• Nie Znaleziono Wyników

Simulation of the taste receptor process in the blowfly

N/A
N/A
Protected

Academic year: 2021

Share "Simulation of the taste receptor process in the blowfly"

Copied!
6
0
0

Pełen tekst

(1)

SUWLATION OF THE TASTE RECEPTOR PROCESS I N THE BLOV/FLY F . J . P a s v e e r A U T H O R ' - , N A M t Department o f H y b r i d C o m p u t a t i o n U n i v e r s i t y o f Technology D e l t f , Tne N e t h e r l a n d s . \ f r I L I A ! I O N S J . H . v . d . M o l e n J . J . d e Kramer Z o o l o g i c a l L a b o r a t o r y Department o f A n i m a l P h y s i o l o g y S t a t e U n i v e r s i t y o f L e i d e n L e i d e n , The N e t h e r l a n d s . 1C f-i C t M E

N

T O F I F X 1 _ -pore > ^ / .axon to CNS / -dendrite célltxxiy where

tipchamt>er

^ spikes are generated

B i o l o g i c a l f a c t s and h y p o t h e s e s f o r m t h e b a s i s o f a model o f t h e t a s t e r e c e p t o r p r o c e s s . The e f f e c t o f s e v e r a l p a r a m e t e r s , v h i c h can n o t ( e a s i l y ) be examined i n b i o l o g i c a l e x p e r i m e n t s , i s s t u d i e d w i t h t h e m o d e l . F o r purposes o f j u s t i f i c a t i o n r e s i i l t s f r o m b i o l o g i c a l e x p e r i m e n t s a r e a v a i l a b l e . :

1, INTRODUCTION

Aim o f our s t u d y i s t h e c o n s t r u c t i o n o f a model o f t h e t a s t e r e c e p t o r p r o c e s s o f an i n s e c t , c o n s i s t i n g o f t h e c h a i n o f e v e n t s between a c t i v a t i o n w i t h t a s t e substance and g e n e r a t i o n o f a c t i o n p o t e n t i a l s . The f o l l o w i n g ( i s o l a t e d ) processes are taken as p r i n c i p a l u n i t s o f m o d e l l i n g : 1) d i f f u s i o n o f t a s t e substance t h r o u g h a p o r e i n t o t h e t i p chamber; 2 ) c h e m i c a l r e a c t i o n i n t i p chamber; 3) g e n e r a t i o n o f a c t i o n p o t e n t i a l s . The d i f f u s i o n e q u a t i o n i s s o l v e d by t h e d i s c r e t e space c o n t i n u o u s t i m e (DSCT) m e t h o d , d e l i v e r i n g a c o n t i n u o u s f o r c i n g f u n c t i o n o f t i m e f o r t h e s t i m u l u s r e c e p t o r p r o t e i n i n t e r a c t i o n , v/hich i s assumed t o be a s i m p l e c h e m i c a l e q u i l i b r i u m r e a c t i o n , Tlie r a t e o f c h e m i c a l r e a c t i o n i n f o r w a r d d i r e c t i o n c o n t r o l s t h e t i m e i n t e r v a l between s u c c e s s i v e a c t i o n p o t e n t i a l s . A sequence o f a c t i o n p o t e n t i a l s i s c h a r a c t e r i s e d b y i t s f i r i n g f r e q u e n c y c u r v e , e x p r e s s i n g t h e c e l l ' s a c t i v i t y w i t h t i m e . From b i o l o g i c a l e x p e r i j n e n t s f i r i n g f r e q u e n c y curves are a v a i l a b l e o f s t i m u l a t i o n s w i t h v a r i o u s t a s t e substances and d i f f e r e n t c o n c e n t r a t i o n s . These curves f o r m a q u a l i t a t i v e i n d i c a t i o n f o r r e a l i b i l i t y o f t h e m o d e l . Some o f model parameters have t o be e s t i m a t e d on base o f m o r p h o l o g i c a l d a t a . Others are chosen on base o f p h y s i o l o g i c a l e x p e r i m e n t s .

I n t e r a c t i v e o p e r a t i o n w i t h t h e model on a r e a l t i m e base a l l o w s immediate v i s u a l i n s p e c t i o n o f t h e e f f e c t o f parameter s e t t i n g s and changes.

2 , BRIEF BIOLOGICAL ELUCIDATION

F l i e s can d i s c r i m i n a t e between t a s t e s u b s t a n c e s w i t h t a s t e h a i r s on t h e i r l e g s , A t a s t e substance d i f f u s e s t h r o u g h a p o r e w i t h v a r i a b l e i n t e r s e c t i o n i n t o t h e t i p chamber w h e r e , as a r u l e U d e n d r i t e s end, Tlie t a s t e s u b s t a n c e l o a v e s t h e t i p chamber a l o n g t h e e x t r a c e l l u l a i r space o f t h e d e n d r i t e c o n t a i n i n g lumen ( D C L ) .

A schematic diagram o f a t a s t e h a i r i s shown i n f i g u r e 1, F i g u r e 1 : Schematic d i a g r a m o f a t a s t e h a i r . I n t h e model p r e s e n t e d t h e a c t i v i t y o f o n l y one s e n s o r y c e l l i s c o n s i d e r e d . Only a t t h e t i p o f a d e n d r i t e a c h e m i c a l r e a c t i o n between r e c e p t o r p r o t e i n s and s t i m u l u s m o l e c u l e s t a k e s p l a c e and s t i m u l u s r e c e p t o r complexes are f o r m e d . As a r e s u l t o f t h e complex f o r m a t i o n an e l e c t r i c a l l y e x c i t a b l e membrane a t t h e base o f t h e d e n d r i t e n e a r t h e c e l l body i s f o r c e d t o g e n e r a t e a c t i o n p o t e n t i a l s . I n each s e n s o r y c e l l a sequence o f a c t i o n p o t e n t i a l s , c a l l e d s p i k e t r a i n , i s g e n e r a t e d upon s t i m u l a t i o n . S p i k e t r a i n s , encoded messages about k i n d and

c o n c e n t r a t i o n o f t a s t e s u b s t a n c e , a r e t r a n s m i t t e d t o t h e C e n t r a l Nervous System (CMS), There t h e encoded messages o f many d i f f e r e n t sense c e l l s are i n t e r p r e t e d . The t i m e c o u r s e o f a s p i k e t r a i n can be g r a p h i c a l l y r e p r e s e n t e d b y i t s i n s t a n t a n e o u s f i r i n g f r e q u e n c y c u r v e . I n t h i s c u r v e t h e r e c i p r o k e o f t h e t i m e d i s t a n c e between t w o s u c c e s s i v e s p i k e s i s p l o t t e d a g a i n s t t i m e . From l a b o r a t o r y e x p e r i m e n t s w i t h s t i m u l a t e d t a s t e h a i r s we a r e a b l e t o r e t r i e v e f i r i n g f r e q u e n c y curves by adequate measurement p r o c e d u r e s f o l l o v r e d b y computer a n a l y s i s [ 1] ,

A sample o f a s p i k e t r a i n and a computed f i r i n g f r e q u e n c y c u r v e i s shown i n f i g u r e 2 ,

(2)

SIMULATION OF THE TASTE RECEPTOR PROCESS I N THE BLOWFLY.

o r T E X 1

F i g u r e 2 : Sample o f s p i k e t r a i n and f i r i n g f r e q u e n c y c u r v e .

3. MODELLING OF THE PROCESSES

For each o f t h e processes c o n s i d e r e d , t h e t h e o r e t i c a l b a c k g r o u n d , e x p e r i m e n t a l evidence and assumptions are s t a t e d s e p a r a t e l y .

3 . 1 D i f f u s i o n i n t o t i p chamber. t h e o r y :

d i f f u s i o n e q u a t i o n (DSCT approach) e x p e r i m e n t a l e v i d e n c e ;

geometry o f p o r e and t i p chamber * ) l e n g t h o f p o r e 0.5 pra

d i a m e t e r o f p o r e 0.15 um volume t i p chamber 0 , 0 0 2 ym3

d i a m e t e r o f e x t r a d e n d r i t i c a l space near t o p 0 . 1 um a s s u m p t i o n s : one d i m e n s i o n a l d i f f u s i o n e q u a t i o n no a c t i v e m i x i n g no i n t e r a c t i o n w i t h edges o f p o r e d i f f u s i o n p a r a m e t e r i s c o n s t a n t ( t h o u g h p e r m a n e n t l y a d j u s t a b l e ) * ) F . M . v . d.Vfolk. p e r s coram. Z o o l o g i c a l L a b o r a t o r y , Department o f /miraal P h y s i o l o g y , S t a t e U n i v e r s i t y o f L e i d e n , L e i d e n , The N e t h e r l a n d s .

J^oin t h e one 'dimensional d i f f u s i o n e q u a t i o n 3c 3t = D 2 = c ( x , t ) c c o n c e n t r a t i o n ; D d i f f u s i o n c o n s t a n t , i h e d i f f e r e n c e e q u a t i o n f o r t h e i - t h s e c t i o n c e n t r a l d i f f e r e n c e ) i s 0 e . ( t ) = ^ { c . _ , ( t ) - 2 . c . ( t ) + c i + , ( t ) } w i t h i = 1 , 2 , . , , n n number o f compai'tnents Ax = l / n 1 l e n g t h o f p o r e D u r i n g s t i m u l a t i o n t h e i n p u t t o t h e f i r s t compartment i s c o n s t a n t , because t h e s t i m u l u s f l u i d can be c o n s i d e r e d t o be f r o m an i n f i n i t e r e s e r v o i r . C o n s e q u e n t l y , f o r t h e l a s t

compartment Cj^^-) i s needed, w l i i c h i s t h e unknown c o n c e n t r a t i o n i n t h e t i p chamber. T h i s

c o n c e n t r a t i o n i s f o u n d by t a k i n g i n t o a c c o u n t t h e r a t e o f f l o w f r o m t h e p o r e and t h e e f f e c t o f leakage o f t a s t e substance f r o m t h e t i p cliamber i n t o t h e DCL, f i g u r e 1. That i s . -D ( 3c 3x w i t h Y p r o p o r t i o n a l i t y c o n s t a n t t o d i s c o u n t e f f e c t o f l e a k a g e , Cj^Q c o n c e n t r a t i o n i n t i p chamber, p a r t i a l d e r i v a t i v e t a k e n a t x = l . A f t e r m u l t i p l i c a t i o n b y t h e i n t e r s e c t i o n a r e a A o f t h e p o r e (no d i s t r i b u t i o n o f f l o w a l o n g t h e a r e a ) and i n t e g r a t i n g w i t h r e s p e c t t o t i m e , we w i l l f i n d t h e t i m e c o u r s e o f c o n c e n t r a t i o n i n t h e t i p chamber a f t e r d i v i s i o n b y i t s volume V. Tliat i s . c t c ( t ) = V - 1 . 3c ^ A . ( - D . ^ K^

) -

Y C ^ ^ } d x Remark t h a t a t t h i s s t a g e t h e a s s u m p t i o n has been made t h a t p r o p a g a t i o n o f t a s t e s u b s t a n c e i n t h e t i p chamber o c c u r s i m m e d i a t e l y . The p a r t i a l d e r i v a t i v e i n t h e above i n t e g r a n d i e a p p r o x i m a t e d by i t s backward d i f f e r e n c e . A n a l o g i m p l e m e n t a t i o n o f t h e d i f f u s i o n e q u a t i o n and f l o w i n t o t h e t i p chamber i s d e p i c t e d i n f i g u r e 3.

(3)

r:o'.lMENCEHENT

O E T E X T .

SIllULATION OF THE TASTE EECEFTOR PROCESS I H THE BLOV/FLY

-F i g u r e 3; D i f f u s i o n t h r o u g h p o r e , f l o w i n t o t i p chamber. 3,2 Chemical r e a c t i o n e q u a t i o n . t h e o r y : k i n e t i c s o f c h e m i c a l r e a c t i o n s [ 2 ] e x p e r i m e n t a l e v i d e n c e :

e s t i m a t e s o f [ S] and [ CS] (see b e l o w ) based upon b i o c h e m i c a l e x p e r i m e n t s ,

e s t i m a t e s o f k i and k2 (see b e l o w ) i n such a way t h a t maximal s p i k e a c t i v i t y occm-s 20 t o 100 msec a f t e r t h e onset o f s t i m u l a t i o n , a s s u m p t i o n : t h e c h e m i c a l r e a c t i o n i s assumed t o be a s i m p l e e q u i l i b r i u m r e a c t i o n . The e q u i l i b r i u m r e a c t i o n t : i I C] + [ S ] . ^ ( CS] [ ] denotes c o n c e n t r a t i o n C O i M M E M C E M E N T O F T E X T _ [ S] + [ CS] = K e q u a t i o n 3 . 2 , 1 , I .where K i s t h e i n i t i a l c o n c e n t r a t i o n o f ^unoccupied s i t e s . Because t h e r e a c t i o n p a r a m e t e r s have t o be [ a d j u s t a b l e , t h e r e a c t i o n e q u a t i o n has been i m p l e m e n t e d w i t h r e s p e c t t o t h i s f e a t u r e . O m i t t i n g d e t a i l s l i k e s c a l i n g and a l l o w a n c e f o r ranges o f K , k^ and k2 t h e s i m p l i f i e d a n a l o g scheme becomes as shown i n f i g u r e l l .

[ C S ] F i g u r e k: S i m p l i f i e d scheme o f c h e m i c a l r e a c t i o n . w i t h : [ C] ( c h e m i c a l ) i n p u t c o n c e n t r a t i o n [ S ] ( s i t e s ) c o n c e n t r a t i o n o f f r e e r e c e p t o r p r o t e i n s [ OS] c o n c e n t r a t i o n o f f o r m e d complex

Parameters k-] and k2 are t h e f o r w a r d r e s p . r e v e r s e r e a c t i o n c o n s t a n t s . The r e a c t i o n e q u a t i o n i s t r a n s l a t e d i n t o a f i r s t o r d e r d i f f e r e n t i a l e q u a t i o n b y i - [ C S ] = k i , [ c ] , [ S ] - k 2 , [ C S ] ( 3 , 2 , 1 ) ctt d e s c r i b i n g t h e r a t e o f change o f t h e p r o c e s s w i t h r e f e r e n c e t o t h e amount o f f o r m e d CS. The sum o f [ S] and [ CS] remains c o n s t a n t d u r i n g t h e r e a c t i o n . I n i t i a l l y a l l s i t e s are u n o c c u p i e d . Tlie r e a c t i o n r e s u l t s i n t o a n e t r a t e o f complex f o r m a t i o n , w h i c h i s assumed t o c o n t r o l s p i k e g e n e r a t i o n . The s e t o f e q u a t i o n s t o be s o l v e d i s : 3 . 3 S p i k e g e n e r a t i o n . t h e o r y : none e x p e r i m e n t a l e v i d e n c e :

s p i k e f r e q u e n c y may v a r y between 0 and kOO Hz, a s s u m p t i o n :

s p i k e f r e q u e n c y i s assumed t o depend l i n e a r l y on t h e r a t e o f complex f o r m a t i o n [ 2] ,

The e x a c t mechanism o f s p i k e g e n e r a t i o n a t t h e base o f t h e d e n d r i t e near t h e c e l l body i s s t i l l s u b j e c t o f b i o l o g i c a l r e s e a r c h .

A c c o r d i n g t o Heck and E r i c k s o n [ 2] , i t i s l i k e l y t o assume t h a t s p i k e f r e q u e n c y ( i n t h i s c o n t e x t : r e c i p r o k e o f t i m e d i s t a n c e ) i s p r o p o r t i o n a l t o t h e r a t o o f complex f o r m a t i o n

(4)

( ; M H E M C E l V 1 E M 7 O E T E X 1

SIMULATION OF THE TA3TE RECEPTOR PROCESS I N THE BLOVrFXY"

. C O M M E I - J C E M E M T OE T E X T _

l i t t h e " t i p o f "the d e n a r i t e , " i g n o r i n g t h e p r o c e s s ( e s ) between t i p o f d e n d r i t e and c e l l body, The consequence o f t h e above m e n t i o n e d a s s u m p t i o n i s t h a t t h e t i m e f u n c t i o n o f t h e r a t e o f complex f o r m a t i o n i n t h e model w i l l s u f f i c e f o r comparison w i t h computed f i r i n g f r e q u e n c y curves f r o m b i o l o g i c a l e x p e r i m e n t s ( 1] . N e v e r t h e l e s s , we i n c l u d e d a s e c t i o n f o r s p i k e g e n e r a t i o n t o r e a l l y v i e w what s p i k e t r a i n i s g e n e r a t e d b y t h e m o d e l . F o r t h i s reason a v o l t a g e c o n t r o l l e d o s c i l l a t o r f o l l o w e d by some l o g i c has beed i n c l u d e d . See f i g u r e 5, W i t h t h e a i d o f a u n i v i b r a t o r t h e p u l s e w i d t h has been f i x e d a t 1 msec , a c c o r d i n g t o measurements. The " l o g i c s p i k e s " are

t r a n s f o r m e d i n t o a n a l o g v o l t a g e s t o show them

on a scope d u r i n g s i m u l a t i o n r u n s , j

spikes

F i g u r e 6 b : T i m i n g d i a g r a m c f f i g u r e 6 a.

F i g u r e 5: A r t i f i c i a l s p i k e g e n e r a t o r .

It, FIRING FREQUENCY CURVE

Under c o n t r o l o f t h e e n t i r e m o d e l l i n g t h e f i r i n g f r e q u e n c y curve i s d i s p l a y e d on a BCOpo , T h i s f e a t u r e i n v o l v e s some a n a l o g equipment t o g e t h e r w i t h d i g i t a l g u a r d t o p r e v e n t component o v e r f l o w and t o m a i n t a i n t h e v e r t i c a l s c a l e o f t h e curve f o r ease o f r e f e r e n c e . F i g u r e 6 shows t h e p r i n c i p l e t o g e t h e r w i t h a s i m p l i f i e d t i m i n g d i a g r a m . D u r i n g a s p i k e i n t e g r a t o r 12 i s s w i t c h e d t o h o l d mode f o r scope d i s p l a y , f o l l o w e d by I C mode. A l s o , d u r i n g a s p i k e i n t e g r a t o r I I computes t h e c o r r e c t s t a r t v a l u e o f 12 i n o r d e r t o measure t h e t r u e d i s t a n c e i n t i m e between two s p i k e s . The f i n a l v e r t i c a l s c a l e i s g o v e r n e d b y t h e speed c o e f f i c i e n t a and t h e dynami.c range o f f r e q u e n c y c o e f f i c i e n t S. To p r e v e n t o v e r f l o w o f t h e d i v i d e r d u r i n g IC r e a d i n g o f 12 a s w i t c h S has been i n s e r t e d , D u r i n g h o l d mode o f 1 2 , t h e i n s t a n t a n e o u s f i r i n g f r e q u e n c y i s t h e n known, t h e scope i s u n b l a n k e d . T h i s r e s u l t s i n t o a p o i n t p l o t o f t h e f i r i n g f r e q u e n c y c u r v e . Because t h e s p i k e f r e q u e n c y may v a r y o v e r a w i d e range a s e p a r a t e d i g i t a l p r o g r a m i s needed t o scan t h e o u t p u t o f i n t e g r a t o r 12 f o r c o r r e c t i o n o f a and f o r m a t c h i n g o f B t o m a i n t a i n t h e v e r t i c a l s c a l e . 5. RESULTS IN t h e p r e s e n t a t i o n o f r e s u l t s t h e f o l l o w i n g p a r a m e t e r v a l u e s have been used ( u n l e s s o t h e r w i s e i n d i c a t e d ) . D P i n t C k l k2 K Y 22.5 y m ^ / s e c 100

i

1 100 3 10" 30 ( m o l . s e c s e c - 1 M pm/ sec d i f f u s i o n c o n s t a n t , p o r e i n t e r s e c t i o n a r e a ( b a s e d upon 0.15 ym d i a m e t e r ) , s t i m u l u s c o n c e n t r a t i o n , f o r w a r d r a t e c o n s t a n t , r e v e r s e r a t e c o n s t a n t , c o n c e n t r a t i o n o f s i t e s , l e a k a g e c o n s t a n t . F i g u r e 6 a: Measurement o f f i r i n g f r e q u e n c y .

(5)

u;^/i^.lENCEME^^T O F T E X T

!

SIMULATION OF THE TASTE RECEPTOR PROCESS I N THE

BLOV/FLY-F i g u r e ^ shows t h e r e s u l t o f a model e x p e r i m e n t , t h a t cannot he c a r r i e d o u t i n a b i o l o g i c a l s e t u p . F i r i n g f r e q u e n c y curves are d i s p l a y e d i n dependence o f pore i n t e r s e c t i o n . r Q B ! f t ' , F N r „ ' ^ f , ' i F M T nt- T F X T F i g u r e 8 b shows a s i m u l a t e d e q u i v a l e n t . t i m o (s] F i g u r e 7 : F i r i n g f r e q u e n c y curves i n dependence o f pore i n t e r s e c t i o n , % loo-(«I» «fea ^ 200. fifino llB, 100-F i g u r e 8 b : S i m u l a t i o n w i t h s u d d e n l y i n c r e a s i n g pore i n t e r s e c t i o n . The e f f e c t o f v a r i a t i o n o f t h e r a t e c o n s t a n t s i s p a r t i c u l a r l y e x e r t e d on t h e s t e a d y s t a t e f i r i n g f r e q u e n c y . The shape o f t h e dose-response curves i s s t r o n g l y i n f l u e n c e d b y a l t e r e d k2 v a l u e s as shown i n f i g u r e 9 a.

The o v e r a l l resemblance o f t h e curves w i t h t h e one shown i n f i g u r e 2 i s o b v i o u s . F i g u r e 8 a shows t h e e f f e c t o f an a o c i d e . n t a l i n c r e a s e o f pore i n t e r s e c t i o n d u r i n g p r e s e n t a t i o n o f t a s t e substance i n a b i o l o g i c a l e x p e r i m e n t . Spike f r e q u e n c y changes i m m e d i a t e l y w i t h i n c r e a s e o f pore i n t e r s e c t i o n (see a r r o w ) . concentration (M) ^ F i g u r e 8 a; B i o l o g i c a l measurement o f s p i k e t r a i n w i t h suddenly i n c r e a s i n g pore i n t e r s e c t i o n (see a r r o w ) . F i g u r e 9 a: Model dose-response c T i r v e s , O r d i n a t e : s t e a d y s t a t e f i r i n g f r e q u e n c y ( f „ ) , A b c i s : c o n c e n t r a t i o n ( d o s e ) o f s t i m u l u s .

(6)

S I M U L A T I O N O F T H E T A S T E R E C E P T O R P R O C E S S I N T H E B L O W F L Y -C O M M E M -C E M E K ' T OE T E X T . The S-shape o f t h e ^ c u r v e s c o i n c i d e s v e r y w e i r w i t h t h e b i o l o g i c a l l y d e t e r m i n e d d o s e - r e s p o n s e c u r v e s ; see f i g u r e 9 b a f t e r S h i r a i s h i and M i y a c h i [ 3 ] .

A. Shiriishi and N. Miyachi

. - . C O M M E N C '7':'= R E F E R E N C E S [ 1 ] M o l e n .J . N .v a n d e r . e t a l . , P e a k - d i s c r i m i n a t o r - c o n t r o l l e d s a m p l i n g o f m u l t i - u n i t s p i k e t r a i n s , r e d u c i n g s t o r a g e r e q u i r e m e n t s . Med.S: B i o l . eng.S; c o m p u t . , I 9 7 8 , v o l I6 pp 561)-568. [ 2 ] G e r a l d L.Heck and R o b e r t P . E r i c k s o n , , A Rate Theory o f G u s t a t o r y S t i m u l a t i o n . 1 9 7 3 , B e h a v . B i o l . 8 : 6 8 7 - 7 1 2 . [ 3 ] S h i r a i s h i e t a l . , I 9 7 6 . The p e r i p h e r a l i n h i b i t i o n o f t h e t a r s a l sugar r e c e p t o r by sodium c h l o r i d e i n t h e p r o b o s c i s e x t e n s i o n response o f t h e b l o w f l y , phomria reaina M,

J .C o m p . P h y s i o l .A .1 1 0 : 9 7 - 1 0 9 . HOIAR COHCENTRATfON F i g u r e 9 b ; B i o l o g i c a l l y d e t e r m i n e d dose-response c u r v e s . 6 . D I S C U S S I O N From t h e f i g u r e s p r e s e n t e d i n t h e r e s u l t s e c t i o n i t i s o b v i o u s t h a t a s t r o n g resemblance between model and s e n s o r y c e l l a c t i v i t y can be a c h i e v e d . However, a t t h e moment no e x a c t judgment can be passed on what e x t e n t model p a r a m e t e r v a l u e s c o r r e s p o n d w i t h t h o s e f r o m e x p e r i m e n t s w i t h v a r i o u s t a s t e s u b s t a n c e s . From a b i o l o g i c a l p o i n t o f v i e w o b j e c t i o n s may a r i s e a g a i n s t t h e a p p l i e d mechanism o f s p i k e g e n e r a t i o n . B u t , up t o now, no r e a l a l t e r n a t i v e i s a v a i l a b l e , s i n c e t h e p r o c e s s ( e s ) between t i p and base o f t h e d e n d r i t e are s t i l l s u b j e c t o f b i o l o g i c a l r e s e a r c h . A n o t h e r p o i n t o f d i s c u s s i o n i s t h e f a c t t h a t t h e model p r e s e n t e d i s e x c l u s i v e l y d e t e r m i n i s t i c . As we know, i n sense o r g a n s , s t o c h a s t i c p r o c e s s e s p l a y a r o l e as w e l l , i n d i c a t e d by t h e f a c t t h a t s p i k e i n t e r v a l s are n o t c o m p l e t e l y p r e d i c t a b l e . F i n a l l y , t h e c h e m i c a l p r o c e s s i s p r e s e n t e d as b e i n g c o n t i n u o u s . B u t t h e number o f r e c e p t o r p r o t e i n s a t t h e t i p o f t h e d e n d r i t e i s l i m i t e d and d i s c r e t e . F u r t h e r r e s e a r c h w i l l be o r i e n t e d t o w a r d s : - v a l i d a t i o n and r e f i n e m e n t o f p a r a m e t e r v a l u e s - d i f f u s i o n l i k e f l o w f r o m t i p chamber i n t o t h e e x t r a d e n d r i t i c a l space - no c o n t i n u o u s s t i m u l u s - r e c e p t o r i n t e r a c t i o n - i m j ï l e m e n t a t i o n o f e l e c t r o g e n i c s p i k e g e n e r a t i o n , mechanism a c c o r d i n g t o modern v e r s i o n s o f H o d g k i n - H u x l e y e q u a t i o n s .

Cytaty

Powiązane dokumenty

The simulation of deep-drawing process has been carried out for a deep- drawing DC06 BZE 75/75PHOL steel with thickness of 0.85 mm.. Experimental material has been

A zapoczątkowane Aktem 5 listopada umiędzynarodowienie sprawy polskiej doprowa- dziło w rezultacie do powstania, po klęsce państw zaborczych, nie- podległego państwa

Z analizy matematycznej danych uzyskanych w wielu badaniach klinicznych wynika, że przetwory owsiane per se zmniejszają stężenie cholesterolu całkowitego w osoczu (Ripsin i in.,

Using a chemical analysis device called an hplc (High Pressure Liquid Chromatograph) to determine the flavour concentration inside the tomato, a relationship can be

Zakładając dalej, że polityka innowacji jest częścią polityki przemysłowej, część wspólna polityki innowacji z polityką ochrony środowiska stworzy politykę in-

By including the kinetics of enzyme production together with the in vivo parameters estimated for the different enzymatic reactions, the kinetic model could describe the

In the first part of paper the theoretical considerations are presented, while in the second one the example of simulation are presented (solidification of Al-Si alloy is

In this paper the finite element method is used for the numerical simulation of two dimensional transient bioheat transfer process in the human eye.. The human eye