• Nie Znaleziono Wyników

Mass-imbalanced mixtures of several ultra-cold fermions in one-dimensional traps

N/A
N/A
Protected

Academic year: 2021

Share "Mass-imbalanced mixtures of several ultra-cold fermions in one-dimensional traps"

Copied!
36
0
0

Pełen tekst

(1)

Tomasz Sowiński

Institute of Physics of the Polish Academy of Sciences

Mass-imbalanced mixtures

of several ultra-cold fermions

in one-dimensional traps

FEW-BODY PROBLEMS THEORY GROUP

FEW-BODY PROBLEMS THEORY GROUP

(2)

FEW-BODY PROBLEMS THEORY GROUP FEW-BODY PROBLEMS THEORY GROUP FEW-BODY PROBLEMS THEORY GROUP

the group

PostDocs

Marcin Płodzień

Elnaz Darsheshda

PhD Students

Daniel Pęcak

Jacek Dobrzyniecki

?? (open 2017)

?? (open 2018)

Mentors (distinguished professors)

FEW-BODY PROBLEMS THEORY GROUP

(3)

FEW-BODY PROBLEMS THEORY GROUP

(4)

FEW-BODY PROBLEMS THEORY GROUP FEW-BODY PROBLEMS THEORY GROUP FEW-BODY PROBLEMS THEORY GROUP

motivation

6

Li

Atomic number (Z) 3

Nucleons (Z+N) 6

Total electronic spin (S) 1/2 Total nuclear spin (I) 1

Hyperfine states (F=S+I) 1/2 or 3/2

| "i = |F = 3/2, mF = 3/2i

| #i = |F = 1/2, mF = 1/2i

message from experiments

• two flavors of spinless fermions

• well controlled number of particles

• one-dimensional confinement

• strong interactions between flavors

…what for???

• extreme control on the system

• extreme precision of measurements

• from ’one' to 'many' crossover

(5)

FEW-BODY PROBLEMS THEORY GROUP FEW-BODY PROBLEMS THEORY GROUP FEW-BODY PROBLEMS THEORY GROUP

motivation

6

Li

Atomic number (Z) 3

Nucleons (Z+N) 6

Total electronic spin (S) 1/2 Total nuclear spin (I) 1

Hyperfine states (F=S+I) 1/2 or 3/2

| "i = |F = 3/2, mF = 3/2i

| #i = |F = 1/2, mF = 1/2i

message from experiments

• two flavors of spinless fermions

• well controlled number of particles

• one-dimensional confinement

• strong interactions between flavors

…what for???

• extreme control on the system

• extreme precision of measurements

• from ’one' to 'many' crossover

m " /m # 6= 1

(6)

FEW-BODY PROBLEMS THEORY GROUP

message from experiments

Figure from S. Jochim’s group paper

(7)

FEW-BODY PROBLEMS THEORY GROUP

the model

(anti-)commutation relations

n (x), ˆˆ (x0)o

= (x x0) n (x), ˆˆ (x0)o

= 0

h ˆ"(x), ˆ #(x0)i

= 0 h ˆ

"(x), ˆ #(x0)i

= 0

• the same spins • opposite spins

two distinguishable flavors of fermions (↑ and ↓)

both flavors may have different masses

both flavors confined in one-dimensional trap

opposite spins do interact via sort range δ-like potential

H = ˆ X Z

dx ˆ

(x)

 ~

2

2m

d

2

dx

2

+ V (x) ˆ (x)

+ g

Z

dx ˆ

#

(x) ˆ

"

(x) ˆ

"

(x) ˆ

#

(x)

(8)

FEW-BODY PROBLEMS THEORY GROUP

the model

(anti-)commutation relations

n (x), ˆˆ (x0)o

= (x x0) n (x), ˆˆ (x0)o

= 0

h ˆ"(x), ˆ #(x0)i

= 0 h ˆ

"(x), ˆ #(x0)i

= 0

• the same spins • opposite spins

H = ˆ X Z

dx ˆ

(x)

 ~

2

2m

d

2

dx

2

+ V (x) ˆ (x)

+ g

Z

dx ˆ

#

(x) ˆ

"

(x) ˆ

"

(x) ˆ

#

(x)

numerical method

(9)

FEW-BODY PROBLEMS THEORY GROUP

the model

(anti-)commutation relations

n (x), ˆˆ (x0)o

= (x x0) n (x), ˆˆ (x0)o

= 0

h ˆ"(x), ˆ #(x0)i

= 0 h ˆ

"(x), ˆ #(x0)i

= 0

• the same spins • opposite spins

h N ˆ

"

, ˆ H i

= h

N ˆ

#

, ˆ H i

= 0

conservation of the number of fermions

N = ˆ

Z

dx ˆ

(x) ˆ (x)

H = ˆ X Z

dx ˆ

(x)

 ~

2

2m

d

2

dx

2

+ V (x) ˆ (x)

+ g

Z

dx ˆ

#

(x) ˆ

"

(x) ˆ

"

(x) ˆ

#

(x)

numerical method

(10)

FEW-BODY PROBLEMS THEORY GROUP

numerical method

H = ˆ X Z

dx ˆ

(x)

 ~

2

2m

d

2

dx

2

+ V (x) ˆ (x)

+ g

Z

dx ˆ

#

(x) ˆ

"

(x) ˆ

"

(x) ˆ

#

(x)

the model

(11)

FEW-BODY PROBLEMS THEORY GROUP

numerical method

• we fix the number of fermions N and N

• we decompose the field operators in the single-particle basis

(x) = ˆ

X

M

n=1

ˆ

a

n n

(x)

• we calculate all matrix elements of the Hamiltonian

• we perform an exact diagonalization

H = ˆ X Z

dx ˆ

(x)

 ~

2

2m

d

2

dx

2

+ V (x) ˆ (x)

+ g

Z

dx ˆ

#

(x) ˆ

"

(x) ˆ

"

(x) ˆ

#

(x)

~2 2m

d2

dx2 + V (x) n(x) = E i n(x)

the model

(12)

FEW-BODY PROBLEMS THEORY GROUP

N dim(H) #of non-zero

elements sparsity

1 144 10 512 0.51

2 4 356 1 058 580 5.6•10-2 3 48 400 21 835 600 9.3•10-3 4 245 025 159 167 025 2.7•10-3

N

↑=

N

M = 12

numerical complexity

(13)

harmonic

confinement

 ~

2

2m

d

2

dx

2

+ m ⌦

2

2 x

2 n

(x) = E

i n

(x)

Natural units:

Energy : ~⌦

Length :

r ~

m ⌦

FEW-BODY PROBLEMS THEORY GROUP

(14)

FEW-BODY PROBLEMS THEORY GROUP

equal mass system

T. Sowiński, T. Grass, O. Dutta, M. Lewenstein Phys. Rev. A 88 033607 (2013)

(15)

FEW-BODY PROBLEMS THEORY GROUP

equal mass system

0 1

−3 −2 −1 0 1 2 3

g = 0.1

Density

0 1 2

−3 −2 −1 0 1 2 3

Position (osc. u.)

Density

0 1

−3 −2 −1 0 1 2 3

g = 1

0 1 2

−3 −2 −1 0 1 2 3 Position (osc. u.)

0 1

−3 −2 −1 0 1 2 3

g = 10

µ=1

0 1 2

−3 −2 −1 0 1 2 3

Position (osc. u.)

µ=40/6

⇢ (x) = hG| ˆ

(x) ˆ (x) |Gi

E. Lindgren et al.

New J. Phys. 16 063003 (2014)

Single-particle density profile in the ground-state

(16)

FEW-BODY PROBLEMS THEORY GROUP

N

=3

N

=1

different mass fermions

D. Pęcak, M. Gajda, T. Sowiński New J. Phys. 18 013030 (2016)

m

"

/m

#

= 40/6

m

"

/m

#

= 1

(17)

FEW-BODY PROBLEMS THEORY GROUP

different mass fermions

Single-particle density profile in the ground-state

⇢ (x) = hG| ˆ

(x) ˆ (x) |Gi

D. Pęcak, M. Gajda, T. Sowiński New J. Phys. 18 013030 (2016)

0 1

−3 −2 −1 0 1 2 3

g = 0.1

Density

0 1 2

−3 −2 −1 0 1 2 3

Position (osc. u.)

Density

0 1

−3 −2 −1 0 1 2 3

g = 1

0 1 2

−3 −2 −1 0 1 2 3 Position (osc. u.)

0 1

−3 −2 −1 0 1 2 3

g = 10

µ=1

0 1 2

−3 −2 −1 0 1 2 3

Position (osc. u.)

µ=40/6

N

=3

N

=1

(18)

FEW-BODY PROBLEMS THEORY GROUP

D. Pęcak, M. Gajda, T. Sowiński New J. Phys. 18 013030 (2016)

0 0.5 1 1.5

−3 −2 −1 0 1 2 3

N=1 N=2

Density

0 1 2

−3 −2 −1 0 1 2 3

N=2 N=1

Density

0 1 2

−3 −2 −1 0 1 2 3

N=3 N=1

Density

0 1 2

−5−4−3−2−1 0 1 2 3 4 5

N=1 N=9

Position (osc. u.)

Density

0 0.5 1 1.5

−3 −2 −1 0 1 2 3

N=1 N=3

0 1 2

−3 −2 −1 0 1 2 3

N=2 N=2

0 1 2

−3 −2 −1 0 1 2 3

N=3 N=2

0 1 2 3

−5−4−3−2−1 0 1 2 3 4 5

N=5 N=5

Position (osc. u.)

0 0.5 1 1.5

−3 −2 −1 0 1 2 3

N=1 N=4

0 1 2

−3 −2 −1 0 1 2 3

N=2 N=3

0 1 2

−3 −2 −1 0 1 2 3

N=4 N=1

0 1 2 3 4

−3 −2 −1 0 1 2 3

N=9 N=1

Position (osc. u.)

different mass fermions

Separation in the lighter component

(19)

rectangular

box

Natural units:

V (x) =

⇢ 0 if |x| < L

1 if |x| > L,

Energy : ~

2

2

8m L

2

Length : L

FEW-BODY PROBLEMS THEORY GROUP

(20)

FEW-BODY PROBLEMS THEORY GROUP

D. Pęcak, T. Sowiński Phys. Rev. A 94 042118 (2016)

different mass fermions

Separation in the heavier component

Uniform Box

0 0.5 1 1.5

-4 -2 0 2 4

N=1 N=2

Density

0 0.5 1 1.5

-4 -2 0 2 4

N=2 N=1

Density

0 0.5 1 1.5

-4 -2 0 2 4

N=1 N=3

Density

0 0.5 1 1.5

-4 -2 0 2 4

N=1 N=6

Position

Density

0 0.5 1 1.5

-4 -2 0 2 4

N=2 N=2

0 0.5 1 1.5

-4 -2 0 2 4

N=3 N=1

0 0.5 1 1.5

-4 -2 0 2 4

N=1 N=4

0 0.5 1 1.5

-4 -2 0 2 4

N=3 N=4

Position

0 0.5 1 1.5

-4 -2 0 2 4

N=2 N=3

0 0.5 1 1.5

-4 -2 0 2 4

N=3 N=2

0 0.5 1 1.5

-4 -2 0 2 4

N=4 N=1

0 0.5 1 1.5

-4 -2 0 2 4

N=6 N=1

Position

(21)

the transition

V (x, ) =

1

2

m ⌦

2

x

2

if |x| < L

1 if |x| > L,

0 0.2 0.4

-1 -0.5 0 0.5 1 λ = 0

V σ/(m σω2 L2 )

0 0.2 0.4

-1 -0.5 0 0.5 1 λ = 0.5

Position x/L V σ/(m σω2 L2 )

0 0.2 0.4

-1 -0.5 0 0.5 1 λ = 0.25

0 0.2 0.4

-1 -0.5 0 0.5 1 λ = 1

Position x/L

(22)

the transition

V (x, ) =

1

2

m ⌦

2

x

2

if |x| < L

1 if |x| > L,

0 0.2 0.4

-1 -0.5 0 0.5 1 λ = 0

V σ/(m σω2 L2 )

0 0.2 0.4

-1 -0.5 0 0.5 1 λ = 0.5

Position x/L V σ/(m σω2 L2 )

0 0.2 0.4

-1 -0.5 0 0.5 1 λ = 0.25

0 0.2 0.4

-1 -0.5 0 0.5 1 λ = 1

Position x/L 0

0.3 0.6 0.9

-4 -2 0 2 4

Density

µ = 1

0 0.3 0.6 0.9

-4 -2 0 2 4

Density

0 0.3 0.6 0.9

-4 -2 0 2 4

Position

Density

0 0.4 0.8 1.2

-4 -2 0 2 4

λ = 0

µ = 40/6

0 0.3 0.6 0.9

-4 -2 0 2 4

λ = 0.0057

0 0.6 1.2 1.8 2.4

-4 -2 0 2 4

λ = 1

Position

1

0

(23)

FEW-BODY PROBLEMS THEORY GROUP

„order” parameter

0 0.3 0.6 0.9

-4 -2 0 2 4

Density

µ = 1

0 0.3 0.6 0.9

-4 -2 0 2 4

Density

0 0.3 0.6 0.9

-4 -2 0 2 4

Position

Density

0 0.4 0.8 1.2

-4 -2 0 2 4

λ = 0

µ = 40/6

0 0.3 0.6 0.9

-4 -2 0 2 4

λ = 0.0057

0 0.6 1.2 1.8 2.4

-4 -2 0 2 4

λ = 1

Position

0 0.3 0.6 0.9

-4 -2 0 2 4

Density

µ = 1

0 0.3 0.6 0.9

-4 -2 0 2 4

Density

0 0.3 0.6 0.9

-4 -2 0 2 4

Position

Density

0 0.4 0.8 1.2

-4 -2 0 2 4

λ = 0

µ = 40/6

0 0.3 0.6 0.9

-4 -2 0 2 4

λ = 0.0057

0 0.6 1.2 1.8 2.4

-4 -2 0 2 4

λ = 1

Position

(24)

FEW-BODY PROBLEMS THEORY GROUP

„order” parameter

0 0.3 0.6 0.9

-4 -2 0 2 4

Density

µ = 1

0 0.3 0.6 0.9

-4 -2 0 2 4

Density

0 0.3 0.6 0.9

-4 -2 0 2 4

Position

Density

0 0.4 0.8 1.2

-4 -2 0 2 4

λ = 0

µ = 40/6

0 0.3 0.6 0.9

-4 -2 0 2 4

λ = 0.0057

0 0.6 1.2 1.8 2.4

-4 -2 0 2 4

λ = 1

Position

0 0.3 0.6 0.9

-4 -2 0 2 4

Density

µ = 1

0 0.3 0.6 0.9

-4 -2 0 2 4

Density

0 0.3 0.6 0.9

-4 -2 0 2 4

Position

Density

0 0.4 0.8 1.2

-4 -2 0 2 4

λ = 0

µ = 40/6

0 0.3 0.6 0.9

-4 -2 0 2 4

λ = 0.0057

0 0.6 1.2 1.8 2.4

-4 -2 0 2 4

λ = 1

Position

0 1

(25)

FEW-BODY PROBLEMS THEORY GROUP

„order” parameter

M(x) = ⇢

"

(x) ⇢

#

(x)

0 0.3 0.6 0.9

-4 -2 0 2 4

Density

µ = 1

0 0.3 0.6 0.9

-4 -2 0 2 4

Density

0 0.3 0.6 0.9

-4 -2 0 2 4

Position

Density

0 0.4 0.8 1.2

-4 -2 0 2 4

λ = 0

µ = 40/6

0 0.3 0.6 0.9

-4 -2 0 2 4

λ = 0.0057

0 0.6 1.2 1.8 2.4

-4 -2 0 2 4

λ = 1

Position

0 0.3 0.6 0.9

-4 -2 0 2 4

Density

µ = 1

0 0.3 0.6 0.9

-4 -2 0 2 4

Density

0 0.3 0.6 0.9

-4 -2 0 2 4

Position

Density

0 0.4 0.8 1.2

-4 -2 0 2 4

λ = 0

µ = 40/6

0 0.3 0.6 0.9

-4 -2 0 2 4

λ = 0.0057

0 0.6 1.2 1.8 2.4

-4 -2 0 2 4

λ = 1

Position

Magnetization-like distribution

0 1

(26)

FEW-BODY PROBLEMS THEORY GROUP

„order” parameter

M(x) = ⇢

"

(x) ⇢

#

(x)

0 0.3 0.6 0.9

-4 -2 0 2 4

Density

µ = 1

0 0.3 0.6 0.9

-4 -2 0 2 4

Density

0 0.3 0.6 0.9

-4 -2 0 2 4

Position

Density

0 0.4 0.8 1.2

-4 -2 0 2 4

λ = 0

µ = 40/6

0 0.3 0.6 0.9

-4 -2 0 2 4

λ = 0.0057

0 0.6 1.2 1.8 2.4

-4 -2 0 2 4

λ = 1

Position

0 0.3 0.6 0.9

-4 -2 0 2 4

Density

µ = 1

0 0.3 0.6 0.9

-4 -2 0 2 4

Density

0 0.3 0.6 0.9

-4 -2 0 2 4

Position

Density

0 0.4 0.8 1.2

-4 -2 0 2 4

λ = 0

µ = 40/6

0 0.3 0.6 0.9

-4 -2 0 2 4

λ = 0.0057

0 0.6 1.2 1.8 2.4

-4 -2 0 2 4

λ = 1

Position

Magnetization-like distribution

0 1

(27)

FEW-BODY PROBLEMS THEORY GROUP

„order” parameter

M(x) = ⇢

"

(x) ⇢

#

(x)

0 0.3 0.6 0.9

-4 -2 0 2 4

Density

µ = 1

0 0.3 0.6 0.9

-4 -2 0 2 4

Density

0 0.3 0.6 0.9

-4 -2 0 2 4

Position

Density

0 0.4 0.8 1.2

-4 -2 0 2 4

λ = 0

µ = 40/6

0 0.3 0.6 0.9

-4 -2 0 2 4

λ = 0.0057

0 0.6 1.2 1.8 2.4

-4 -2 0 2 4

λ = 1

Position

0 0.3 0.6 0.9

-4 -2 0 2 4

Density

µ = 1

0 0.3 0.6 0.9

-4 -2 0 2 4

Density

0 0.3 0.6 0.9

-4 -2 0 2 4

Position

Density

0 0.4 0.8 1.2

-4 -2 0 2 4

λ = 0

µ = 40/6

0 0.3 0.6 0.9

-4 -2 0 2 4

λ = 0.0057

0 0.6 1.2 1.8 2.4

-4 -2 0 2 4

λ = 1

Position

Magnetization-like distribution

… and its second-moment

=

Z

L

L

dx x

2

M(x)

0 1

(28)

FEW-BODY PROBLEMS THEORY GROUP

„order” parameter

M(x) = ⇢

"

(x) ⇢

#

(x)

0 0.3 0.6 0.9

-4 -2 0 2 4

Density

µ = 1

0 0.3 0.6 0.9

-4 -2 0 2 4

Density

0 0.3 0.6 0.9

-4 -2 0 2 4

Position

Density

0 0.4 0.8 1.2

-4 -2 0 2 4

λ = 0

µ = 40/6

0 0.3 0.6 0.9

-4 -2 0 2 4

λ = 0.0057

0 0.6 1.2 1.8 2.4

-4 -2 0 2 4

λ = 1

Position

0 0.3 0.6 0.9

-4 -2 0 2 4

Density

µ = 1

0 0.3 0.6 0.9

-4 -2 0 2 4

Density

0 0.3 0.6 0.9

-4 -2 0 2 4

Position

Density

0 0.4 0.8 1.2

-4 -2 0 2 4

λ = 0

µ = 40/6

0 0.3 0.6 0.9

-4 -2 0 2 4

λ = 0.0057

0 0.6 1.2 1.8 2.4

-4 -2 0 2 4

λ = 1

Position

Magnetization-like distribution

… and its second-moment

=

Z

L

L

dx x

2

M(x)

g red > g blue

0 1

(29)

FEW-BODY PROBLEMS THEORY GROUP

-10

-7

-4

-1

0.3 0.5 0.7 0.9 1.1

10 2 λ

σ

N =1

N =3

4.0 4.2

4.4 4.6

4.8 5.0

-12

-6

0

6

0.3 0.5 0.7 0.9 1.1

10 2 λ

σ

N =2

N =3

4.0 4.2

4.4 4.6

4.8 5.0

-8

-4

0

4

8

12

0.3 0.42 0.54 0.66

10 2 λ

σ

N =2

N =2

4.0 4.2

4.4 4.6

4.8 5.0

-6

0

6

12

0.3 0.5 0.7 0.9

10 2 λ

σ

N =3

N =2

4.0 4.2

4.4 4.6

4.8 5.0

6

9

12

0.2 0.3 0.4 0.5

10 2 λ

σ

N =3

N =1

4.0 4.2

4.4 4.6

4.8 5.0

-15

-12

-9

-6

-3

0.5 0.7 0.9 1.1

10 2 λ

σ

N =1

N =4

„order” parameter

(30)

FEW-BODY PROBLEMS THEORY GROUP

-10 -7 -4 -1

0.3 0.5 0.7 0.9 1.1 102 λ

σ

N=1 N=3

4.04.2 4.44.6 4.85.0

-12 -6 0 6

0.3 0.5 0.7 0.9 1.1 102 λ

σ

N=2 N=3

4.04.2 4.44.6 4.85.0

-8 -4 0 4 8 12

0.3 0.42 0.54 0.66 102 λ

σ

N=2 N=2

4.04.2 4.44.6 4.85.0

-6 0 6 12

0.3 0.5 0.7 0.9 102 λ

σ

N=3 N=2

4.04.2 4.44.6 4.85.0

6 9 12

0.2 0.3 0.4 0.5 102 λ

σ

N=3 N=1

4.04.2 4.44.6 4.85.0

-15 -12 -9 -6 -3

0.5 0.7 0.9 1.1 102 λ

σ

N=1 N=4

„order” parameter

(31)

FEW-BODY PROBLEMS THEORY GROUP

the susceptibility

( ) = d ( )

d

A response of the order

parameter to changes of the

control parameter

(32)

FEW-BODY PROBLEMS THEORY GROUP

the susceptibility

0 15 30 45 60 75

0.2 0.5 0.8 1.1

χ

4.04.2 4.44.6 4.85.0

0 100 200 300 400

0.45 0.5 0.55 0.6 0.65

χ

4.04.2 4.44.6 4.85.0

0 30 60 90

0.2 0.3 0.4 0.5 0.6

102 λ

χ

4.04.2 4.44.6 4.85.0

0 2 4 6

-8 -6 -4 -2 0

g χ

λc = 0.0097 γ = 0.53 ν = 0.39

4.04.2 4.44.6 4.85.0

0 0.03 0.06 0.09 0.12

-120 -60 0 60 120

g χ

λc = 0.0054 γ = 0.23 ν = 0.05

4.04.2 4.44.6 4.85.0

0 1 2 3 4

-20 0 20 40 60 80

g1/γ τ

g χ

λc = 0.0029 γ = 0.33 ν = 0.17

4.04.2 4.44.6 4.85.0

-10 -7 -4 -1

-8 -6 -4 -2 0

σ N =3, N =1

γ = 0.53 λc = 0.0097

4.04.2 4.44.6 4.85.0

-8 -4 0 4 8 12

-120 -60 0 60 120

σ N =2, N =2

γ = 0.23 λc = 0.0054

4.04.2 4.44.6 4.85.0

6 9 12

-20 0 20 40 60 80

g1/γ τ

σ N =1, N =3

γ = 0.29 λc = 0.0033

4.04.2 4.44.6 4.85.0

N=3 N=1N=2 N=2N=1 N=3

( ) = d ( )

d

A response of the order

parameter to changes of the

control parameter

(33)

FEW-BODY PROBLEMS THEORY GROUP

the hypothesis

In the limit of infinitely strong

interactions the system undergoes

a non-analytic transition

between the two orderings.

The transition is driven

by an adiabatic change

of the external confinement.

(34)

FEW-BODY PROBLEMS THEORY GROUP

scaling hypothesis

(⌧, g) = g /⌫ ˜(g 1/⌫ ⌧ )

⌧ =

c

c

c

Critical shape of the trap

Dimensionless distance to the critical point

Scaling ansatz

There exists an appropriate choice of critical

exponents for which all numerical data points

form the unique universal curve

(35)

FEW-BODY PROBLEMS THEORY GROUP

finite-size scaling

(⌧, g) = g

/⌫

˜(g

1/⌫

⌧ )

(36)

FEW-BODY PROBLEMS THEORY GROUP

conclusions

The system:

1. of a few fermions of different masses

2. in the limit of infinitely strong repulsions

3. in a one-dimensional confinement

undergoes

a non-analytic transition between the

two orderings of the density profile

D. Pęcak, M. Gajda, T. Sowiński New J. Phys. 18 013030 (2016)

D. Pęcak, T. Sowiński Phys. Rev. A 94 042118 (2016) T. Sowiński, T. Grass, O. Dutta, M. Lewenstein

Phys. Rev. A 88 033607 (2013) D. Pęcak, M. Gajda, T. Sowiński

ArXiv:1703.08116

Cytaty

Powiązane dokumenty

For example, if one would combine recent progress in preparing spin-imbalanced few-fermion systems [28] with the recently achieved development in measuring correlations between

Intercomponent correlations in attractive one-dimensional mass-imbalanced few-body mixtures Daniel Pecak ˛ and Tomasz Sowi´nski Institute of Physics, Polish Academy of Sciences,

For non- solvable models the construction of the many-body wave function, beyond the mean-field approach, can be done within the interpolatory ansatz [14, 15] or in the frame- work

(f) Evolution for particular attraction g = −1.8 at which another few-body eigenstates of the Hamiltonian contribute to the dynamics of the initial state.. An acceleration of

MANY-BODY PROBLEM.. standard commutation

was born in Torun (Poland) 9650 km North from Cape Town.. units). N &#34;

to prepare experiments with a few ultra-cold atoms effectively confined in a one-dimensional harmonic trap..

Dust radiative transfer models are presented for 225 carbon stars and 171 oxygen-rich evolved stars in several Local Group galaxies for which spectra from the Infrared Spectrograph