• Nie Znaleziono Wyników

Generalization of some extremal problems on non-overlapping domains with free poles

N/A
N/A
Protected

Academic year: 2021

Share "Generalization of some extremal problems on non-overlapping domains with free poles"

Copied!
12
0
0

Pełen tekst

(1)

U N I V E R S I T A T I S M A R I A E C U R I E - S K Ł O D O W S K A L U B L I N – P O L O N I A

VOL. LXVII, NO. 1, 2013 SECTIO A 11–22

IRYNA V. DENEGA

Generalization of some extremal problems on non-overlapping domains with free poles

Abstract. Some results related to extremal problems with free poles on radial systems are generalized. They are obtained by applying the known methods of geometric function theory of complex variable. Sufficiently good numerical results for γ are obtained.

1. Introduction. In geometric function theory of complex variable ex- tremal problems on non-overlapping domains form the well-known clas- sic direction. In the paper [1] Lavrent’ev posed and solved a problem of maximizing the product of conformal radii of two non-overlapping simply connected domains. Topics connected with the study of problems on non- overlapping domains was developed in papers [1]–[21]. This paper summa- rizes some results obtained in [5], [2].

Let N, R be the set of natural and real numbers, respectively, C be the complex plane, C = C ∪ {∞} be the one point compactification and R+= (0, ∞).

Let r(B, a) be an inner radius of a domain B ⊂ C with respect to a point a ∈ B (see [6], [13], [3]) and χ(t) = 12(t + t−1).

Let n ∈ N. A set of points An :=ak∈ C : k = 1, n is called n-radial system if |ak| ∈ R+, k = 1, n, and 0 = arg a1 < arg a2< . . . < arg an< 2π.

2010 Mathematics Subject Classification. 30C75.

Key words and phrases. Extremal problems on non-overlapping domains, inner radius, n-radial system of points, separating transformation.

(2)

Denote

Pk(An) := {w : arg ak < arg w < arg ak+1}, θk:= arg ak, an+1:= a1, θn+1:= 2π, αk:= 1

πargak+1

ak , αn+1:= α1, k = 1, n.

This work is based on application of separating transformation developed in [4]–[6]. For specific use of this method we consider a special system of conformal mappings. By ζ = πk(w) = −i e−iθkw 1

αk, k = 1, n we denote unique branch of multi-valued analytic function πk(w) performing univalent and conformal mapping Pk(An) onto the right half plane Re ζ > 0.

For an arbitrary n-radial system of points An = {ak} and γ ∈ R+ we assume that

L(γ)(An) :=

n

Y

k=1

 χ



ak ak+1

1 2αk

1−12γα2k

·

n

Y

k=1

|ak|1+14γ(αkk−1),

L(0)(An) :=

n

Y

k=1

 χ



ak ak+1

1 2αk



· |ak|.

The class of n-radial systems of points for which L(γ)(An) = 1 (L(0)(An) = 1) automatically includes all systems with n different points located on the unit circle.

The main purpose of this work is to obtain exact upper estimates for the functionals

(1) Jn(γ) = rγ(B0, 0)

n

Y

k=1

r (Bk, ak) ,

In(γ) = [r (B0, 0) r (B, ∞)]γ

n

Y

k=1

r (Bk, ak) ,

where γ ∈ R+, An = {ak}nk=1 is n-radial system of points, a0 = 0, and {Bk}nk=0 is a system of non-overlapping domains (i.e. Bp∩ Bj = ∅ if p 6= j) such that ak∈ Bk, k = 0, n.

2. Main results.

Theorem 1. Let n ∈ N, n ≥ 2 and γ ∈ (0, 1]. Then for any n-radial system of points An = {ak}nk=1 such that L(γ)(An) = 1 and any system of non-overlapping domains Bk, ak ∈ Bk⊂ C, k = 1, n, a0= 0 ∈ B0 we have the inequality

(2) Jn(γ) ≤ 4n+nγγγnnn (n2− γ)n+nγ

 n −√ γ n +√

γ

2 γ

.

(3)

Equality in (2) is achieved when ak and Bk, k = 0, n are, respectively, poles and circular domains of the quadratic differential

Q(w)dw2 = −(n2− γ)wn+ γ w2(wn− 1)2 dw2.

Theorem 2. Let n ∈ N, n ≥ 2 and γ = 12. Then for any n-radial system of points An = {ak}nk=1 such that L(0)(An) = 1 and any system of non- overlapping domains Bk, B0, B, ak∈ Bk ⊂ C, k = 1, n, a0 = 0 ∈ B0 ⊂ C, a= ∞ ∈ B⊂ C we have the inequality

(3) [r (B0, 0) r (B, ∞)]12

n

Y

k=1

r (Bk, ak) ≤ 22n+n1 (n2− 2)n1+n2

n −√ 2 n +√

2

!

2

. Equality in (3) is achieved, when ak and Bk are, respectively, poles and circular domains of the quadratic differential

Q(w)dw2 = −w2n+ wn(2n2− 2) + 1 w2(wn− 1)2 dw2.

Theorem 3. Let γ ∈ (0; γ20], γ20 = 1.1, ε = 0.25. Then for any 2-radial system of points A2= {ak}2k=1 such that L(γ)(A2) = 1, 1 − ε < |ak| < 1 + ε, k = 1, 2 and any system of non-overlapping domains {Bk}2k=0, ak ∈ Bk, k = 0, 2, a0 = 0 ∈ B0, we have the inequality

rγ(B0, 0)

2

Y

k=1

r(Bk, ak) ≤ rγ(D0, 0)

2

Y

k=1

r (Dk, dk) ,

where Dk, dk, k = 0, 2, d0 = 0, are circular domains and poles of the quadratic differential

Q(w)dw2 = −(4 − γ)w2+ γ w2(w2− 1)2 dw2.

Proof of Theorem 1. We use the method due to Bakhtin [2]–[3] and prop- erties of separating transformation (see [4]–[7], [3], [8]). We make separating transformation of domains {Bk}nk=1. Suppose

Pk:= Pk(An) := {w ∈ C\{0} : θk< arg w < θk+1}.

Consider the introduced system of functions ζ = πk(w) = −i e−iθkw 1

αk, k = 1, n.

Let Ω(1)k , k = 1, n be a domain of the plane Cζ obtained by combining the connected component πk(BkT Pk) containing a point πk(ak), with its symmetrical reflection with respect to the imaginary axis.

By Ω(2)k , k = 1, n, we denote the domain of the plane Cζ, obtained by combining the connected component πk(Bk+1T Pk), containing the point

(4)

πk(ak+1), with its symmetrical reflection with respect to the imaginary axis, Bn+1 := B1, πn(an+1) := πn(a1).

Besides, by Ω(0)k we denote the domain of Cζ, obtained by combining the connected component πk(B0T Pk), containing the point ζ = 0, with its symmetrical reflection with respect to the imaginary axis. Denote πk(ak) :

= ωk(1), πk(ak+1) := ωk(2), k = 1, n, πn(an+1) := ω(2)n . The definition of πk implies that

k(w) − ω(1)k | ∼ 1

αk|ak|αk1 −1· |w − ak|, w → ak, w ∈ Pk,

k(w) − ωk(2)| ∼ 1 αk

|ak+1|αk1 −1· |w − ak+1|, w → ak+1, w ∈ Pk,

k(w)| ∼ |w|

1

αk, w → 0, w ∈ Pk.

Then, using results of papers [4]–[7], [3], we obtain the inequalities

(4) r (Bk, ak) ≤

 r

(1)k , ωk(1)

· r

(2)k , ωk(2)

1

αk|ak|αk1 −1·α1

k−1|ak|

1 αk−1−1

1 2

,

k = 1, n, Ω(2)0 := Ω(2)n , ω0(2) := ωn(2),

(5) r (B0, 0) ≤

" n Y

k=1

rα2k

 Ω(0)k , 0



#1

2

.

Repeating arguments given in [3] in the proof of Theorem 5.2.1 and taking into account introduced sets of domains {Pk}nk=1, functions {πk}nk=1 and numbers {θk}nk=1, we obtain the following inequality for the investigated functional (1):

(6)

Jn(γ) ≤

n

Y

k=1

h r

 Ω(0)k , 0

i

α2k 2 γ

·

n

Y

k=1

 r



(2)k−1, ω(2)k−1

 r



(1)k , ω(1)k



1 αk−1·αk|ak|

1 αk−1−1

· |ak|αk1 −1

1 2

=

n

Y

k=1

αk·

n

Y

k=1

|ak|

|akak+1|2αk1

×

" n Y

k=1

rγα2k

(0)k , 0Yn

k=1

r

(1)k , ωk(1) r

(2)k , ω(2)k 

#12 . Expression in parentheses of the last formula in (6) is a product of the func- tional rβ2



(0)k , 0 r

(1)k , ωk(1) r

(2)k , ωk(2)

on triples of domains

 Ω(0)k , Ω(1)k , Ω(2)k 

of the plane Cζ.

(5)

It is known [15] that the functional

Y31, σ2, σ3) = rσ1(D1, d1) · rσ2(D2, d2) · rσ3(D3, d3)

|d1− d2|σ12−σ3· |d1− d3|σ1−σ23· |d2− d3|−σ123, σk ∈ R+, dk ∈ Dk ⊂ C, Dk∩ Dp = ∅, k = 1, 2, 3, p = 1, 2, 3, k 6= p, is invariant under all conformal automorphisms of the complex plane C.

With this relation in mind, the following estimate holds:

Jn(γ) ≤

n

Y

k=1

αk

!

·

n

Y

k=1

|ak|

|akak+1|

1 2αk

×

n

Y

k=1

rγα2k

 Ω(0)k , 0



· r

(1)k , ωk(1)



· r

(2)k , ωk(2)



k(1)· ω(2)k |γα2k(1)k − ωk(2)|2−γα2k

1 2

×

" n Y

k=1

(1)k · ωk(2)|γα2kk(1)− ω(2)k |2−γα2k

#12 .

Note that |ω(1)k | = |ak|

1

αk, |ωk(2)| = |ak+1|

1

αk, |ωk(1) − ωk(2)| = |ak|

1 αk +

|ak+1|

1 αk.

Taking into account these equalities, we obtain Jn(γ) ≤

n

Y

k=1

αk

!

·

n

Y

k=1

|ak|

|akak+1|

1 2αk

×

n

Y

k=1

k(1)− ωk(2)|

! n Y

k=1

k(1)· ω(2)k |

k(1)− ω(2)k |

!

γα2k 2

×

n

Y

k=1

rγα2k

(0)k , 0

· r

(1)k , ω(1)k 

· r

(2)k , ωk(2)

k(1)· ωk(2)|γα2k(1)k − ω(2)k |2−γα2k

1 2

= 2n·

n

Y

k=1

αk

!

·

n

Y

k=1

χ

ak ak+1

1 2αk

!

|ak|

× 2

γ 2

n

P

k=1

αk

" n Y

k=1

χ

ak ak+1

1 2αk

!#

γα2k

2 n

Y

k=1

ak+1 ak

!

γα2k 2

×

n

Y

k=1

rγα2k

 Ω(0)k , 0



· r

(1)k , ω(1)k



· r

(2)k , ωk(2)



k(1)· ωk(2)|γα2k(1)k − ω(2)k |2−γα2k

1 2

(6)

= 2

n−γ2

n

P

k=1

α2k

·

n

Y

k=1

αk

!

·

n

Y

k=1

 χ



ak

ak+1

1 2αk

1−γα22k

×

n

Y

k=1

|ak|1+14γ(αkk−1)

×

n

Y

k=1

rγα2k

 Ω(0)k , 0



· r

(1)k , ωk(1)



· r

(2)k , ω(2)k



(1)k · ωk(2)|γα2kk(1)− ωk(2)|2−γα2k

1 2

= 2

n−γ2

n

P

k=1

α2k

·

n

Y

k=1

αk

!

· L(γ)(An)

×

n

Y

k=1

rγα2k

(0)k , 0

· r

(1)k , ωk(1)

· r

(2)k , ω(2)k 

(1)k · ωk(2)|γα2kk(1)− ωk(2)|2−γα2k

1 2

.

For each k =1, n we can easily define conformal automorphism ζ = Tk(z) of complex numbers of the plane C such that Tk(0) = 0, Tk

 ω(s)k



= (−1)s· i, G(q)k := Tk

(q)k



, k =1, n, s = 1, 2, q = 0, 1, 2.

Then

n

Y

k=1

rγα2k

(0)k , 0

· r

(1)k , ω(1)k 

· r

(2)k , ωk(2)

k(1)· ω(2)k |γα2k(1)k − ωk(2)|2−γα2k

1 2

=

n

Y

k=1

rα2kγ

 G(0)k , 0



· r

G(1)k , −i



· r G(2)k , i

 22−γα2k

1 2

.

Then using results of [3], [15], we obtain

Jn(γ) ≤ 2

n−γ2

n

P

k=1

α2k

·

n

Y

k=1

αk

!

· L(γ)(An)

×

n

Y

k=1

 rα2kγ

G(0)k , 0

· r

G(1)k , −i

· r

G(2)k , i 22−γα2k

1 2

= 2n−

γ 2

n

P

k=1

α2k n

Y

k=1

αk

!

· L(γ)(An) · 2

−n+γ

2 n

P

k=1

α2k

(7)

×

" n Y

k=1

rα2kγ

 G(0)k , 0



· r

G(1)k , −i



· r G(2)k , i



#1

2

n

Y

k=1

αk

!

· L(γ)(An) ·

" n Y

k=1

rα2kγ

G(0)k , 0

· r

G(1)k , −i

· r

G(2)k , i

#12 .

Following the paper [15], we have

(7) Jn(γ) ≤ γn2

" n Y

k=1

Ψ (βk)

#1/2

,

where Ψ(β) = 2β2+6· ββ2+2(2 − β)12(2−β)2 · (2 + β)12(2+β)2, β ∈ [0, 2].

Similarly to [5], we consider the next extremal problem:

n

Y

k=1

Ψ(βk) → sup;

n

X

k=1

βk= 2√

γ, βk= αk

γ, 0 < βk≤ 2.

Necessary conditions have the form Ψ0k)

Ψ(βk) = −λ

n

Q

k=1

Ψ(βk)

, k = 1, n.

We will show that all βkare equal. We investigate behavior of the function F (β) = ΨΨ(β)0(β) = 2β ln(2β)+β2+(2−β) ln(2−β)−(2+β) ln(2+β) on interval β ∈ [0, 2]. It is strictly decreasing on the interval (0; β0], β0 ∈ (1.32; 1.33) and increasing on [β0; 2). Then we use the method of the proof of Theorem 4 [5] and obtain that unique solution of the extremal problem is the point (n2, . . . ,2n). Estimates (4), (5), (7) yield inequality (2) of Theorem 1. The case of equality is verified directly and Theorem 1 is proved.  Dubinin proved Theorem 1 if γ = 1 and for any distinct points ak that lie on the unit circle and any non-overlapping domains Bk (see [5], [8]).

Proof of Theorem 2. We retain all notation for separating transforma- tion of domains introduced in the proof of Theorem 1 for domains Bk, k = 0, n. By Ω(∞)k we denote the domain of plane Cζ, obtained by com- bining the connected component πk(BT Ek) containing the point ζ = ∞ with its symmetrical reflection with respect to the imaginary axis. The family n

(∞)k on k=1

is a result of separating transformation of an arbitrary domain B, ∞ ∈ B⊂ C with respect to the families {Pk}nk=1and {πk}nk=1 at the point ζ = ∞.

(8)

By Theorem 2 in [5] we have

(8) r(B, ∞) ≤

" n Y

k=1

rα2k



(∞)k , ∞



#12 . Using (4), (5), (8), we obtain

[r (B0, 0) r (B, ∞)]12

n

Y

k=1

r (Bk, ak) ≤ 2n·

n

Y

k=1

αk

!

· L(0)(An)

×

n

Y

k=1

rα2kγ

(0)k , 0

· rα2kγ

(∞)k , ∞

· r

(1)k , ωk(1)

· r

(2)k , ωk(2)

ω(1)k − ωk(2)

2

1 2

.

Theorem 6 in [5] gives

(9) [r (B0, 0) r (B, ∞)]α2kγ·r (B1, a1) r (B2, a2)

|a1− a2|2 ≤ Ψ(β)

= β2 · |1 − β|−(1−β)2 · (1 + β)−(1+β)2, 0 < β ≤

√ 2.

Inequality (9) was obtained by Dubinin using the results of Kolbina [15].

Similarly to [5], we consider the extremal problem:

n

Y

k=1

Ψ(βk) → sup;

n

X

k=1

βk=√ 2.

We introduce a function F (β) = ΨΨ(β)0(β). Calculations show that this function is decreasing on the interval (0; β0] and increases on [β0;√

2), 0.85 < β0 < 1. Further, as in the proof of Theorem 6 in [5], we verify that the unique solution of the extremal problem is the point (

2 n , . . . ,

2 n ).

Estimates (4), (5), (8), (9) yield the inequality (3) of Theorem 2. The case of equality is verified directly. Theorem 2 is proved.  Proof of Theorem 3. The proof is based on application of separating transformation, developed in details in [6]. According to the conditions of Theorem 3, a0= 0, 1 − ε < |ak| < 1 + ε, k = 1, 2. Assume

0 = arg a1< arg a2 < 2π.

Let α1 := π1 · (arg a2− arg a1), α2 := π1· (2π − arg a2), Pk := {w : arg ak<

arg w < arg ak+1}, k = 1, 2, arg a3 = 2π, P0 := P2, P3 := P1.

The family of two symmetrical domains {D(1)k ; D(2)k−1} with respect to the imaginary axis is called a result of separating transformation of the domain Bk.

(9)

Further, as in Theorem 5.2.1 in [3], using the separating transformation we obtain

(10) J2(γ) ≤ L(γ)(A2)

" 2 Y

k=1

α2krγ·α2k(D0, 0) · r(D1, 1) · r(D2, −1)

#12 . We will prove that for α02γ, α0 = max{α1, α2} extremal configura- tions different than those referred in Theorem 3 do not exist. For this we find a value of the functional (see Theorem 5.2.3 in [3])

J20(γ) = rγ(D0, 0) ·

2

Q

k=1

r(Dk, dk) = 4 · (γ)

γ 2

(1−γ4)2+γ2 ·

1−

γ

2

1+

γ 2

2 γ

if γ = 1.1. We have that J20(1.1) ≈ 0.8315.

Denote r(B0, 0) = r0, r(B1, a1) = r1, r(B2, a2) = r2. The Lavrent’ev’s theorem [17] gives r0r1 < |a1|2, r0r2 < |a2|2, r02r1r2 < |a1|2|a2|2 =⇒ r1r2 <

|a1|2|a1|2 r20 .

Then rγ(B0, a0) ·

2

Q

k=1

r(Bk, ak) = r0γ · Q2

k=1

r(Bk, ak) ≤ r0γ · |a1|2·|a2|2

r20 ≤ J20(γ) ⇒ r0 ≥ |a

1|2·|a2|2 J20(γ)

2−γ1

. If r0 ≥ |a

1|2·|a2|2 J20(γ)

2−γ1

, then the extremal configurations do not exist. Consider the case r0 ≤|a

1|2·|a2|2 J20(γ)

2−γ1 . J2(γ) ≤ r0γ|a1− a2|2 = rγ0

(|a1| − |a2|)2+ 4|a1| · |a2| sin2(2 − α0)π 2



≤ |a1| · |a2| J20(γ)

2−γγ

·

(|a1| − |a2|)2+ 4|a1| · |a2| sin2(2 − α0)π 2

≤ J20(1.1).

Substituting ε = 0.25, γ = 1.1, n = 2, |a1| = 1 − ε, |a2| = 1 + ε, J20(1.1) = 0.8315 in the last inequality, we obtain

(11) (1 + ε)2−1,11.1



2+ 4(1 + ε) sin2



2 − 2

√1.1

 π 2



≤ J20(1.1)1+2−1.11.1 . Performing calculations of right and left sides of the inequality (11), we have 0.6085 < 0.6663. From this it follows that if ε = 0.25, then inequality (11) is true. Hence J = J2(1.1)

J20(1.1)0.73160.8315 = 0.8798 < 1, i.e. if α0 > 2γ, J2(γ) < J20(γ) then the maximum value of the functional J2(γ) for such domains is not attained. Then α02γ and we can apply inequality (10).

Using a result obtained in the proof of Theorem 4 in [5], we can write the following inequality

J2(γ) ≤ 1γ ·

 2 Q

k=1

2σk2+6· σkσk2+2· (2 − σk)12(2−σk)2(2 + σk)12(2+σk)2

12 ,

(10)

where σk=√

γ · αk. Consider the function

Ψ(σ) = 2σ2+6· σσ2+2· (2 − σ)12(2−σ)2(2 + σ)12(2+σ)2,

σ ∈ [0, 2] and we will conduct detailed investigation of its graph on this interval (see Fig.1).

Ψ(σ) is logarithmically convex on interval [0; x0], x0 ≈ 1.32. On [0; x1], x1 ≈ 1.05 the function increases from Ψ(0) = 0 to Ψ(x1) ≈ 0.9115, and it decreases on interval [x1; x2], x2 ≈ 1.6049 to Ψ(x2) ≈ 0.86, and on [x2; 2] it increases to Ψ(2) = 1. x3 ≈ 1.9, Ψ(x3) = Ψ(x1) ≈ 0.9115.

Figure 1.

Using equality σ1 + σ2 = 2√

γ, we will prove that Ψ(σ1) · Ψ(σ2) ≤ (Ψ(x1))2 ≈ 0.8308. For σ ∈ [0; x0] we make appropriate conclusion from the logarithmic convexity of the function Ψ(σ). For σ2 ∈ [x0; x3] from properties of the graph of the function Ψ(σ), we have Ψ(σ2) ≤ Ψ(x1) and Ψ(σ1) ≤ Ψ(x1) and thus Ψ(σ1) · Ψ(σ2) ≤ (Ψ(x1))2.

If σ2 ∈ [x3; 2] then Ψ(σ2) < Ψ(2) = 1, Ψ(σ1) < Ψ(0, 2)  0.4, and hence Ψ(σ1) · Ψ(σ2) < 0, 4 < (Ψ(x1))2. So, J2(γ) ≤ J20(γ). Inequality (11) is true

and Theorem 3 is proved. 

Acknowledgement. The author is grateful to Prof. Bakhtin for suggesting problems and useful discussions.

References

[1] Bieberbach, L., ¨Uber die Koeffizienten derjenigen Potenzreihen, welche eine schlichte Abbildung des Einheitskreises vermitteln, Sitzungsber. Preuss. Akad. Wiss. Phys- Math. Kl. 138 (1916), 940–955.

(11)

[2] Bakhtin, A. K., Bakhtina, G. P., Separating transformation and problem on non- overlapping domains, Proceedings of Institute of Mathematics of NAS of Ukraine 3 (4) (2006), 273–281.

[3] Bakhtin, A. K., Bakhtina, G. P., Zelinskii, Yu. B., Topological-algebraic structures and geometric methods in complex analysis, Proceedings of the Institute of Mathematics of NAS of Ukraine 73 (2008), 308 pp. (Russian).

[4] Dubinin, V. N., The symmetrization method in problems on non-overlapping domains, Mat. Sb. (N.S.) 128 (1) (1985), 110–123 (Russian).

[5] Dubinin, V. N., A separating transformation of domains and problems on extremal decomposition, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 168 (1988), 48–66 (Russian); translation in J. Soviet Math. 53, no. 3 (1991), 252–263.

[6] Dubinin, V. N., Symmetrization method in geometric function theory of complex variables, Uspekhi Mat. Nauk 49, no. 1 (1994), 3–76 (Russian); translation in Russian Math. Surveys 49, no. 1 (1994), 1–79.

[7] Dubinin, V. N., Asymptotics of the modulus of a degenerate condenser, and some of its applications, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 237 (1997), 56–73 (Russian); translation in J. Math. Sci. (New York) 95, no. 3 (1999), 2209–2220.

[8] Dubinin, V. N., Capacities of condensers and symmetrization in geometric function theory of complex variables, Dal’nayka, Vladivostok, 2009 (Russian).

[9] Duren, P. L., Univalent Functions, Springer-Verlag, New York, 1983.

[10] Goluzin, G. M., Geometric Theory of Functions of a Complex Variable, Translations of Mathematical Monographs, no. 26, Amer. Math. Soc., Providence, R.I. (1969).

[11] Gr¨otzsch, H., ¨Uber einige Extremalprobleme der konformen Abbildung. I, II, Ber.

Verh. S¨achs. Akad. Wiss. Leipzig, Math.-Phys. 80 (6) (1928), 367–376, 497–502.

[12] Grunsky, H., Koeffizientenbedingungen f¨ur schlicht abbildende meromorphe Funltio- nen, Math. Z. 45, no. 1 (1939), 29–61.

[13] Hayman, W. K., Multivalent Functions, Cambridge University Press, Cambridge, 1958.

[14] Jenkins, J. A., Some uniqueness results in the theory of symmetrization, Ann. Math.

61, no. 1 (1955), 106–115.

[15] Kolbina, L. I., Conformal mapping of the unit circle onto non-overlapping domains, Vestnik Leningrad. Univ. 10, no. 5 (1955), 37–43 (Russian).

[16] Kovalev, L. V., On the problem of extremal decomposition with free poles on the circle, Dal’nevost. Mat. Sb. 2 (1996), 96–98 (Russian).

[17] Lavrent’ev, M. A., On the theory of conformal mappings, Tr. Fiz.-Mat. Inst. Akad.

Nauk SSSR, Otdel. Mat. 5 (1934), 195–245 (Russian).

[18] Nehari, Z., Some inequalities in the theory of functions Trans. Amer. Math. Soc. 75, no. 2 (1953), 256–286.

[19] Riemann, B., Theorie der Abelschen Functionen J. Reine Angew. Math. 54 (1867), 101–155.

[20] Teichm¨uller, O., Collected Papers, Springer, Berlin, 1982.

[21] Vasil’ev, A., Moduli of Families of Curves for Conformal and Quasiconformal Map- pings, Springer-Verlag, Berlin, 2002.

(12)

Iryna V. Denega

Department of Complex Analysis and Potential Theory

Institute of Mathematics of National Academy of Sciences of Ukraine Tereshchenkivska St. 3

01601 Kyiv Ukraine

e-mail: iradenega@yandex.ru Received September 20, 2011

Cytaty

Powiązane dokumenty

In other words, the problem is to decide whether for every ε &gt; 0, there is a 2-partition {A 1 , A 2 } of the set of positive integers such that the lower asymptotic density of

Moreover, the author’s paper [13] referred to above contains a result equivalent to the non-counting parts of this result in case q = 2 and κ = −1..

The auxiliary

On some functional equation in the theory of geometric objects. In this paper we find all solutions of the functional equation ( 0.. Computation of g{

Some Extremal Problems for the Class Sa Pewne problemy ekstremalne dla klasy 8a Некоторые экстремальные проблемы для класса Sa.. is defined by the formula zf

W szczególności wykazuję, że funkcjonał rzeczywisty Hg o różnym od zera gradiencie osiąga extremum dla pewnych specjalnych funkcji określonych równaniem (8). Доказаны

pings in the mean are closely related to the extremal problems for quasiconformal mappings with a prescribed dilatation bound which is a oounded function of a complex

On Some Generalization of the Well-known Class of Bounded Univalent Functions 51 is an extremal function in many questions investigated in the class S(M).. It is evident that,