• Nie Znaleziono Wyników

Asymmetrical hybridization and gene flow between Eisenia andrei and E. fetida lumbricid earthworms

N/A
N/A
Protected

Academic year: 2022

Share "Asymmetrical hybridization and gene flow between Eisenia andrei and E. fetida lumbricid earthworms"

Copied!
19
0
0

Pełen tekst

(1)

PLOSONE|https://doi.o r g/10.13 7 1/journal.p o ne.0204 4 6 9 Septembe r21,2018 1/16

RESEARCHARTICLE

Asymmetricalhybridizationandgeneflowbetwee nEiseniaandreiandE.fetidalumbricidearthworm s

BarbaraPlytycz1*,JanuszBigaj1,TomaszPanz2,PawełGrzmil3

1DepartmentofEvolutionaryImmunology,InstituteofZoologyandBiomedicalResearch,JagiellonianUniver sity,Krakow,Poland,2FacultyofBiochemistry,BiophysicsandBiotechnology,JagiellonianUniversity,Krako w,Poland,3DepartmentofGeneticsandEvolution,InstituteofZoologyandBiomedicalResearch,Jagiellonian University,Krakow,Poland

*Barbara. p lytycz@uj.e d u.pl

Abstract

UniformlypigmentedEiseniaandrei(Ea)andstripedE.fetida(Ef)lumbricidearthwormsare hermaphroditescapableofself-fertilization,cross-fertilization,andasymmetricalhybridiza- OPENACCESS

Citation:PlytyczB,BigajJ,PanzT,GrzmilP(2018)A symmetricalhybridizationandgeneflowbetweenEis eniaandreiandE.fetidalumbricidearthworms.PLoS ONE13(9):e0204469.https://doi.org/10.1371 / journ al.pone . 0204469

Editor:P.Pardha-

Saradhi,UniversityofDelhi,INDIA

Received:August1,2018 Accepted:September8,2018 Published:September21,2018

Copyright:©2018Plytyczetal.Thisisanopenacce ssarticledistributedunderthetermsoftheCreativeC ommonsAttributionLicense,whichpermitsunrestri cteduse,distribution,andreproductioninanymediu m,providedtheoriginalauthorandsourcearecredite d.

DataAvailabilityStatement:Allrelevantdataare withinthepaperanditsSupportingInformationfile.

AllthesequencesweredeclaredintheGenBank(M G030809-MG030998for28SandMG030999- MG031156forCOI.

Funding:Investigationsarefinanciallysupportedb ytheNationalScienceCentre,POLAND(2016/23/B/

NZ8/00748)andMinistryofScienceandHigherEduc ationPOLAND(K/ZDS/005405).Thefundershadno roleinstudydesign,datacollectionandanalysis,deci siontopublish,orpreparationofthemanuscript”.

tion.ThelatterwasdetectedbygenotypingofF1andF2progenyofthecontrolledEa+Efpairsbysp ecies-

specificsequencesofmaternalmitochondrialCOIgenesandmaternal/paternalnuclearS28rRN Agenes.AmongF1offspringtherewereself-fertilizedEa(aAA),Ef(fFF),andcross-

fertilizedfertileEa-

derivedhybrids(aAF);thelattermatedwithEaandgavenewgenerationofEaandhybrids,whilem atedwithEfgaveEa,Ef,Ea-derivedhybridsandsterileEf-

derivedhybrids(fFA).CoelomicfluidofEaexhibitsuniquefluorescencespec- tracalledheretheM-

fluorescenceconsideredasamolecularbiomarkerofthisspecies.Sincesimilarfluorescencewas detectedalsoinsomeEf(hypotheticalhybrids?),theaimofpresentinvestigationswastoidentifyth eM-

positiveearthwormsamongfamiliesgenotypedpreviously.Itwasassumedthatfactor/sresponsi bleformetabolicpathwaysleadingtopro-ductionofundefinedyetM-

fluorophoremightbeencoded/controlledbyallelesofhypotheti- calnucleargeneofEiseniasp.segregatingindependentlyfromspecies- specificS28rRNAnucleargenes,where‘MM’or‘Mm’allelesdetermineM- positivitywhile‘mm’allelesdeter-mineM-negativephenotypes.SpectraofM- fluorescenceweredetectedinall10Ea(aAAMM)and19Ea-

derivedhybrids(aAFMm),threeoffourEf-

derivedhybrids(fFAMm)andone‘atypical’Ef(fFFMm)among13Efearthworms.Amongprogeny of‘atypical’M-pos-itiveEf(fFFMm)reappeared‘typical’M-

negativeEf(fFFmm),confirmingsuchhypothesis.Alternatively,theM-

fluorescencemightbedependentonunknowngeneproductsofverti-cally-transmittedEa- specificsymbioticbacteriasexuallytransferredtotheEfpartner.Hypothesesofintrinsicandexter naloriginofM-fluorescencemightcomplementeachother.Thepresence/absenceofM- fluorophoredoesnotcorrespondwithbodypigmentationpat-terns;Ef-

characteristicbandingappearedinposteriorpartsofhybridsbody.Inconclusion,Ea/Efhybridizati

(2)

PLOSONE|https://doi.o r g/10.13 7 1/journal.p o ne.0204 4 6 9 Septembe r21,2018 2/16 onmayserveforfurtherstudiesonbi-

directionalgeneflow.

(3)

GeneflowbetweenEiseniaandreiandE.fetidaearthworms

Competinginterests:Theauthorshavedeclaredth

atnocompetinginterestsexist.

Introduction

LumbricidearthwormsfromEiseniasp.arevaluablemodelsinvariousscientificdisciplineslikebioche mistry,ecotoxicology,andbiomedicine[1–

5]whereproperspeciesdelimitationiscrucial.ThisconcernmainlyuniformlypigmentedEiseniaandr ei(Ea)andstripedE.fetida(Ef),originallydescribedaspigmentationmorphsoftheonespeciesspelled asEiseniafoetida,thenasitstwosubspecies,andlateronastwoindependentspecieswithreproductiv ebarrier[6]formingtwodistinctcladesonphylogenetictreebasedonspecies-

specificDNAsequences[7–9].

Bodypigmentationisoftennotconclusive,thusduringourearlierstudiesofEa/Efdeliv- eredfromFrancewehaveusedvariousmethodsforproperdistinctionofspecimensofthesetwosp ecies[10];amongothers,coelomicfluidwasanalyzedinrespectofpresenceoffluores-

cencespectraconsideredtobeafingerprintofE.andrei,hypotheticallyderivedfrom4-methy- lumbelliferylβ-D-glucoronide[11],calledtheMUGfluorophore[10;12;13],andhereshortlytheM- fluorophore.Contrarytoourexpectation,wehavedetectedsuchfluorescentbiomarkernotexclus ivelyinEabutalsoinsomeEfspecimens–

thusweconsideredthemashypotheticalhybrids[10;12].Justthisobservation,togetherwithawid espectrumofpigmentationpatternsofearthwormsfromourEa/Efculturespromptedustotestahy pothesisabouttheexistenceofinter-

specifichybridsbetweenEaandEf,bothofthembeingsimultaneoushermaphrodites[14]capable toself-fertilization[15].

HybridizationwasdetectedbygenotypingofF1andF2progenyofthecontrolledEa+Efpairsbys pecies-specificsequencesofbothhaploidmitochondrialCOIgenesofmaternalorigin[16;17]

(‘a’or‘f’forEaorEf,respectively)anddiploidnuclear28SrRNAgenesofmaternal/paternalorigin(e ither‘A’forEaor‘F’forEf).AmongF1offspringtherewereself-

fertilizedEa(aAA),Ef(fFF),andcross-

fertilizedfertilehybrids(aAF)derivedfromEaova;theaAFhybridsmatedwithEagavenewgen erationofEaandhybrids,andwhilematingwithEfgaveEa,Ef,aAFandsterilefFAhybridsderivedfro mEfova.Usingthemethodsofthecombinedmitochondrialandnuclearmarkerswedetectedonthe EabranchoftheCOI-

basedphylogramboththe‘pure’Easpecimens(aAA)andrelativelycommoninter-

specifichybrids(aAF),whileontheEfbranchtherewereboth‘pure’fFFspecimensandafewsterilef FAh y b r i d s[18].

SinceearthwormgenotypingwasperformedonDNAextractedfromamputated(andthenregener ating[19])tailtips,thesameparental,F1,andF2earthwormsservedasdonorsofcoe-

lomicfluid(thatwasgraduallyrestored[12;13])foranalysisinrespectofpresence/absenceofM- fluorophore.TheaimofsuchanalyseswasansweringthequestionhowmolecularmarkerspecificforE .andreicouldbetransferredtosomeE.fetidaearthworms?

Hypothetically,theM-

fluorescencemightbedependenteitheronthemetabolicpathway/sofEiseniasp.itself,ormightbe derivedfromverticallytransmittedE.andrei-specificsym-

bioticbacteriathatcan‘infect’partnersofcopulation.TheresultsoftrackingtheM-

positiveearthwormswithintheirfamiliesfrompreviousinvestigationswereconsistentwithhypothe -sisoftheintrinsicoriginoffluorophore;thedominantM-allelemightbetransmittedfromM- positiveEa(aAAMM)tofertileEa-derivedM-positivehybrids(aAFMm)andthento‘atypical’M- positiveEf(fFFmM)earthwormandsterileEf-

derivedhybrids(fFAmM).SuchintrinsicpathwaywasalsoconsistentwithreappearanceofM- negativeEf(fFFmm)earth-wormsinlong-lastingculturesofatypicalM-

positiveEf(fFFMm).However,hypotheticalparticipationofmicrobiome-

derivedfactorsinproductionofM-fluorophorecannotbeneglected.Thepresence/absenceofM- fluorophoredoesnotcorrespondwithbodypigmen-tationpattern.

(4)

Materialsandmethods Experimentalanimals

AdultcompostingearthwormsEiseniaandrei(Ea)andEiseniafetida(Ef)fromlaboratorycolo-

niesattheLilleUniversity(France)wererearedforgenerationsintheInstituteofZoologyandBiomedical ResearchoftheJagiellonianUniversity,Krakow,Poland.

Themainanalysesofcoelomicfluidwereperformedon46outof158descendantsoflabo- ratory-pairedM-positiveEaandM-

negativeEfspecimensgenotypedpreviously[18].Inshort,duringpreviousinvestigationsthepair soffreshlyhatchedearthwormswerecultureduntilcocoonproduction/reproduction.Supravitall yamputatedtailtipsoftheseparentalspecimensandtheiroffspringservedasasourceofindividua llynumberedDNAsamplesgeneticallyana-lyzedintwoways:1)byspecies-

specific(maternallyderived)haploidmitochondrialDNAsequencesoftheCOIgenebeingeither‘

a’forwormsfromEaovaor‘f’forwormsfromEfova;2)bythediploidmaternal/paternalspecies- specific(AforEaandFforEf)nuclearDNAsequencesof28Sribosomalgene.Thedescriptionofg enotypeswereasfollow:‘aAA’forEa,‘fFF’forEf,andaAForfFAfortheirhybridsderivedeitherfrom the‘aA’or‘fF’ova,respec-

tively.AmongoffspringofEa+EfpairsthereweremainlyaAAandfFFearthwormsresultedfromth efacilitatedself-

fertilizationandsomeaAFhybridsfromaAovabutnonefFAhybridsfromfFova.TheaAFhybrids matedwithEagaveanewgenerationofEaandaAFhybrids,whilematedwithfFFgavefFF,aAF,a ndsterilefFAhybrids.Pairsofhybrids,bothaAFandfFA,producedplentycocoonsbutnohatchlin gs[18].

Proof-of-conceptinvestigationswereperformedoncoelomicfluidofspecimensfromlong- lastingculturesofM-positiveEa(EaMp),‘typical’M-negativeEf(EfMn),and‘atypical’M-pos- itiveEf(EfMp).TheEfMpindividualswereidentifiedin2013duringourpreviousstudies[10].

PigmentationpatternswerephotographicallydocumentedwiththeDSLcamera(SonySLT- A58).

AnalysisofM-fluorescenceincoelomocyte-containingcoelomicfluid

Formainexperiments,46geneticallyidentifiedaAA,fFF,aAF,orfFAspecimensfromprevi- ousstudy[18]ofsimilarbodyweights(X=0.77+0.18g),wereusedforanalysesofcoelomicfluid.

SpectrofluorimetricanalysisoftheM-fluorophoreinnon-

invasivelyretrievedcoelomicfluidwasperformedbyslightlymodifiedmethoddescribedpreviousl y[10;12;13].Afterover-

nightdepurationonmoistfilterpapers,earthwormwereimmersedin3mL0.9%Natriumchloratum (Kutno,Poland)andelectrostimulatedfor30secwithamildelectriccurrent(4.5V)forcoelomicfluid extrusionthroughdorsalporesduringanimalbodymovements.Afterfluidextrusiontheearthwor mswerereturnedtotheiroriginalboxes.OnemLoftheextrudedcoelo-mocyte-

containingcoelomicfluidwassupplementedwith20uLofTriton(Sigma-

Aldrich)andshakedfor20minonElponLaboratoryShakertype358Stodissolvecellularcompone nts.ThensampleswereadjustedwithPBSto2mLandfinal1%TritonlysateswereanalyzedusingP erkin-ElmerSpectrofluorimeterLS50B.Aspreviously[10;12;13],emissionspectraofM-

fluorophorewererecordedbetween340and480nm(lambdaat320nm,peakat380nm)whileexcit ationspectrabetween260and360nm(lambdaat380nm,peakat320nm).Fluoro-

phoresaregraduallyrestoredincoelomicfluidofelectrostimulatedarthworms[12;13]thus–

whennecessary–

theprocedureofcoelomicfluidextrusion/analysiswasrepeatedforthesamespecimensafterearthwo rms’4-weekrecoveryinsoil.

(5)

Results

M-positiveandM-negativespecimensamonggenotypedEiseniasp.earthworms

TheM-

positive(Mp)earthwormsexhibiteddistinctspectraoffluorescencewithapeakofabsorbanceat314–

320nm(λ=380)andapeakofemissionat370–380nm(λ=320),whiletheM-

negative(Mn)earthwormsweredevoidofsuchfluorescenceinTriton-lysatesofcoelo- micfluid(InsetinFig1).Asvisibleonphylogenetictreeof46descendantsofEa+Efearth-

wormsarrangedonthebasisofmitochondrialCOIgeneofmaternalorigin,all29specimensderivedfro mE.andreiova,i.e.10aAAand19aAFhybrids,wereM-positive.Thirteenspeci-

mensfromE.fetidaovawereM-

negative,amongthem12fFFearthwormandonefFAhybrid;onlyonefFFspecimenandthreefFAhybri dswereM-positive(Fig1).

GenealogyofM-positiveandM-negativeearthworms

GenealogyofM-positiveandM-

negativedescendantsofEa+EfpairshasbeenshownonFig2.AmongF1offspringofpairsofparentals pecimensEa+EfthereareM-positiveEa,M-negativeEf,andM-

positiveaAFhybridsfromEaova,butnonefFAhybridfromtheEfova.TheaAFMphybridspairedwithaA AMpspecimensgaveF2generationofaAAMppureEaspeci-

mensandaAFMphybrids.TheaAFMphybridspairedwithM-

negativefFFearthwormsgavefourkindsofF2specimens,i.e.‘typical’fFFMnearthworms,oneM- positiveEfearthworm(fFFMp)andalsofourhybridsfromEfova,ofwhichthreewereM-

positive(fFAMp)andonewasM-negative(fFAMn)(Fig2).

SpeculationsongenotypesofM-positiveandM-negativeEiseniasp.earthworms

Hypotheticallythefactor/sresponsibleforM-

fluorescencemightbeencoded/controlledbythenucleardominant‘M’alleleofsomeunknownge ne/sofEiseniasp.whiletworecessive‘mm’allelesdetermineM-

negativephenotype.ThusgenotypesofphenotypicallyM-positiveearth-

wormsareeitherofMMorMm,whilegenotypesofM-negativespecimensarealways‘mm’.

Hypothetically,M/mallelessegregateindependentlyfromthenuclearA/Fsequencesof28Sr RNAgene.ThereforethegenotypeofM-

positiveEaspecimensmaybeeitheraAAMMoraAAMm,whilethegenotypeofM- negativeEfspecimensmaybeonlyfFFmm.Inter-

specifichybridsmightbeeitheraAFMm/aAFmMorfFAMm/fFAmM,withthefirstwrittenalleleofea chgenebeingofmaternalorigin,whileMm/mMhavethesamephenotypiceffects.

AsillustratedonFig3,duringhybridizationexperimentsstartingwithEa+Efpairs,theEaMpspecime nofaAAMMgenotypeshallproduceonlyonetypeofova,i.e.aAM,andonekindofspermatozoa,AM.Th eEfspecimens,fFFmm,shallproduceonlyfFmovaandFmspermatozoa.TheaAMovamaybeeitherse lf-fertilizedbyAMspermatozoagivingaAAMMspecimensorcross-

fertilizedbyFmspermatozoaofEfpartnergivingtheM-

positiveaAFMmhybrid.ThefFmovaoffFFmmpartnermaybeself- fertilizedbyFmspermatozoagivingfFFmmM-

negativeEfearthwormsorbytheAMspermatozoaoftheEapartnergivingM-pos-

itivefFAmMhybrids(Fig 3a and3b ).However,fFAmMhybridsfromEfovawereabsentamonginvestiga tedspecimens(framedinFig3b),thatpointedoutonasymmetricalhybridiza-

tionofEaandEf,withhybridsderivedpreferentially(orexclusively)fromtheEaova.

Theoretically,theM-

positiveaAFMmhybridsmightproducefourtypesofoocytes,aAM,aAm,aFM,andaFm,thetwolatt

(6)

ergenotypeslessprobableduetomitochondrial-nuclear(aF)incompatibility[20–

22],andfourtypesofspermatozoa,AM,Am,FM,andFm.Onecouldexpectanypossiblecombinatio nresultingfromself-fertilizationofhybrids(seeS1Fig).

(7)

Fig1.FluorescencespectraofM-fluorophoreanditspresence/absenceonphylogramofEa,Ef,andtheirhybrids.Themaximum- likelihoodphylogramconstructedaccordingtosequencesofthematernalmitochondrialCOIgene(‘a’or‘f’)ofEa/Efindividuallycodede arthwormscharacterizedalsobysequencesoftheirnucler28SrRNAgenes(‘AA’,‘fFF’,‘aAF’or‘fFA’)andphenotypesoftheirM- fluorophoreasM-positive(Mp)orM-negative(Mn).&:atypicalMug-negativehybridfFA149/194Mn;#:atypicalMUG-

positivespecimenfFF158/190.Genebankaccessionnumbersaregivenin[18].Inset:Examplesoffluorescencespectraofexcitation(left) andemission(right)incoelomicfluidofMp(orangesolidlines)andMn(bluedottedlines)specimens.

https://doi.org/1 0 .1371/journal. p one.0204469 . g001

(8)

Fig2.RelationshipswithinfamiliesofEa,EfandtheirhybridswithandwithouttheM-

fluorophore.ProgenyofEaandEfparentalspecies(aAA+fFF),andcrossesbetweenaAFhybridsandEa(aAF+aAA)orEf(aAF+fFF)earth worms.CodedspecimensareeitherM-positive(Mp)orM-negative(Mn).SymbolsarethesameasonFig1.

https://doi.org/1 0 .1371/journal. p one.0204469 . g002

However,theM-negativeaAAmmandaAFmm,whichtheoreticalmightresultfromself-fertil- izedhybridovabyanyofhybridsperm,wereabsentamong46investigatedearthworms.Moreover ,accordingtoourpreviouswork,pairsofhybridsgavenoviableoffspring[18].Nev-

erthelesswecannotexcludeofparticipationofhybridself- fertilizationduringmatingofaAFhybridswithparentalspecies.

(9)

Fig3.HypotheticalgenotypesofEa(aAAMM)andEf(fFFmm)pairsandtheiroffspring.a)Schemeofparentalcells,theirga metes(ova,spermatozoa)andzygotes,andb)thePunnettsquare.AssumptionisthatM-

fluorescencemightbeencoded/controlledbythenucleargenewiththedominant‘M’alleleandtherecessive‘m’allelesegregating independentlyfromthenuclearA/Fsequencesof28srRNAgene.The‘MM’and‘Mm/mM’determinestheM-

positive(Mp)phenotype(inorange)while‘mm’genotypedeterminestheM-

negative(Mn)phenotype(inblue).Punnettsquaresareadaptedtopairsofhermaphroditicearthwormsabletoself- fertilization;ovainyellow,spermatozoain

(10)

green.Ineachpairthefirstalleleisthatofmaternalorigin.Framedgenotypeswereapparentlyabsentamonginvestigat edearthworms.Ovaandresultedoffspringwithmito-nuclearincompatibilityarecrossedout.

https:// d oi.org/10.1371/ j ournal.po n e.0204469.g 0 03

TheaAFMmhybridsgaveaprogenyinpairswithEaorEfspecimensillustratedonFig4,whereprogeny frommito-nuclearincompatibleovaareexcluded,andaAFself-

fertilization(shownonS1 Fig )isomittedforaclarity.

OnlyM-

positiveoffspring(aAAMM;aAAMm/aAAmM)appearedintheaAFMm+aAAMMpairs,thatwascon sistentwithdataonFig4a.

TheoffspringofaAFMm+fFFmmpairsfromthehybrid’sova(aAMandaAm),excludingthosew ithmito-nuclear-incompatibility(aFMandaFm),mightgivebothM-positive(aAFMm)andM- negative(aAFmm)hybrids(Fig4b),butthelatterwereabsentamonginves-

tigatedearthworms.TheoffspringfromtheEfova(fFm)consistedofbothM-positiveandM- negativehybrids(fFAmMandfFAmm),the‘atypical’M-

positiveEfspecimenfFFmM,andmostcommonM-negativeEf(fFFmm)earthworm(Fig4b).

Fig5showsthatevenoneuniqueM-positivefFFMmspecimenmightinitiatepropagationofM- positivephenotypein‘traditional’Ef(fFFmm)culture;fFFMn/fFFMMgenotypesmightappearbys elf-fertilizationandcross-fertilizationwitha‘typical’M-

negativefFFmmpartner(Fig5a),andthenbymatingwithnewly-

createdotherfFFMnearthworms(Fig5b).Ontheotherhand,Fig5 b illustrate showintheprogenyof phenotypically‘atypical’M-positiveEfearthwormsmightreappearthe‘typical’M-

negativeEfspecimens,thathashappenedinearth-wormsusedforourproof- ofconceptinvestigations(seebelow).

Proof-ofconceptinvestigations:ReappearanceofM-

negativeEfspecimensamongdescendantsof‘atypical’M-positiveEfearthworms

EarthwormsfromFranceweretestedforpresence/absenceofMUF-

fluorophorein2013[10]andthengroupsofthemwereculturedfurtherseparatelyasEaMp,EfMn,an d‘atypical’EfMnspecimens.Fouryearslater,amongprogenyofEaMpandEfMntherewereexclusi velytheM-positiveEaandM-

negativeEfspecimens,respectively.Amongrandomlysampled7specimensfromthedescendantsof‘

atypical’EfMpearthwormstherewerefiveM-positive(fFFMm)andtwoM- negativespecimens(fFFmm).Theresultsofourproof-of-

conceptinvestigationswereconsistentwithhypothesisaboutinheritanceofundefinedgenewithth edominantM-alleleresponsibleforM-fluorophoreinEiseniasp.(Fig5b).

PigmentationpatternsofgenotypedM-positiveandM-negativeearthworms

AsshownonphotosinFig6,thepresence/absenceofM-

fluorophoredidnotcorrespondwithpigmentationpatternofinvestigatedearthworms.Ingeneral,i nter-segmentalgrooveswerehardlyvisibleinrelativelyuniformlycolored,lighterordarker,M- positiveEaspecimens(aAA41MpandaAA45Mp,respectively).Inter-specifichybrids,bothM- positiveaAF101MpandfFA143/159Mp,andM-

negativefFA67/149Mn,hadslightlybandedposteriorpartsofthebody.BandingwasdistinctinEfs pecimens,bothM-positive(fFF158Mp)andM-

negative(fFF42Mn,fFF61Mn,andfFF112Mn),withlighterordarkercolorationandsharplydemar -catedmuchlighterinter-segmentalgrooves(Fig6).

Discussion

(11)

AsymmetricalhybridizationbetweenEaandEfresultedinawidespectrumofnewpheno- types,includingEa-likeearthwormswithEf-likebandedposteriorbodyparts,andthe

(12)

Fig4.Hypotheticalgenotypesoftheoffspringoftest-crossesofthehybrids(aAFMm)withparentalspecimens.Punnettsquaresofa) (aAFMm+aAAMM);b)(aAFMm+fFFmm)pairs.Self-

fertilizationwithinaAFMmhybridisshownonS1Figthusisomittedhere.SymbolsarethesameasonFig3.

https://doi.org/1 0 .1371/journal. p one.0204469 . g004

(13)

Fig5.HypotheticalgenotypesoftheoffspringofM-positiveEfspecimenswithinEfMpculture.Punnettsquaresofa)(fFFMn +fFFMn)pair;self-fertilizationshowninonepartneronly;b)(fFFMn+fFFmm)pair.SymbolsarethesameasonFig3.

https://doi.org/1 0 .1371/journal. p one.0204469 . g005

existenceofEa-specificM-fluorophoreincoelomicfluidofmosthybridsandsomeEfearth- worms;inotherwords,hybridizationenrichedthegeneticpoolofbothspecies(Fig7).

Adaptivevalueofuniformorbandedbodypigmentationpatternsmightbeexperimentallytested,e.g .throughmeasurementsofattractivenessforpotentialpredators.Sofar,wemaycon-

cludethatpigmentationpatternsmightberelevantforpreliminaryspecies/hybriddelimita- tion,anddonotcorrespondwithpresence/absenceofM-fluorophoreincoelomicfluid.TheM- fluorophorewasconsideredasmolecularmarkerofE.andreiwhileitturnedoutthatisalso

(14)

Fig 6. PigmentationpatternsofEa,EfandtheirhybridswithandwithouttheM-fluorophore.PhotosofM-positive(Mp)andM- negative(Mn)codedspecimensofEiseniaandrei(aAA),E.fetida(fFF)andtheirhybrids(aAFandfFA).SymbolsarethesameasonFigs1and2.

https://doi.org/1 0 .1371/journal. p one.0204469 . g006

presentinmajorityofhybridsandsomespecimensofE.fetida.Thus,hybridizationofEawithEfres ultedinbi-directionalgeneflow;Ef-specificgenes/allelesresponsibleforstripedpigmen- tationaretransferredfromEftoEa.Incontrast,hypotheticaldominantMallelesofgene/sresponsi bleformetabolicpathwayleadingtoproductionofM-fluorophoreflowfromM-posi-

tiveEa,throughM-positiveEa-derivedhybridstoEf,resultinginsomeM-positiveEfspeci- mens.EvenoneM-positiveEfearthwormmatedwithM-

negativepartnerpropagatestheMalleleswithinEfculture;amongoffspringof‘atypical’M- positiveEf,thetypicalM-negativeEfspecimensmayreappear(Fig7).

TheM-negativeEaandM-negativeEa-

derivedhybridswereabsentamong46investigatedearthwormsalthoughsuchphenotypes/genotyp esaretheoreticallypossible;theymightbedetectedifthenumberofinvestigatedearthwormswouldbe increased.Ontheotherhand,theirviabilitymightbeimpairediftheM-

factorplaysanimportantbiologicalroleinEiseniaspecies.

BetterviabilityandhigherfecundityofE.andreithanthoseofE.fetidaweredescribedbyseveralscie ntificteams[23–25]includingours[18].ThesameconcernsEa-

ovaderivedhybridsthatarefertile,incontrasttorareandsterilehybridsofEf-ovaorigin.Thus,theques- tionappearswhetheritisthisdependentonthepresenceofM-fluorophoreorsomeundiscov- eredmetabolicpathwaysleadingtoitsproduction?

CharacteristicfluorescencespectraofcoelomicfluidofE.andreiandE.fetidawereforthefirsttimeus edasspecificfingerprintsfortaxonomyofthesespeciesin2003,andauthorsstated

(15)

Fig7.SchemeofmatingandmainresultsconcerningMp/MnphenotypesofEa,Efandtheirhybrids.Combinedsummaryof previous[18]andpresentexperiments.SymbolsarethesameasonFig3.

https:/ / doi.org/10.137 1 /journal.pone . 0204469.g007

thattheuniquefluorescencepropertiesofE.andreimolecularmarkerarecharacteristicforthe4- methylumbelliferylβ-D-glucoronide(MUGlcU)[11],calledheretheM-

fluorophore.Infact,fluorescencespectrasimilartoM-

fluorophorehavebeenshownin2008asthosederivedfrommethanolsolutionof4- methylumbelliferone,amemberofcoumarinfamilyCoumarinsare

(16)

naturalproductspresentinetherealoilsofmanyplants,e.g.cinnamon(Cinnamonumzeylani-cum) [26].Biologicaleffectsofnaturalandsyntheticcoumarinderivativesincludeanti-plas-

modialandantimalarian[27],anti-fungal[28],anti-tuberculosis[29],anti-coagulant[30],andanti- cancer[31]activities.In2017,anotheraromaticmetaboliteuniqueforcoelomicfluidof

E.andreiwasidentifiedasthecompoundSP-8203,consistingtwoquinazoline-2,4- dionesjoinedbyanN-

acetylsperminelinkerbutitsfluorescencespectrahavenotbeenanalyzedinthispaper[32].Compound SP-

8203ispharmacologicallypotentinmammaliancellsshowingneuroprotectiveactivity[33;34].Thepre cisechemicalcharacteristicoftheM-

fluorophorerequiresfurtheranalysisbutthatisnotourcurrentconcern.Nevertheless,duetoitshypothet i-calconnectionswithpharmacologicallypotentfactors,wemayassumethattheM-

fluorophoremightbesomehowresponsibleforhigherviabilityofM-positiveE.andreiandM- positiveEa-derivedhybridsthanM-negativeE.fetidaandrareinfertileEf-

ovaderivedhybrids.FurtherstudiesontheselectedM- positiveE.fetidamightbefruitfulintestingsuchsupposition.

SpeculationsonhypotheticalgenewiththedominantM-alleleareconsistentwithassump- tionoftheintrinsicoriginofM-

fluorophore,beingentirelydependentontheearthwormownmetabolicpathways.Keepinginmin dthepeculiarcopulatorybehavioroflumbricidearth-

worms(Fig7),hypothesisofmicrobialoriginofM-

fluorescencecannotbeneglected.Almostalllumbricidearthwormsharborextracellularspecies- specificbacterialsymbiontsofthegenusVerminephrobacterlocalizedintheirexcetorynephridia [35;36].Thesesymbiontsareverti-

callytransmittedviathecocoonscontainingdevelopingembryosandpersistinspecificloca- tionthroughoutthewholelifespanofcolonizedearthworms[37;38].Recentlyithasbeenshownth atbacterialsymbiontshavebeneficialeffectsonmaturationandreproductionofE.andrei[39].So meproductsofbacterialmetabolisms,includinghypotheticalM-

fluorophore,mightaccumulateinearthwormcoelomicfluid.Hypothetically,someoftheseextrac ellularsymbiontsmaybereleasedduringcopulationtotheseminalfluid,andmayreachspermath e-

casofthepartnersofcopulation.Thentheyarereleasedtococoonstogetherwithsperm,andwithi ncocoonsinfectovaordevelopingembryosresultedfromself-orcross-

fertilization.InsuchcasesnotonlyEaandEa-derivedhybridsbutalsosomeEfandEf- derivedembryoscanbeinfectedandbecameM-positiveadults.Inconclusion,theM- positivityofsomeearthwormsmightbeconsideredasaresultof‘sexually-

derivedinfection’bysomebacterialsymbiontsspecificforE.andrei,responsibleformetabolicpat hwaysleadingtoproductionofM-fluoro-phore.Itisalsopossiblethatbothearthworm-

derivedandbacteria-derivedfactorsmustcoop-

eratetogivethefinalfluorescentproduct,thatiseitheraccumulatedbreakdownproductbeingsign ificantonlyasmolecularbiomarker,ormayhaveunrecognizedyetcrucialbiologicalsignificance.

Onthebasisofourpreviousresultswemayassumethatcoelomocytesarenotthemaincel- lularsourceofM-

fluorophoreinE.andrei,asitsamountcamebackrapidlytotheinitiallevelafterexperimentalexpulsionof coelomicfluid[13,19].ThismakesM-fluorescenceareliablemolecularmarkerfortrackingtheM- positivityamongspecimensofE.andrei/E.fetidacom-

plex,butothertechniquesshallbeusedtoshowconclusivelyitspresenceinvariousearthwormcelltype sliningcoelomiccavityand/orother(bacterial?)sources.

Conclusion

(17)

AsymmetricalhybridizationbetweenEaandEfresultedinbi-

directionalgeneflowresultingintwophenomenarecognizedinourlaboratory.First,Ef- likebodypigmentationpatternappearedinposteriorbodysegmentsofhybrids,bothEf-andEa- derived;second,Ea-specificM-

fluorophorewastransferredtomajorityofhybridsandsomeEfearthworms.Thechemi- calnatureandbiologicalsignificanceofthisfluorophoreisstillanopenquestion,butits

(18)

fluorescencespectraarereliablemarkersfortrackingthegeneflowbetweenE.andreiandE.fetid a.IfM-

fluorophoreisgeneticallycontrolledbyhypotheticalgeneofEiseniasp.withthedominantMallele,th ensuchallelemaybeinheritedbyEa-derivedhybridfromM-

positiveEaparent,andthentransferredduringmatingwithM-negativeEfearthwormintosome E.fetidaandsomeEf-derivedhybrids.Evenone‘atypical’M-

positiveEfmightpropagatethisallelebycrossingwith‘typical’M-

negativeEf.Viceversa,inculturesofM-positiveEfearthwormsmightreappear‘typical’M- negativespecimens.However,hypothesisofthemicrobialoriginofF-

fluorescencederivedfromE.andreispecificbacterialsymbiontscannotbeneglected.Moreover, boththeintrinsicandexternalfactorsmightcooperatetoproducetheM-

fluorophore.TheexistenceofEaandEfhybridizationmakethesecommonspecieseasilymaintaine dinlaboratorytheattractivemodelsforstudiesoninterspeciesgeneflow,inter-

specifictransmissionofbacterialsymbionts,andhypotheticaleffectsofexternalfactorsonthesep henomena.

Supportinginformation

S1Fig.Hypotheticalgenotypesoftheoffspringofself-fertilizinghybrid(aAFMm)earth- worm.a)SchemeofaAFMmparentalcell,gametes(ova,spermatozoa)andzygotes;b)Punnettsquar e.Shadowedpartsofpart‘a’andcrossedoutpartsofpart‘b’indicatemitochon-drial-

nuclearconflicts.Framedgenotypeswereabsentamonginvestigatedearthworms.Assumptionistha tM-

fluorescencemightbeencoded/controlledbythenucleargenewiththedominant‘M’alleleandther ecessive‘m’allelesegregatingindependentlyfromthenuclearA/Fsequencesof28srRNAgene.T he‘MM’and‘Mm/mM’determinestheM-positive(Mp)phe-

notype(inorange)while‘mm’genotypedeterminestheM-

negative(Mn)phenotype(inblue).Punnettsquareisadaptedtopairsofhermaphroditicearthwor msabletoself-

fertilization;ovainyellow,spermatozoaingreen.Ineachpairthefirstalleleisthatofmaternalorigin.

Framedgenotypeswereapparentlyabsentamonginvestigatedearthworms.Ovaandresultedoffspri ngwithmito-nuclearincompatibilityarecrossedout.

(TIF)

Acknowledgments

ManythankstoDr.SebastianHofmanforphylogrampreparation.

AuthorContributions

Concept ualization:BarbaraPlytycz.Formala nalysis:BarbaraPlytycz.

Investigation:BarbaraPlytycz,JanuszBigaj,TomaszPanz.

Methodology:BarbaraPlytycz.

Projectadministration:BarbaraPlytycz.

Supervision:BarbaraPlytycz.Validation:

TomaszPanz,PawełGrzmil.

Writing–originaldraft:BarbaraPlytycz.

(19)

Writing–review&editing:BarbaraPlytycz.

(20)

References

1. BundyJG,SpurgeonDJ,SvendsenC,HankardPK,OsbornD,LindonJC,etal.Earthwormspeciesofthegen usEiseniabephenotypicallydifferentiatedbymetabolicprofiling.FEBSLetters.2002;521:115–

120.https:/ / doi.org/10.1 0 16/S0014- 5 793(02)0 2 854- 5 PMID :12067738

2. RoratA,VandenbulckeF,GałuszkaA,KlimekB,PlytyczB.Protectiveroleofmetallothioneinduringregen erationinEiseniaandreiexposedtocadmium.CompBiochemPhysiolCToxicolPharmacol.2017;203:3 9–50.https://doi.o r g/10.10 1 6/j.cbpc.20 1 7.10.00 2 PMID :29038073

3. Dvořa´kJ,Manč´ıkova´V,PizˇlV,Elhottova´D,Silerova´M,Roubalova

´R,etal.MicrobialenvironmentaffectsinnateimmunityintwocloselyrelatedearthwormspeciesEisenia andreiandEiseniafetida.PLoSOne.2013Nov1;8(11):e79257.https://do i .org/10.13 7 1/journal. p one.

007925 7 PMID: 24223917

4. TakacsV,MolnarL,KlimekB,GaluszkaA,MorganAJ,PlytyczB.ExposureofEiseniaandrei(Oligo- chaeta;Lumbricidea)tocadmiumpollutedsoilinhibitsearthwormmaturationandreproductionbutnotrestor ationofexperimentallydepletedcoelomocytesorregenerationofamputatedsegments.FoliaBiol(Krakow).

2016;64(4):275–284.https://doi. o rg/10.3409/fb 6 4_4.275 5. SwiderskaB,Kedracka-

KrokS,PanzT,MorganAJ,FalniowskiA,GrzmilP,PlytyczB.Lyseninfamilyproteinsinearthwormcoelomoc ytes–Comparativeapproach.DevCompImmunol.2017;67:404–

412.https://doi.o r g/10.10 1 6/j.dci.20 1 6.08.01 1 PMID :27567 6 02

6. Dom´ınguezJ,VelandoA&FerreiroA.AreEiseniafetida(Savigny,1986)andEiseniaandreiBouche(1972) (Oligochaeta,Lumbricidae)differentbiologicalspecies?Pedobiologia.2005;49,81–

87.https:// doi.org/10.1 0 16/j.pedobi.2 0 04.08.0 0 5 7. Pe´rez-LosadaM,EiroaJ,MatoS,Dom

´ınguezJ.PhylogeneticspeciesdelimitationoftheearthwormsEiseniafetida(Savigny,1826)andEiseniaa ndreiBouche

´,1972(Oligochaeta,Lumbricidae)basedonmitochondrialandnuclearDNAsequences.Pedobiologia.200 5;39:317–323.https://doi.o r g/10.10 1 6/ j.pedobi.20 0 5.02.004

8. OtomoPV,vanVuurenBJ,ReineckeSA.UsefulnessofDNAbarcodinginecotoxicologicalinvestiga- tions:resolvingtaxonomicuncertaintiesusingEiseniaMalm1877asanexample.BullEnvironContamToxic ol.2009;82:261–263.https://doi.o r g/10.10 0 7/s0012 8 -008-9585- 4 PMID :18949437

9. Ro¨mbkeJ,AiraM,BackeljauT,BreugelmansK,DominguezJ,FunkeE,etal.DNAbarcodingofearth- worms(Eiseniafetida/andreicomplex)from28ecotoxicologicaltestlaboratories.AppliedSoilEcology.201 6;104,3–11.https://dx . doi.org/10.1 0 16/j.apso i l.2015.02.0 1 0

10. RoratA,Kachamakova-TrojanowskaN,JozkowiczA,KrukJ,CocquerelleC,VandenbulckeF,etal.

Coelomocyte-

derivedfluorescenceandDNAmarkersofcompostingearthwormspecies.J.Exp.Zool.AEcol.Genet.Phys iol.2014;321:8–30.PMID:241154 0 5

11. AlbaniJR,DemuynckS,GrumiauxF,LeprêtreA.FluorescencefingerprintsofEiseniafetidaandEise- niaandrei.Photochem.Photobiol.2003;78:599–602.PMID:14743869

12. SantockiM,FalniowskiA,PlytyczB.Restorationofexperimentallydepletedcoelomocytesinjuvenileanda dultcompostingearthwormsEiseniaandrei,E.fetidaandDendrobaenaveneta.Appl.SoilEcol.2015;103:

163–173.https://doi.o r g/10.10 1 6/j.apsoil. 2 015.08.022

13. SantockiM,MorganAJandBlytyczB.Differentialtimecourseofrestorationofexperimentallydepletedcoelo mocytesandfluorophoresintheearthwormEiseniaandrei.FoliaBiol.(Krakow),2016;63:121–

130.https://d o i.org/10.340 9 /fb64_2. 1 21

14. DiazCosinDJ,NovoM,FernandezR.Reproductionofearthworms:sexualselectionandparthenogen- esis.In:BiologyofEarthworms(KaracaAeditor).SoilBiology.2011;23.Springer-VerlagBerlinHeidel- berg,p.69–86.

15. DominguezJ,VelandoA,AiraM,MonroyF.UniparentalreproductionofEiseniafetidaandE.andrei(Oligoc haeta:Lumbricidae):evidenceofself-insemination.Pedobiologia.2003;37:530–

533.https:// doi.org/10.1 0 78/0031-40 5 6-00224

16. SatoM,SatoK.MaternalinheritanceofmitochondrialDNAbydiversemechanismstoeliminatepater- nalmitochondrialDNA.Biochim.Biophys.Acta.2013;1833:1979–

1983.https:/ / doi.org/10.1 0 16/j. bbamcr.2 0 13.03.0 1 0 PMID :23524114

17. LuoS-M,SchattenH,SunQ-Y.Spermmitochondriaandreproduction:goodorbadandwheredotheygo?

J.GeneticsGenomics.2013;30:539–556.

18. PlytyczB,BigajJ,OsikowskiA,HofmanS,FalniowskiA,PanzT,etal.Theexistenceoffertilehybridsofclosel yrelatedmodelearthwormspecies,EiseniaandreiandE.fetida.PLoSONE.2018;13(1):e0191711.https:/

/ doi.org/10.1 3 71/journal. p one.01 9 171 1 PMID :29370 2 38

19. PlytyczB,MorganAJ.Unexpectedresultsandopenquestionsfromexperimentsonregenerationinlumb ricidworms.Inv.SurvivalJ.2016;13:315–325.http:// w ww.isj.un i mo.it/artico l i/ISJ441. p df

(21)

20. HoekstraLA,SiddiqMA,MontoothKL.Pleiotropiceffectsofamitochondrial-

nuclearincompatibilitydependupontheacceleratingeffectoftemperatureinDrosophila.Genetics.201 3;195:1129–39.https://doi.o r g/10.15 3 4/genetics. 1 13.154 9 1 4 PMID :24026098

21. MaH,MartiGutierrezN,MoreyR,VanDykenC,KangE,HayamaT,etal.Incompatibilitybetweennuclear andmitochondrialgenomescontributestoaninterspeciesreproductivebarrier.CellMetab.2016;23:28 3–93.https://doi.o r g/10.10 1 6/j.cmet.201 6 .06.01 2 PMID :27425585

22. ZhangC.,MontoothKL,CalviBR.Incompatibilitybetweenmitochondrialandnucleargenomesduringooge nesisresultsinovarianfailureandembryoniclethality.Development.2017;133:2390–

2503.https://doi.o r g/10.12 4 2/dev.15 1 95 1 PMID :28576772

23. SheppardPS.SpecificdifferencesincocoonandhatchlingproductioninEiseniafetidaandE.andrei.

In:EdwardsCA,NeuhauserEF(Editors),EarthwormsinWasteandEnvironmentalManagement.SPB ,;TheHague,1988;p83–92.

24. ElviraC,DominguezJ,BrionesMJ.GrowthandreproductionofEiseniaandreiandE.fetida(Oligo- chaeta,Lumbricidae)indifferentorganicresidues.Pedobiologia.1996;30:377–383.

25. ReineckeAJ,ViljoenSA.AcomparisonofthebiologyofEiseniafetidaandEiseniaandrei(Oligo- chaeta).Biol.Fertil.Soil.1991;11:295–300.https://doi.o r g/10.1007 / BF00335851

26. HadjmohamadiMR,ChaichiMJ,BiparvaP,AlizadehK.Determinationofaliphaticaminesusingfluores- cenceintensityof4-methylumbelliferone.SpectrochimicaActa.2008;PartA,70:358–

361.https:/ / doi. org/10.1016 / j.saa.2007 . 10.02 9 PMID :180634 0 6

27. HuXL,GaoC,XuZ,LiuML,FengLS,ZhangGD.Recentdevelopmentofcoumarinderivativesaspotential antiplasmodialandantimalarialagents.CurrTopMedChem.2018;18(2):114–

123.https:// doi.org/10.2 1 74/15680266 1 8666171 2 1510115 8 PMID :2924357 9 Review.

28. HuXL,XuZ,LiuML,FengLS,ZhangGD.Recentdevelopmentsofcoumarinhybridsasanti- fungalagents.CurrTopMedChem.2017;17(29):3219–3231.https://doi.o r g/10.21 7 4/

1568026618 6 66171 2 1510032 6 PMID :29243 5 77

29. KeriRS,SasidharBS,NagarajaBM,SantosMA.Recentprogressinthedrugdevelopmentofcoumarinderiva tivesaspotentantituberculosisagents.EurJMedChem.2015;100:257–

69.https://doi.o r g/10. 1016/j.ej m ech.201 5 .06.01 7 PMID :26112 0 67

30. ThackerSM,GriceGR,MilliganPE,GageBF.Dosinganticoagulanttherapywithcoumarindrugs:isgenot ypingclinicallyuseful?Yes.JThrombHaemost.2008;6(9):1445–9.PMID:18627440

31. ThakurA,SinglaR,JaitakV.Coumarinsasanticanceragents:areviewonsyntheticstrategies,mecha- nismofactionandSARstudies.EurJMedChem.2015;101:476–

95.https://doi.o r g/10.10 1 6/j.ejmech. 2015.07 . 01 0 PMID :26188907

32. RochfortS,WyattMA,LiebekeM,SouthamADViantMR,BundyJG.Aromaticmetabolitesfromthecoelo micfluidofEiseniaearthwormspecies.EuropeanJournalofSoilBiology.2017;78:17–

19.https://doi.o r g/10.10 1 6/j.ejsobi . 2016.11.008 33. NohSJ,LeeJM,LeeKS,HongHS,LeeCK,ChoIH,etal.SP-

8203showsneuroprotectiveeffectsandimprovescognitiveimpairmentinischemicbraininjurythroughNM DAreceptor.PharmacolBiochemBehav.2011Nov;100(1):73–

80.https://doi.o r g/10.10 1 6/j.pbb.201 1 .07.01 8 PMID :21835 1 92 34. NohSJ,LeeSH,ShinKY,LeeCK,ChoIH,KimHS,SuhYH.SP-

8203reducesoxidativestressviaSODactivityandbehavioraldeficitincerebralischemia.PharmacolBioche mBehav.2011;98(1):150–4.https://doi. o rg/10.1016/j. p bb.201 0 .12.01 4 PMID :21172 3 84

35. KjeldsenKU,BataillonT,PinelN,DeMitaS,LundMB,PanitzF,etal.Purifyingselectionandmolecularadaptati oninthegenomeofVerminephrobacter,theheritablesymbioticbacteriaofearthworms.GenomeBiolEvol.2 012;3:307–15.https:/ / doi.org/10.1 0 93/gbe/ e vs01 4 PMID :22333491

36. DavidsonSK,PowellR,JamesS.Aglobalsurveyofthebacteriawithinearthwormnephridia.Mol.Phy- logenet.Evol.2013;67:188–200https: / /doi.org/10.1 0 16/j.ympe v .2012.12 . 00 5 PMID :23268186 37. LundMB,DavidsonSK,HolmstrupM,JamesS,KjeldsenKU,StahlDA,etal.Diversityandhostspeci-

ficityoftheVerminephrobacter-earthwormsymbiosis.EnvironMicrobiol.2010Aug;12(8):2142–

51.PMID:21966 9 09

38. DavidsonSK,PowellRJ,StahlDA.TransmissionofabacterialconsortiuminEiseniafetidaeggcap- sules.EnvironMicrobiol.2010Aug;12(8):2277–88.PMID:21966919

39. VianaF,PazLC,MethlingK,DamgaardCF,LalkM,SchrammA,etal.Distincteffectsofthenephridialsymbion tsVerminephrobacterandCandidatusNephrothrixonreproductionandmaturationofitsearth-

wormhostEiseniaandrei.FEMSMicrobiolEcol.2018Feb1;94(2).https://doi.o r g/10.10 9 3/femsec/ fix178P MID:29272384

Cytaty

Powiązane dokumenty

Distribution of genotype and allele frequency of SERT-P polymorphism in the constipation patients and controls.. the disease and the L/S heterozygous polymorphism similarly

However, when the jump tests of soccer player and control groups were assessed according to ACTN3 R577X gene polymorphism distribution, it was found that RR-gen- otyped

In the present study, we attempted to identify single nucleotide polymorphisms (SNPs) related to obesity and physical fitness, and then conducted comparative analysis on interactions

The aim of the present laboratory investigation was to test whether asymmetrical hybridiza- tion between Ea and Ef earthworms, partner-induced self-fertilization, and lack of

Lysenin family proteins were identi fied based on unique peptides sequenced by tandem mass spectrometry cou- pled with liquid chromatography (LC-MS/MS) in lumbricid earth- worms

Stressed earthworms expel coelomic fluid con- taining several vital cellular and soluble compo- nents, thus their post-stress recovery has adaptive value. Numbers of amoebocytes

Although interspecific hybridization in the genus Solidago is considered to be relatively common (Nesom 1993), proper identification of the parentage for the hybrid individuals

by in vitro stimulated isolated coelomocytes, ex vivo (when coelomocytes were isolated from in vivo treated earthworms but released ETs in culture conditions) and most importantly