have been the sul'lficiial effect of a subterranean circu'lation, 'WIhich at greater depth brought about the dolomitizatian and 'the emplacement of the first generation. of ores.

!I'i; also may be added that by rrelatilng the zinc'

am

lead ores 'to tihe

Early Cimmerian !Phase of movements, the apparen't lack of o.bvious genetic relation b'etween the DIUIIlEl'lOUS faults and the su;lfide mineraliza- tion {the criticism levelled against the hydrothermal oancept by 'the protagonist of the sedimentary interpretation) is IllQre oomprehensi!ble.

A grea't InUmber of the fa'Ults OUltting 'tihe Triassic rocks, are post-ore . displaoements. 'The discovery .of faults related to 1ihe milneralizmg solu-

tions awaits further investigations and may be a ma'tter of time anly.

PROVlENAINlClE AlN!D IPIOSSlIEWE SlJHlILY aourrms OF ~G

SOIL'U1IIIIaNIS

'lbe source of mineralizilng solutions sti11 l'emains i.!n the realm of specU'laticm. Wi'th sed.imentall'y hypotlheses this problem also remaillls

2

(16)

unsolved. The oxidizing OOIllIditions attendiln.g the d~'tilon of most of the 'r.riassic ca1'lboo.aiTes, and 1ihe high.. enexgy env.ironment manifested, for iruJtai1ce, in rthe G6raZdZe Beds, by the presence of laTge scale cross- -stratificatioo is incompatible with any sjgnificaart sulfide deposition. It is also not· eB!3y lto explain how 'tihe ascending meteoric waters could oonoen:trate the sulfides d:issemiJD.ated itn r1he overlyilng ·rociks (see e.g.

Mtfums 1891~ as neither Ithe Upper TriaeSic cuibona1:es nor the OIVeJ.'Ilying formattians canita:in enl()~ of 1Ihe kiispersed suiHides ·to aoomuvt' far the fQl"IIlatian of zinc and lead di:pOSits

m

the oreJbea·rilllIg dolomite.

It also seems un'likely that 1lbe crustified ores h8lVe been derived from leacl.hmg ami 1l'ed.eposftion of sulf.ildes of 'the first generation of ores.

No evJdence of such a leachIDg exists in the 1'ooks sUlrrouruiilng of the ore-filled c8lVities.

The only plausible ~planation. is that both, .fhe first ami the secood generation of ores, have been emplaced !by mineralizing solutions whiCh came from an II.1Illlknowtn d~-seated source.

The jpTdblem of ''feeding cbmmels"

am.

SUlpply routes of these

solutions l'IE!IPresen'ts 8JDIOther area of igJnorance 8iD.d only speculative attempts C8iD. be set f()1l'ttih. It is sometilmes implicitly or e:x.plici'tly sta..ted, that the miIIl~ra:lizmg solutions halve passed through 'the tUwet' Car:boni- ferous Coal Measures, though there is anJ.y a scanty and !locaJ.i2ed m;.in.eraliza'tion (e.g. !K.r.usch .1'009, Zwi~ 1900). Another alrternati'Ve 'is that the SOilutioos passed through !the Lower Call"bon:i!ferous and Devon.iaiD. carbonates '\V!h.ere· they ool1'lkl fiInd. the easiest way upwards a'long mmnerous tedtonic :ctiB1ocaltions 8fl1d bctures. Frtlm. orece.nIt puibli- catiOlns (e.g. HaraOOzyk 1964, 1197()j Wen 19618) it is known 'thatt'hese Paleozoic ca:r:bonate'l"Oclks show colUilicuous sulfide mineralization.

1.'1he solutions which 1"08e to 1ihe top of the Paleozoic rooks could gaiiO. 1he access mto the TriaBsic sed:imen.ts (correspondiIng to the G6raZd.ze Beds), rtibrou·gb 'the overIap men.tio.neld. !previously.

Then

they could spread horizontally along the tlPIPel" bowndary of the Gogolin Beds

givmg

rise

to the lkarst features in Ithe o~bearlng dolomite arui to-the emplacement of the sulfide ores.

Depa1"tment of Geol.ol11l

Of the Aoademll of MinitIQ and MetaUurgll K1"ak6w, Al. Micktewic%a. 30 Department of Geomo'I"Pholol1l1 of the PoUsh Academll of Science. .

Krak6w, ul. GYodzka 64 State Geological !>nterpriBe

K7'Gk6w, ul. InwaUd6w 6

Cracow, Ja.'fttJ4rll J910

(17)

~

s.

W. 1964. .Pnejarwy teldanilki mioceMkliej w Zagl~biu G6r- noSl~ ~e tectooios in the Upper Sile&ian ba'Sln). - /Acta Geol. Pol., vol. 114, no.

a..

lWa:nI'ZI¥Wa,

1989. iUltrwory trdasowe 1 juraj9kfie w'Spytkowicach kokl OSwi~cimia. - Spraw.

FOI!. (KJomjs. PAIN Oddz. w iKlrakowiie. IKrakaw.

1970. Ulbwory paleogenu poluoo'iowej crz;~sci WyzY'ny KJrakawsikiej (Couches du

!Pal~e.ne de la partie mElridiooale du lPtlateau de Craoovie). - Rocz. P. T.

Geel. ~A'Im. Soc. aeoI. Pol.), t. 139, z. 4 (11989)~ Krakaw .

.AUIlH!AINS R. '1181J1. Die (J!1rzfoinnaltion des 'MUS'C'helkal1m in ObenJchlesrlen. - Jib.

1K0nig1. 1PretJS8. Geo1. L-IA., !Bd. :112. iBerlJn.

ASSMlANN P. liM4. :J)Ile stiraiftigraph'ie der obe11scblesdtschen 'l\"I:ias. 2. Der lM'IlSchel- kalok. ~ AIbh. iReichs9.mt lBodenfo.risch., N. F., H. 1208. Berli!D.

BERNHA!RIDI F. il899. 'Ober die IB'i4dung da'. 1J!nl.age~ im oberschleBischen Musche1ka1ik. - IZ. OIbenrehleI!P. IBerg. u. HUJttenm. Ver.,~. Xatowice.

BOBIROWSKrr W. 1950. Pr6ba o:kr~enia .wieku w.t6rnej dolomityucjd 1 mlneraltzacji skal triuowych w poludniowo-zachodoniej iPolsce. - lBiw. . .PaiI.stw. [M. Geel.

iWanzawa.

BOGACZ /K. 1967. Budowa geologicma p6lnocnego obnezenia rowu klrzesrrowickiego (The geologiC91 structure of the northern border CJf .the lKi'ze9Zowice G.r8lben).

- P!race Geol. IE\\N Oddtz. w lKI'alrow.fe (Geol. rI'ransacl.), nr 41. WamZ8rwa.

BRFInZ J. H. 1M2. Vadose and phlrea1lic fea~ of :llmestooe caverns. - AT: Geol., vol. ISO, no. ~. Chicago.

CLBIS J. & CllBIIS J. 1980. Urwagl 0 ilach wilfriolowyC'h. - Rudy I lMet. MeZel., t. 5,

1l1l' .s. fKaItorwIice.

CURIL R. iL. 1964. en the definliltion ofa carve. - Bufl.1. Nat. Speleological Soc., vol.

26, no. 1. Arlingtban.

DU'WENSElE F. 1928. Uber die enfUblrenden Dolomite im &tMchen Ober'schlesien, imrbe!So.ndere im OBtTichen rreiie des SOdfi'i.igeJs der Beuthener BleizinkeIVmul-

de. - rz:. prakt. Ge'Ol., Bd. 00, H. 6. iBerlin.

19'29. Die. ober6chle6llsclle BleminklageJ:'l!lWlte auf cnund der Ergeblllisse der geologilschen 'Ul'Iltel"suchung dell' iDeu:tiK:h-Bleisch8ll'Iey-'Grube. - Metall u. Erz, Jg. 26, H. ~ 9. Hal~.

'l94a. IKlOftung und Vea.-erzung in Oberschlesi.en.. - Z. prakt. Geo!., Bd. 51, H. 9110. iBel"1~.

DZUl.YNSIm S. tl953. Tekltooika poludhlowe3 cz~Sci fWyi:yny iKlrako\Wkiej (Tectonics

of ·the southern pari of :the CraCOV'ian Upland). - Acta Geol. Pol., vol. 3,

no. Ci. lWar8'ZIIlIWa'.

EImiERT iF. !1968. Lalte Hercynian minera'lizalfion in the northern pa1'lt of ;the Upper Sileslaal area. -lbteIrn. Geo1. Congl'. itEpor't x.xomr SeSIS., Abstr. p. HHi. Prague.

FORD, T. D. 11989. "!be fJItraIbifo.rm ore deposi.ts of DarbYlShtre. - IProc. lili [ntern.

UIJl.f.v. Geol. CoIngr. 1l'9llJ7. lLeicel!rter. .

FORD T. D. & :KIJlNG IR. J. ;t988. '.lbe Golconda ca-vemB, Br8llSington. De4'byshire. - Trlmll. Cave !Research Group Gl-eaft Bl"1:tain, '\1'01. 7, nG. '2.

GAlKlIlE1W!1lCIZ

rr.

11900. GeIleza Slli&ko-krakoW'&kich zl6z cynimwo-oiowianych. - Ru- dy 1 Met. ~ieze1., t. 1, or 1. Kaitow'iC'e.

- 11'11167. Genelirils of Sllesian-Oraoovlian zinc-lead dep0rrid;8. - Econ. Geo!. Mono- grapby, 3. !New Yo:rk.

G.Al.RTEWl'OZ T., HAJR1ANmY1K C. & S'llOIS'mJK IL. 1900.lPoju1raj&kie okru&7JCO'Wanie utworaw 'W 281Si~ derwcm-jull."a il'e~u ()[Ik:us-z-lIGucze. - Rudy i Met. 'Nieze1., t. 5,Dll' 4. Ka<towice.

(18)

264 -KAZI:Mlll!lRZ BOGACtZ, STANISl.A'W DZUl.YN"SKI & OZESLAIW' HA.RAlQ'CZYK

GILEWSKlA S. 1960. !Przyczynek: do poznania 'l"ozwnju krasu w ~rodkowMriasowym

idolomicie Ikruszcon06nym na iG6rnym ISlEl'Sku (Contdbution t'O the recog-nition I)f kantt development in Middle Tri'8ssic metanilferous dolomLte in Upper Silesia). - PrzegiEld Geogr. IJPol. GeGgl". Rev.), <to 32, Z. 112.lWarBZawa.

GRADZ'INSKJI 'R. i1Q62. 'Rozw6j podziemnyC'b. form. k1"8'IIowych w poludniowej c~~ci Wyzyny ;IUIakOWB'kiej . (Oligin and development of wh'terlranean kal"'S't in the southern pari of the Cracow Upland): - Rocz.lP. T. Geol. (Ann. Soc. G601. Pot), t. M, Z. '4. iKrak6w.

GlRUSZOZTI{ H. 1956. Uwagi w sprawie wykSrDtalcema moHkich utwor6w trial!lu AIllSko-k:ralkOV\l\Skiego (Notes on the develOpment of mM~ne dep06'Lts of the Oracow-SUes-ian 'l1rialso). -lBiui. JIlil6t. Geol. 107. iWat'lSZalWa.

196'1. The gene8i& of the S11esUun-Qracow deporibi of lead-zinc ores. - &!on.

Geol. 1M0nograpih, 3. lNew YOIr'k •.

GUBJcH G. 1'903. ZUJr Genese der obersehlesischen IErdagen;ttititen. - Z. pralkt.

Geol., !Bd. lit, H. 5. Berlin.

HAiR<ANCiZYlK C. 1962. Mnera®gia kruszc6w M!lSko-1m'a:koWlS'Iclch rz;Mz cynku i 010- wiu GOre mialeraiS of SHesia-Oracow zllne .and lead depoeits). - iPlraee GeoL IPAN 1Oddz. w lKlia!lrowie (Geol. r.l'rllllSact.), m oS. WanI'za'Wa.

1~ 'Ver'ticaJ ore .zoniog !in the' zone of faulting, observed in Klucze neer Ollk:U5Z. - Symp. lPIrobleml!l of 1P000ima.gmatic ore depOfiMion, vol. ~. !Prague.

1965. r.lll:oza 1lin-lPlb typu !bpiro-4m"alkOWBikiego 11 ich zwdElzek komagmowy !Ze skalami alkalicznymi. -!Rudy .f Met. INiezel., t. 110, IIll' 3, 4. IK-atow'ice.

--., 119'1lO. Ore-beal'!ng doloIU.ite nf the :root-zone of SiJeS'ien-Qracovian .FfJ-rzn ore- -deptei1e. JlAGOID-5ymp., 1W1l'1!l-iRook tAiltem-tionlS nf- Deposits

m

Caroonatee..

Stuttg.ari. .

HARANWYlK C., SIZIOS'NlK IL. & ~ IW. 1988.lPojU'l'aj's;kie nkru- szoowanlie 1Zn-'.A> w rowie kompN!6y)nym tK:lucze-Jaroszowiec. - 'Rudy i Met.

oNieze1., t. 113, nr 7. IKa/towic.e.

HEYlL A. V., LYONS lE. J., AGN'EV IA.F. & iBImHERE OH. H. 1955. IZinc-lead-cOlPPe1'

~e60urces and general geology of the .oIlJP&' lMiS'SiWippi Valley district. - Gee!. Surv. lBun., HillS-G. lWaSb'ington.

HOHLT R !B. 119418. rrhe Illature arnd origin of limeetOOle porosity. - Quart. Colorado School of Mines, VIOl. 40, no. 4. Golden~

H~ J.:}OO2. On the .re1altion of .1lhe so-caJJ.ed vitriol clays to the ore-bearing limestoneS and dolomitets of iUle :M~ie Triaa'Sic in .opper Silesia. - Bull.

Acad. Pol. ISd.,

Ser.

Slci:ceol. Geogr:, 'Vol. 110, inO. 4. Vanovie. . KElIL IK. 1956. Die Genesds der lBlei-rzinken1legerstatten von Oberschlesien (GOrny

SJ.Elsk - 'Polen). - lBeih. Geol. 115. BeIr'l'in.

KiRlAJEWSKI !K. 111957. Uwagi na temat genezy gOrnoAI!liSkich zl6t cynkowo-olow'io- wych ~ks aib.om the origLn nf ·the Lower tSilesian zllnc a.nd lead deposiiB).

- &zeg1Eld Geol., R. 6, IIlI' 7. IWal'Iml'Wa.

KU2'MllAR C. 1928.0 gniazdach hlendy w p6hlocno-wschod:nim polu kopalni "Ulis- ses" (Sur lesamas de bllmde danL9 le mine "UUsses"). - Pas. oNauk. P. I. G.

~.-iR. 5eanc. Serv. Geol. Pol.), m 119120. iWanJZawa.

KBUSCH P. 19219. tlber kalloddale Vorgange Ibei der .EntBtehung der ooe1'scblelliischen Z'1nk-!Bleila'gersrtllltten. - Z. Obersch1es. lBe'l"g. U. Hutrternm. Ver., 68. iKetowice.

KlUNSKY J. il,9516. Zj.aJwi&ka krss·owe. Wanzs.'Wa.

LOUGI8iUIIN G. 'F. 1«Y6. Guides tn ore in the i1lradrille district, Colorado. - U. S.

Geol. SlIrv. Bull.,

7'19:

Washington.

MlCHAm. R. ilOO4. Uber die oberschlelSiilrchen !l!h'Uagerstiitten. - lZ. DeU'tsch. Geo!.

Ge6., Bd. B6. iBerlin - Stutttgarrt - !Hennover.

(19)

1913. Die Geologie des oberschO.esischen steinkob1tmbe~ierltes. - Ab-h. iKonigl.

Preuss. Ge'O'I. L..-1A., IN. F., iH. 71. iBerlln.

PJ!l'l".RASC'H W. '100.18. !Das Alter der polniscb.en oErze. - Verh. !K. 'K. Geol. B.-A, U.lWien.

mEKiA!RSKJI K, 19615. ,WlPlyw wie1irzenia dolnojurajski~ na zloza rud Zn i IPb w tria- sie Al.Itsko-klr91koWlfklim (Influence of Lower Jur88B'ic we8lthering u.pon ~n and lPb ore depOlSits in the SUesian-oraC'Ow Tll'iastsic) •. - ~d Geol., R. 13, nor 2. /Warseawa. .

SCHN.EllOER!HOHlN H. 1930. iMineralchemiscbe und mtikr08lropi9Che Beobachtlmgen an mel- Z'ink- und lK·iesemen der Deuttlch-Bleischarley-GtE'ube in Obel"SC'hle- sien. - Chem. d. Erde, Bd. S. Jena.·

8EIDIL ~. ,19B7. Du lP.roblem d. sogenannten Gorazdzer IKalke Iin erzfuhTende Do- lomit Oberschlesiens u. seine lLOosung. - N. Jb. Miner. 1Mb., H. lOIn. Stuttgart.

SJED(.JOClK'l S. 194i8. lZaga&1enia SiIlratygrafii morskich

oeadaw

itriaBu krak~kiego

(iptroblems of .·atiglraphy of marine 'nias&ic in the Cracow a;rea). - iRocz.

P. T. Geol. (Ann. Soc. Geol. Pol.), t. 18. Krakaw.

1111152. Utwory geologiO'Z:lle obsrulru pom1~'Zy Chrzenowem a Klwaczalll (Geolo- giceskie oblrazovanija u6aSbka meidu Ohsa.novom i lKIvacaloj). - Btut lPailstw.

Inst. Geol. 60. lWanzawa.

SMIOILAIRSKfA I. 1968. Charakterystyka %loia rod cyniru i orowiu kopalni II'rzebion- ka (CharactterilS'tic of the zinc and lead ore deposits of :the 'Tirzebionkil mine).

- lPrace Geel. IE'AiN Oddz. 'W lKrakowie (GeoL TNnsact.), m 47. IWmzawa.

S"l'IAPPENlBEOKR. 1928. AUSobHdung und UTl!prung der obel'l!lchlesachen Blelzin- kerz-lagerstiLtiten. - ~ch.ILageT6tt.-FOIl1ICh., Bd. 411. Berlin.

SLDWILNSiKIJ S. '1969. Rozrw6j oolomit6w Ja-UlnConollnych w ol:lnarze klrakowt:lko-jllls- kim (The development of O!'e-'beaIing dolomiotes In ,the Oracow-Bile&ia.narea).

- oPface Geol. PAN oqdz. w KrakO'W'ie (Geol. Tramact.), nr Cl7. lWarszawa.

UNRUG R. & OALIIK:OIWSKlt A. 1960. Sedymerlltacja ·1 pefu:'ografia wa·Nliw polom- s'kiich (Sedimentation ·and lPetTology of .the Polomia Beds): - Roez. P. X. Geol.

(A!nn. Soc. Geol. Pol.), t. 00, z. 2. iKra'k6w.

WERN1CKIE F. 11931.. Die p'imuen imr'zmineralien der IDeutsch-'Bleischadey-Grube bel IBeUlthen. - O. S. Arch. Lager8t.-tFOO3ch., H. 53. iBedin.

WOlNCfllAlKJI!EWIIIOZ J. -U169. Schemat budowy geologiemej zroza ./l'r7.ebi~". - :Ru- dy I :Met. Mezel., t. 114, fir 5. lKa.towice.

ZAW:llSIlA:K L. 1965. IMmeniogia i geneza. nOw wPtriol'Owych niecki by;tomskiej' (lMineralogie und Genesis der V1ltIrioUetten der !Bytom-!8ec'ken). - Puce Geol.

iPtA!N CdcIz. w Kr8lIrowie (Geol. Tl"ansact.), 'Dtl" M. Wartrulwa.

ZlNOSK'O J. J.Q55. Retyk 1 l'las md~y Krakowem a !Wle1ttilniem (Rhaetic and iUas 'between Cracow and \Wielu6). - Prace [n'St. Geol., t. H. Wanzawa.

~'ZYOKII J. 1950. Lead and zinc ores lin Poland. - lIIntern. Geol. Congress iXViITI~. Great Bdtain 191W, PIt. 7, pp. 314--324. London.

(20)

266 XAZIMIlIlBZ aoGAOZ, ST~ISi.oA'W DZT&YNSKI Br OZESZ.AIW HA.RANCZ'YIIC

K. BOGACZ, S. mtrLYNSK!I i C. ~

UTWOBY KBASU BYDROTEBMALNEGO W DOLOMITACR KRUSZCONOSNYCR

(Streszczenie)

/W dolomitll'cil krunconoADych obBzaru 9l$sko-kradrowskiego (fig. 1) wYl9tltl)'uj"

podz1emne utwory kTasowe wybztareone w postaci

kanalaw

(fig. 2--4), lrozszerLO-

nycb krasowo \!pzczelin lub fug mIi~d2ywa:rsllwowych (tig. 5--7) orarz; ilow rezyduai- nych. Ultworom tym towanysZll rozlegle stre!y brekcji powstaiych w nast~p­

stwie zawalania Bi~ 'lromar kra&owych, atakze .sp~kania, kItorych pochOdzenie

~ze si~ z nierownom'iernym o&iadaniem Skal nad waillCymi si~ komoramt WazyBt- lde te fonny Sll okTuS'LC()wane siarcZlkami cyulku, orowiu i zelaza, naJezllcymi do t-Dw.

drugiej generacji krWl'U:Ow (pl. '-I 1 tlID). Obecn06ci" tych MUiSzCOw, !dore wypemia'jll rozwarte 6Ip~k.alnia, pu'!#te przEIS1Irzenie po wylugoWanych w~glanach i kt6t'e tJpajajll okt'uchy brekcji IZ&wallllkll'W'Ydl, ornalWiane farmy rr6Znlll lSi~ od zwycza)nych ulbwo- row krasowych. Autorowie ~ujll, ze Okruszcowane fonny krasu iPoddemnego llltworzyly s'i~ w naSt~e przeplywu 1.'00000000ow, Mare n1()6ly 'Ze sobll sial'czki metald. W skalach 1Iriasowych pil"Zeplywten byl zaBadniczo po'Ziomy, a przeplywy W6t~illce i 'ZIJ.t~uj"ce mialy znaczenie podrz~e. Roop1J.S7JCfZanie skal w~lano­

wych i powstawanie w Rich podlZiemtnych form krasowych, wBk.arujl\cych na ·wa- runki :lkea1YC7.lne, postfS)owalo rOwrioczrinie lub prawie rownoczemie z wypelIiia- niem womydl przes!tmeni prrle2 siH'C7ki'metalld. Te ostatui!,! me 'Zoetaly jedna wy- myte ze Slkal podlegaj"cych kIrolEOWemu rollP1JSIZCIZaIliu, jak to iPl'zyjmuj" niektore hipotezy ilm'asowego .pochodrzenia u6z, ale ~y doprowadzone z gl~i z\!emi przeIE rootwory hyc:kotenna\ltne.

l{atedra Geotogtt Akademii G6rniczo-Rutniczej

Krak6w, At. tMickiewicZ14 30 Zaklad Geomm/ologii w K1'akowie

Instytut Geografii PAN Krak6w, ut. Grodz1oa 64 PTzed:tiebiorstwo Geologf.czne

Krak6w, ut. I'7'I.walid6w 6 Krak6w,1» styczniul970 1'.

1 - l3teccia structure. P'ragmenrt of the ore-ibeari~ dolomite (D) cooted with ,,scha'lenblenda" (B), galena (G) aIIlid melll1'i!kovtite - p)'1'ite (P). !Note the presen- ce 'Of gallena cr~:ts ()Il the top 'Surface of large tragmeDiB (D) i.e. the "shadow

Cytaty

Powiązane dokumenty

In the Łysogóry re gion of the Holy Cross Moun tains, con - tin u ous sed i men ta tion of dark “Dictyonema” clays was tak ing place from the Late Cam brian to the early

In the geological part of the paper the structural system of the erosional surface aCthe crystalline rocks as well as an extent of the sediments older than Miocene (Fig.

Vertical transition between the Diplopora and underlying ore-bearing dolostone was sampled in the BK-287 section (Fig. partly recrystallized zone between both the

A new classification of genetic models of the Zn.-Pb ore bodies of the Silesian-Cracow deposits have been introduced, using sulfur isotope composition as the

In this case, leachlng of ore lead must have occurred shortly after deposition to prevent measurable contributions of radiogenic lead that would form because

75 The characteristics of pore space in Lower Triassic sandstones of the Warsaw

ship m u st have been caused by a prior assym etric configuration of the m etasom atic contact betw een th e lim estones and the dolomites th a t prom oted the

granicę Karpat fliszowych.. The remnants of early-diagenetic dolostones are preserved as relics within the ore-bearing dolomite. Accordingly, it appears legitimate to