• Nie Znaleziono Wyników

BU931R

N/A
N/A
Protected

Academic year: 2022

Share "BU931R"

Copied!
5
0
0

Pełen tekst

(1)

^ 7 # MDOF8® ilLlim®®]D©S BU932R/RP/RPFI

NPN POWER DARLINGTON

■ AUTOMOTIVE MARKET

■ HIGH PERFORMANCE ELECTRONIC IGNITION DARLINGTON

■ HIGH RUGGEDNESS

DESCRIPTION

These devices are multiepitaxial biplanar NPN transistors in monolithic darlington configuration mounted in TO-3, SOT-93 and ISOWATT218 packages. They are specially intended for automo­

tive ignition applications and invertes circuits for mo­

tor controls. Controlled performances in the linear region make them particularly suitable for car igni­

tions where current limiting is achieved desaturing the darlington.

ABSO LU TE M AXIM UM RATING S

Symbol

Parameter Value

TO-3 Unit SOT-93 ISOWATT218

BU931R BU931RP BU931RPFI

BU932R BU932RP BU932RPFI

VCES Collector-emitter Voltage (Vbe = 0) 450 500 V

v CEO Collector-emitter Voltage (IBe = 0) 400 450 V

VEBO Emitter-base Voltage (lc = 0) 5 V

■c Collector Current 15 A

iCM Collector Peak Current (tp <10 ms) 30 A

>B Base Current 1 A

Ibm Base Peak Current (tp < 10 ms) 5 A

TO-3 SOT-93 ISOWATT218

^tot Total Dissipation at Tq < 25°C 175 125 60 W

Tstg Storage Temperature - 4 0 to 200 - 4 0 to 150 - 4 0 to 150 °C

T j Max. Operating Junction Temperature 200 150 150 °C

October 1988 1/5

(2)

THERM AL DATA

T 0 - 3 S O T - 9 3 IS O W A T T 2 1 8

R t h j- c a s e Thermal Resistance Junction-case Max 1 1 2.08- “C/W

ELECTRICAL CHARACTERISTICS (Tcase = 25 TD unless otherwise specified)

S ym bo l P a r a m e t e r T e s t C o n d iti o n s Min. Typ. Max. Unit

Ices Collector Cutoff Current for B U 9 3 1 R / B U 9 3 1 R P / B U 9 3 1 R P F I

< 03m II O VCE = 450 V 1 mA

Vce = 450 V Tc = 125 °C for B U 9 3 2 R / B U 9 3 2 R P / B U 9 3 2 R P F I

5 mA

VCE = 500 V 1 mA

Vce = 500 V T c = 125°C 5 mA

Iceo Collector Cutoff Current for B U 9 3 1 R / B U 9 3 1 R P / B U 9 3 1 R P F I

( Ib = 0 ) Vce =400 V

for B U 9 3 2 R / B U 9 3 2 R P / B U 9 3 2 R P F I

1 mA

VCE =450 V 1 mA

Iebo Emitter Cutoff Current

d c = 0 )

<m CD II cn < 50 mA

V c E O ( s u s ) Collector-emitter Sustaining lc = 100 mA

Voltage for B U 9 3 1 R / B U 9 3 1 R P / B U 9 3 1 R P F I 400 V

for B U 9 3 2 R / B U 9 3 2 R P / B U 9 3 2 R P F I 450 V V c E ( s a t ) * Collector-emitter Saturation for B U 9 3 1 R / B U 9 3 1 R P / B U 9 3 1 R P F I

Voltage lc = 7 A Ib = 70 mA 1.05 1.6 V

l c = 8 A lB = 100 mA 1.09 1.8 V

lc = 10 A lB = 250 mA for B U 9 3 2 R / B U 9 3 2 R P / B U 9 3 2 R P F I

1.13 1.8 V

lc = 8 A lB = 150 mA 1.09 1.8 V

V B E ( s a t ) ' Base-emitter Saturation for B U 9 3 2 R 5 B U 9 3 2 R P / B U 9 3 2 R P F I

Voltage lc = 8 A lB = 100 mA 1.75 2.2 V

lc = 10 A lB = 250 mA for B U 9 3 2 R / B U 9 3 2 R P / B U 9 3 2 R P F I

1.92 2.5 V

lc = 8 A lB = 150mA 1.77 2.2 V

h F E * DC Current Gain lc = 5 A VCE = 10 V 300

Vf- Diode Forward Voltage l F = 10 A 1.43 2.8 V

USE TEST (see fig. 2) Vcc = 24 V Vc,amp = 400 V

L = 7 mH 8 A

INDUCTIVE LOAD

S ym bo l P a r a m e t e r T e s t C o n d iti o n s Min. Typ. Max. Unit

ts ti

(see fig. 3) Storage Time Fall Time

Vcc = 12 V Vdamp = 300 V L = 7 mH

lc = 7 A lB = 70 mA VBe = 0 RBe = 47 i l

15 0.5

ps MS

* Pulsed : pulse duration = 300 ps. duty cycle = 1.5 %.

T SGS-THOMSON

^ 7 # RflOCIRm®B7R®IMDeS 25

(3)

Safe Operating Areas. Safe Operating Areas.

DC Current Gain. DC Current Gain.

Collector-emitter Saturation Voltage. Collector-emitter Saturation Voltage.

v C E (sa t) (V )

50 100 150 Iq (mA )

vC E (sat) (V )

1.2

r= T SGS-THOMSON

^ 7 # MffliWilllBTBMlOCS

3/5

(4)

Base-emitter Saturation Voltage. Clamped Reverse Bias Safe Operating Areas (see fig. 4).

Saturated Switching Characteristics (inductive Switching Times Percentage Variation vs. Tcase In­

load) (see fig. 3). ductive Load.

24V

i L =7m H

DRIVER AND CURRENT

LIMITING CIRCUIT

J 0,

100 A

I

77

r ,

25 50 ? 5 100 T c a s ^ 'C )

Figure 2 : Functional Test Waveforms.

* t7 SGS-THOMSON suoasaisusCTfwies 4/5

(5)

Figure 3 : Switching Times Test Circuit.

VD 12V

ISO W ATT 218 PAC KA G E C H A R A C T E ­ RISTICS AND A P P LIC A TIO N

ISOWATT218 is fully isolated to 4000 V dc. Its ther­

mal impedance, given in the data sheet, is optimi­

sed to give efficient thermal conduction together with excellent electrical isolation.

The structure of the case ensures optimum dis­

tances between the pins and heatsink. These dis­

tances are in agreement with VDE and UL creepage and clearance standards. The ISOWATT218 package eliminates the need for external isolation so reducing fixing hardware.

The package is supplied with leads longer than the standard TO-218 to allow easy mounting on pcbs.

Accurate moulding techniques used in manufacture assures consistent heat spreader-to-heatsink capa­

citance.

ISOWATT218 thermal performance is better than that of the standard part, mounted with a 0.1 mm mica washer. The thermally conductive plastic has a higher breakdown rating and is less fragile than mica or plastic sheets. Power derating for ISO- WATT218 packages is determined by :

Tj - T c Pd= -

Rth

Figure 4 : Clamped Es/b Test Circuit.

40 V

Test conditions : 2 Ibi > I - Ib2 I > >bi

5 V > | - Vbb I > 0 tp = adjusted for nominal lc

Ic/Ib = 40 Rbb = 1 £2

TH E R M A L IM PED AN C E OF ISO W ATT 218 PAC KA G E

Fig. 5 illustrates the elements contributing to the thermal resistance of transistor heatsink assembly, using ISOWATT218 package.

The total thermal resistance Rth(tot) is the sum of each of these elements.

The transient thermal impedance, Zth for different pulse durations can be estimated as follows : 1. for a short duration power pulse less than 1 ms ;

Zth < RthJ-C

2. for an intermediate power pulse of 5 ms to 50 ms ; Zth = RthJ-C

3. for long power pulses of the order of 500 ms or greater:

Zth = RthJ-C + RthC-HS + RthHS-amb It is often possible to discern these areas on tran­

sient thermal impedance curves.

Figure 5

R thJ-C R thC-HS RthHS-amb

- A M r A W A A / W

^ 7

SGS-THOMSON raiCiBOHilCTMK*

5/5

Cytaty

Powiązane dokumenty

Figure 8 provides numerical results of deflection and maximum temperature versus voltage for the range from 0 to 45 V, for both the U-beam and V-beam thermal actuation

At the window facing south (Fig. The maximum value is slightly lower in comparison with that created at the east oriented window when reaches 0.859 m 4 /s 3 at nine o’clock in

Thermal regime of the sleeper subgrade is defined as a course o f thermal changes of individual construction layers and soil in the sleeper which are caused by solar

W artyku- le zaproponowano wykorzystanie tego typu modeli do prognozowania miesięcznego zużycia gazu w kotłowni pracującej na potrzeby ogrzewania i przygotowania ciepłej

Graphs 10, 11, 12 and 13 give thé comparison between test points and predicted results of the peak pressure in time domain The correction of added mass is determined by

DESIGN AND VERIFICATION OF THE CHIP THERMAL MODEL: THE ASSESSMENT OF A POWER MODULES.. RESISTANCE TO HIGH

Ale, zakładając przy każdej sposobności nam iętn y pro test przeciw ko w szelkim form om ucisku człowieka przez człowieka, burzył się W olter zarazem przeciw ko

Volgens hen kristal- liseren alle gashydraten in een van de twee kubische strukturen I en II, waarin de gastmolekulen zich bevinden in holten die gevormd worden door een netwerk van