• Nie Znaleziono Wyników

The artifical heat source method in numerical modelling of non-linear conduction problems

N/A
N/A
Protected

Academic year: 2022

Share "The artifical heat source method in numerical modelling of non-linear conduction problems"

Copied!
8
0
0

Pełen tekst

(1)

S e r ia : M E C H A N I K A z . 121 N r k o l. 126 6

B o h d a n M O C H N A C K I', E w a M A J C H R Z A K "

' T e c h n ic a l U n iv e r s it y o f C z ę s to c h o w a

” S ile s ia n T e c h n ic a l U n iv e r s it y

T H E A R T I F I C I A L H E A T S O U R C E M E T H O D IN N U M E R I C A L M O D E L L IN G O F N O N - L IN E A R C O N D U C T IO N P R O B L E M S

S u m m a r y . In th e p a p e r a c e rta in a lg o rith m w h ic h c a n b e c a lle d th e a r t if ic ia l h e a t s o u rc e m e th o d is p re s e n te d . P ro p o s e d a p p ro a c h is u s e fu l in th e c a s e o f n o n - lin e a r an d n o n - ste a d y h e a t c o n d u c tio n p ro b le m s .

M E T O D A S Z T U C Z N E G O Ź R Ó D Ł A C I E P Ł A W M O D E L O W A N IU N U M E R Y C Z N Y M N IE L I N I O W Y C H Z A D A Ń P R Z E W O D N IC T W A

S tre s z c z e n ie . W p r a c y p rz e d s ta w io n o p e w ie n a lg o r y tm , k tó ry n a z w a n o m e to d a s z tu c z n e g o ź ró d ła c ie p ła . M e to d a m o ż e b y ć w y k o rz y s ta n a d o n u m e ry c z n e g o m o d e lo w a n ia n ie lin io w y c h i n ie s ta c jo n a rn y c h z a g a d n ie ń p rz e w o d n ic tw a c ie p ln e g o .

MET0Í1 MCKyCCTBEHHOFO HCTCEiHHKA TEÍ1JIA B WOEHHOM MOflEJlMPOBAHBM HKJ1MHEMHUX Í1P0BEEM0B TEIlJlOnPOBOflHOCTH

Pe^ joM g.. U p e n c T a B Jie H U o c h o b íj a n ro p u T M a K O T o p u ii H a3 Ba H M e ro n o M H c K y c T B e H H o ro h c to u h h K a T e n n a . 3 t o t M eTon M o *e T

6i j t i i r i p n M 0 H B H K u H C J i e m i O M y M o z t e j i H p o B a H H n H e n H H e f í H u x 3 a n a n

T e iu io n p o B o n n o c T H .

1. G O V E R N IN G E Q U A T IO N S

A h o m o g e n o u s d o m a in D lim ite d b y b o u n d a ry T is c o n s id e re d . T h e h e a t c o n d u c tio n p ro c e s s in th is a re a is d e s c rib e d b y th e fo llo w in g e n e rg y e q u a tio n

c ( T ) p ( T ) d T ( * ' *)■ = d i v [ A ( r ) g r a d T ( X , r ) ]

ot (1)

a n d b o u n d a ry - in itia l c o n d itio n s o f th e fo rm (F ig u r e 1)

(2)

242

B. Mochnacki, E.Majchrzak

X e l \ : T ( X , t ) = 7 \ ( X , t )

X e r 2 : - A n g r a d T X X , i ) = q n ( X , t )

X e r 3 : - A .n - g r a d r ( X , i ) = a [ T ( X , r ) - T „ ]

t = 0 : 7 ( X , 0 ) = T0 ( X )

w h e r e c , p , X a re th e th e rm o p h y s ic a l p a ra m e te rs (s p e c ific h e a t, m a ss d e n s ity , th e rm a l c o n d u c t iv it y ), T , X , t d e n o te a te m p e ra tu re , s p a tia l c o - o rd in a te s an d tim e , n g r a d f is a n o rm a l d e r iv a tiv e a t b o u n d a ry p o in t X , q n is a g iv e n h e a t flu x , a , T „ a re th e h e a t tra n s fe r c o e ffic ie n t a n d a m b ie n t te m p e ra tu re , T t, T 0 a re th e b o u n d a ry an d in it ia l te m p e ra tu re s .

T h e b a s ic m a th e m a tic a l m o d e l c a n b e r e b u ilt b y th e in tro d u c tio n o f so - c a lle d K ir c h h o f f s te m p e ra tu re , it m e a n s

T

U ( T ) = f X ( t i ) d p (3 ) r,

w h e re T r is a n a r b itr a r y a ss u m e d re fe re n c e le v e l.

T h e K ir c h h o f f s tra n s fo rm a tio n lin e a riz e s th e rig h t- h a n d s id e o f e n e rg y e q u a tio n (1 ), n a m e ly

d iv [ X ( r ) g T a d r ( X , f)]

T h e le ft- h a n d s id e o f e q u a tio n (1 ) c a n b e tra n s fo rm e d b y in tro d u c in g to th e c o n s id e ra tio n s the p h y s ic a l e n th a lp y re la te d to a n u n it o f v o lu m e

T

H ( T ) = J c ( p ) p ( p ) d p (5 )

r,

B e c a u s e H a n d U a re th e fu n c tio n s o f te m p e ra tu re a n d th e re a re m o n o to n e o n e s s o , it is p o s s ib le to c o n s tru c t th e fu n c tio n / / = $ (£ / ) — c o m p . F ig u r e s 2 , 3 , 4 . A d d itio n a lly

d H ( X , t ) _ d H ( U ) 3 t / (X , t ) = , V ) d U ( X , t ) = T ( t / ) 8 t / ( X , t ) (6 )

d t d U d t d t d t

T h e fin a l fo r m o f c o n s id e re d d iffe r e n tia l e q u a tio n is th e fo llo w in g

F ig 1. C o n s id e r e d d o m a in D R y s . 1. R o z w a ż a n y o b s z a r D

= d iv [ g r a d i/ ( X , r ) ] ( 4 )

W ( u ) d U ( X j I = t )}

(7)

(3)

A c o u rs e o f d e r iv a tiv e ' i ' ( U ) fo r c o n s id e re d m a te ria l is s h o w n in F ig u r e 5 .

T h e b o u n d a ry a n d in it ia l c o n d itio n s s h o u ld b e a ls o tra n s fo rm e d in a d e q u a te w a y [1 ]

X e l\ :

U ( X , 0 = 0

X e r 2 :

- n g m d U ( X ,

t)

= q n ( X , t )

( 8 )

X e r 3 : - n g r a d i / ( X ,

t

) =

a[T{x, t) - Tm

} t = 0 : U ( X , 0 ) = l/0 ( X )

B e c a u s e

T

U - U m = f k ( i i ) d n = k m( J - T „ ) (9 )

T.

w h e re \ m is a n in te g ra l m e a n o f th e rm a l c o n d u c tiv ity fo r [7 ^ ,

T],

so th e b o u n d a ry c o n d itio n fo r r 3 c a n b e w r itte n in th e fo rm

- n - g r a d t / (X , t ) = t ) - l/ „ ] (1 0 )

w h e re a m= a / \ m. I t s h o u ld b e p o in te d th a t th is n o n - lin e a rity o f c o n d itio n (1 0 ) d o e s n o t c a u se th e e s s e n tia l d if f ic u lt ie s in n u m e ric a l re a liz a tio n .

[W/m]ssooo

/

/ /

0

/ '

m3)

/ /

/

// //

/ /

W TOO 1°C] °0 IOO TOO 000 TOO 300 000 — ¿ .[°C ]

F ig . 2 . K ir c h h o f f s te m p e ra tu re U - U { T ) R y s . 2 . T e m p e ra tu ra K ir c h h o ffa U = U ( T )

F ig . 3 . E n th a lp y fu n c tio n H = H ( T ) R y s . 3 . F u n k c ja e n ta lp ii

(4)

244

B.Mochnacki, E.Majchrzak

F ig . 4 . F u n c t io n H = H ( U ) F ig . 5 . F u n e tio n 'k = $ ' R y s . 4 . F u n k c ja H = H ( U ) R y s . 5 . F u n k c ja 4 ' = $ '

2 . T H E A R T I F I C I A L H E A T S O U R C E M E T H O D ( A H S M )

C o n s id e r n o w , a fu n c tio n ' i ' ( U ) w h ic h is c o n v e n tio n a lly e x p re s s e d as a su m o f tw o c o m p o n e n ts , it m e a n s a c o n s ta n t p a rt 4 '0 a n d a c e r ta in in c re m e n t A 'k

W ( U ) = 7 0 + A > P (I/ ) (1 1 )

T h e e n e rg y e q u a tio n (7 ) c a n b e w r itte n in th e fo rm

y o d U ( - * ’ = d iv [g r a d l/ ( Y , i ) ] - A Y 3 t / (^ ’ l ) (1 2 )

o r

T 0 W ( 5 = d iv [g r a d l/ (X , 0 ] + « v ( X . 0 <13>

o t

w h e re q v ( X , t ) is a s o u rc e fu n c tio n (a c a p a c ity o f in te rn a l h e a t s o u rc e s ). T h e e s s e n tia l fe a tu re o f e q u a tio n (1 3 ) c o n s is ts in a fa c t, th a t le a v in g o u t th e la s t te rm o n e o b ta in s th e lin e a r fo rm o f e n e rg y e q u a tio n . T a k in g in to a c c o u n t th e p o s s ib ilitie s o f b o u n d a ry e le m e n t m eth o d a p p lic a tio n in th e ra n g e o f n o n - ste a d y p ro b le m s m o d e llin g , it is th e v e r y c o n v e n ie n t fo rm o f b a s ic d iffe r e n t ia l e q u a tio n (a n o n - lin e a rity a p p e a rs o n ly in th e c o m p o n e n t d e te rm in in g the in te rn a l h e a t s o u rc e s , a n d th e fu n c tio n d e s c rib in g s o - c a lle d fu n d a m e n ta l s o lu tio n fo r c o n s id e re d p ro b le m is w e ll k n o w n ). T h e c a lc u la tio n o f a s o u rc e fu n c tio n re q u ir e s , o f c o u rs e , th e in tr o d u c tio n o f a c e r ta in ite r a tiv e p ro c e d u re (th e d e ta ils c o n n e c te d w ith n u m e r ic a l asp ects o f p ro p o s e d a lg o r ith m w ill b e p re s e n te d in th e fu rth e r p a rt o f th e p a p e r ), b u t it s h o u ld be p o in te d th a t i f | A 'i [ < th e n th e a d e q u a te ite r a tiv e a lg o r ith m is c o n v e rg e n t. In th is p ap e r

(5)

th e A H S M w ill s u p p le m e n t a v a r ia n t o f b o u n d a ry e le m e n t m e th o d c a lle d th e B E M u s in g d is c re tis a tio n in tim e [2 , 3 , 4 , 5 ].

3 . B O U N D A R Y E L E M E N T M E T H O D U S IN G D IS C R E T IS A T IO N I N T IM E

T h e I D p ro b le m w ill b e c o n s id e re d , it m e an s th e e n e rg y e q u a tio n in th e fo rm

v 0 d U ( * ’ 0 = -- U (x ;~ + o

dr dx2

(1 4 )

w ith a ss u m e d b o u n d a ry c o n d itio n s f o r x = x lt x = x 2 an d in it ia l c o n d itio n fo r r = 0 . It s h o u ld be p o in te d th a t a g e n e ra liz a tio n o f p re s e n te d a lg o rith m o n 2 D o r 3 D p ro b le m is v e r y s im p le [5 ].

A t fir s t th e G r e e n ’ s fu n c tio n o f th e fo rm

ex p

2 y J a A t (

(1 5 )

is in tro d u c e d ( x is a s p a tia l c o - o rd in a te w h e re a s £ is a p o in t w h e re a c o n c e n tra te d h e a t s o u rc e is a p p lie d ).

T h e fu n c tio n (1 5 ) f u lf ills th e e q u a tio n

d x a A t

(1 6 )

w h e re A (£ , x ) is a D ir a c ’s fu n c tio n .

T h e id e a o f d is c u s s e d v a r ia n t o f th e B E M c o n s is ts in a s u b s titu tio n o f a tim e d e r iv a tiv e b y its fir s t o r d e r a p p ro x im a tio n a n d th e n th e e q u a tio n (1 4 ) is tra n s fo rm e d to th e fo rm

d 2 U ( x , t + A t ) 1 d x 2

4 - l / ( x , r + A f ) = - q y ( x , t ) - - 4 - U ( x . 0 ( 1 7 >

a A t a A t

M u ltip ly in g b o th s id e s o f e q u a tio n (1 7 ) b y ( / * ( { , x ) an d in te g ra tin g o v e r x 2 y ie ld s

d 2 U ( x , t + A t ) 1

1

■/

- —— U ( x , t + A t ) a A t

U ' ( Z , x ) d x =

(18)

- q v ( x , t ) - — — U ( x , t ) a A t

U ' U . x ) A x

(6)

246

B.Mochnacki, E.Majchrzak

T h e la s t in te g r a l e q u a tio n c o rre s p o n d s to so - c a lle d W e ig h te d R e s id u a l M e th o d c r ite r io n . In te g r a tio n b y p a rts th e le ft- h a n d s id e o f e q u a tio n (1 8 ) an d u s in g e q u a tio n (1 5 ) le a d s to

l/ ( £ ,f + A r )

s/a A t

s g n ( x - S )

e x p —Ł - L 1

U (x ,t+ At) + ^-^-

exp --1— ^ 'jq .(s ,f+ A f )

, j a A t 2 s j a A t )

/

. q v ( x ’ 0 + — — z u ( x , t )

2 2 \ fa A t

e x p f - i ^ i i ) d x s j a A t )

(1 9 )

F o r { X i a n d £ - * x 2 o n e o b ta in s tw o fo llo w in g b o u n d a ry e q u a tio n s

s ja A t

2

s ja A t [ l * i - * 2 I e x p - — ---

2 I s j^ A t

s ja A t

e x p

l*2-*il

, • ¡a A t ,

s/aA t

2

q n ( x j , f + A r )

q n ( x 2 , t + A t )

— e x p 1

2

- — e x p 1

2

s j a A t ;

K - * i l

1

2

U ( x, , t + A t )

U ( x 2, t + A t )

( 20 )

| y/£A7 1

/

y/qA f

2

2 v ^ I7

1 2 s / a A i

r I r - Y r\X X j | d x

j a T t ,

I * X 2 | d x

> i/ a A r

,

o r

#11 #12 ■«.(*,. *+A0 An *12 i/(x,, r + Ar) Pi

#21 #22 «„(*2> i + A i *21 *22 l/(*2- ' + A '> p2

(21)

(7)

A b o v e s y s te m o f e q u a tio n s a llo w s to fin d th e ’m is s in g ’ b o u n d a ry K ir c h h o f f s te m p e ra tu re s o r h e a t flu x e s , a n d n e x t a p p ly in g th e e q u a tio n (1 9 ) o n e c a n d e te rm in e a s e a rc h e d fu n c tio n U (x , t + A t ) a t th e in te rn a l p o in ts o f d o m a in D . T h e h e a t flu x c o n tin u ity c o n d itio n (1 0 ) c a n b e a ls o ta k e n in to a c c o u n t.

T h e it e r a t iv e p ro c e s s o f s o u rc e fu n c tio n d e te rm in a tio n is th e fo llo w in g . 1 . T r a n s itio n fro m f °= 0 to t ‘ = i°+ A f :

— it is a ss u m e d th a t q v ( x t, r ') = 0 , a t th e sam e tim e x , d e n o te s a c e n tra l p o in t o f in te rn a l c e lls d is tin g u is h e d in c o n s id e re d d o m a in ,

— fo r th is a s s u m p tio n th e K ir c h h o f f s te m p e ra tu re fie ld fo r w h o le d o m a in is c a lc u la te d ,

— th e lo c a l c o o lin g ra te s [ t / ( x „ t l ) - U ( x „ f °) ] / A f a re e s tim a te d ,

— a lo c a l v a lu e s o f s o u rc e fu n c tio n q v ( x „ t ‘) a re c o rre c te d ,

— th e it e r a t iv e p ro c e s s is sto p p e d i f re q u ire d a c c u ra c y is o b ta in e d . 2 . T r a n s itio n fro m t f ~' to t f , / = 2 , 3 , . . . , F :

— it is a ss u m e d th a t q v (x f, t f ) is e q u a l to th e la s t v a lu e o f q v fo u n d d u rin g th e p re v io u s ite r a tiv e p ro c e s s (a t c o n s id e re d p o in t),

— fo r th is a s s u m p tio n th e K ir c h h o f f s te m p e ra tu re fie ld fo r w h o le d o m a in is c a lc u la te d ,

— th e lo c a l c o o lin g ra te s [ i/ ( x (, t f ) - U ( x „ t f ~ ' ) ] / A t a re e s tim a te d ,

— a lo c a l v a lu e s o f s o u rc e fu n c tio n q v (x f, t / ) a re c o rre c te d ,

— th e ite r a tiv e p ro c e s s is sto p p e d i f re q u ire d a c c u ra c y is o b ta in e d .

T h e te s t c o m p u ta tio n s s h o w (a n d it c a n b e p ro b a b ly p ro v e d in a n a ly t ic w a y ) th a t th e ite r a tiv e p ro c e s s is c o n v e rg e n t i f | A ' i \ < ♦<>.

4 . E X A M P L E O F N U M E R I C A L S IM U L A T IO N

T h e s te e l p la te w ith th ic k n e s s L = 0 .1 [m ] h a s b e e n c o n s id e re d . T h e rm o p h y s ic a l p a ra m e te rs o f th e m a te r ia l (C = 0 .0 8 , S i= 0 .0 8 , M n = 0 .3 1 , S = 0 .0 5 , P = 0 .0 2 9 , C r = 0 .0 4 5 , N i= 0 .0 7 , M o = 0 .0 2 ) h a v e b e e n assu m e d o n th e b a s is o f e x p e rim e n ta l d a ta q u o te d in [6 ], T h e p ro b le m is s tro n g ly n o n - lin e a r b e c a u s e , fo r e x a m p le , s p e c ific h e a t (re la te d to a n u n it o f v o lu m e ) ch a n g e s fro m 3 .5 1 0 6 to 8 .7 - 1 0 6[J/ m 5K ] , w h e re a s th e th e rm a l c o n d u c tiv ity fro m 3 0 to 5 0 [W / m K ], U s in g th e n u m e ric a l in te g ra tio n m e th o d s th e fu n c tio n s H ( T ) a n d U ( T ) h a v e b e e n fo u n d - F ig u r e s 2 a n d 3 , n e x t fu n c tio n H = H ( U ) h a s b e e n c o n s tru c te d (F ig u r e 4 ) a n d f in a lly its d e r iv a tiv e (F ig u r e 5 ). T h e fo llo w in g b o u n d a ry - in itia l c o n d itio n s h a v e b e e n a s s u m e d : x , = 0 :

<7„(0, i) = 0 , x t = L : - d U l d x = a m ( U - U „ ) , a t th e sa m e tim e a = 3 0 0 , i / „ = 0 (c o m p , e q u a tio n (1 1 )), fo r f = 0 : U 0= 2 7 5 1 0 (t h is v a lu e c o rre s p o n d s to r = 5 5 3 °C ).

In F ig u r e 6 th e c o o lin g c u rv e s a t s e le c te d p o in ts o f in te r io r D a re s h o w n , in p a r tic u la r : 1 : x = 0 .0 9 5 , 2 : x = 0 .0 6 5 , 3 : x = 0 .0 3 5 , 4 : x = 0 .0 5 [m ]. T h e f u ll lin e s illu s tr a te th e n u m e ric a l s o lu tio n o b ta in e d o n th e b a s is o f re p e a te d ly v e r ifie d F D M a lg o r ith m fo r n o n - lin e a r e q u a tio n s , w h e re a s th e s y m b o ls s h o w th e n u m e ric a l s o lu tio n fo u n d b y m e a n s o f a r t if ic ia l h e a t s o u rc e m e th o d . T h e m a x im u m d iffe re n c e b e tw e e n p re s e n te d n u m e ric a l s o lu tio n s d o e s n o t e x c e e d 0 . 5 % . I t se e m s th a t p ro p o s e d m e th o d c a n b e v e r y u s e fu l in th e c a s e o f th e B E M a p p lic a tio n f o r n u m e ric a l c o m p u ta tio n s o f n o n - ste a d y an d n o n - lin e a r h e a t c o n d u c tio n p ro b le m s .

(8)

248

B.Mochnacki, E.Majchrzak

F ig . 6 . C o o lin g c u r v e s a t s e le c te d p o in ts o f d o m a in D R y s . 6 . K r z y w e s ty g n ię c ia w w y b ra n y c h p u n k ta c h o b s z a ru D

A C K N O W L E D G E M E N T

T h is re s e a rc h w o r k h a s b e e n su p p o rte d b y K B N (G r a n t N o 3 P 4 0 4 0 3 8 0 7 ).

R E F E R E N C E S

[1 ] M o c h n a c k i B . , S u c h y J . : M o d e llin g and S im u la tio n o f C a stin g S o lid ific a tio n . P W N , W a rs a w 1993.

[2 ] C u ra n D .A .S ., C ro ss M . and L e w is B .A . : S o lu tio n o f p a ra b o lic d iffe re n tia l eq u ation s b y the b o u n d ary elem en t m ethod u sin g d isc re tis a tio n in tim e. ,,A p p l. M a th . M o d e llin g ” , N o 4, 1980, 3 9 8 - 4 0 0 .

[3 ] B re b b ia C .A ., T e lle s J . C . F . and W ro b e l L .C .: B o u n d a ry E le m e n t T e ch n iq u es.

S p r in g e r - V e r la g , B e r lin 1984.

[4 ] S ic h e rt W .: B e re ch n u n g v o n in statio n a ren th erm ish en P ro b le m e n m itte ls d e r R andelem ent- m eth o d e, E rla n g e n : 1989.

[5 ] M a jc h rz a k E . and W ite k H .: A n a ly s is o f C o m p le x C astin g S o lid ific a tio n U s in g C o m b ined B E M . „ S o lid ific a t io n o f M e ta ls an d A llo y s ” , V o l. 18 (1 9 9 3 ), 1 1 3 - 1 2 0 .

[6 ] T e p lo fiz ic e s k ije s v o js tv a ve sc e s tv, S p ra v o c n ik , N au k a, M o s k v a 1960.

R e ce n ze n t: p ro f. d r hab. in ż . W .N o w a c k i

W p ły n ę ło d o R e d a k c ji w g ru d n iu 1994 r.

Cytaty

Powiązane dokumenty

In the first part of the paper the problems for which the second order sensitivity V (x, t) = 0, while in the next part the problems for which the second

Contour lines for the ground are presented; temperatures are expressed by numbers (in °C). Position coordinates in the ground are on the axes. The pipes are far enough from the

Let us remind that in the problem under consideration the quasi-linearity of the heat conduction equations reduces to the averaged temperature field ϑ while the problem

In this paper, derivation of the Green’s function for the heat conduction problems in a finite multi-layered hollow cylinder is presented.. Formulation and solution of the prob- lem

The solutions obtained for mean values of the relaxation time and the boundary temperatures using the classical lattice Boltzmann method are always in intervals that are solutions

In this paper, a solution of the heat conduction problem in a two-layered hollow cylinder by using the Green’s function method is presented.. The considerations concern the

The explicit and implicit variants of finite differences method are applied and the results of computations are shown.. The problem has been solved using the explicit

To solve the problem of heat conduction in the composite m-layered cylinder by the aid of the GF method, we use the Green’s functions satisfying boundary condi- tions which can