• Nie Znaleziono Wyników

On the Relative Growth of Subordinate Functions

N/A
N/A
Protected

Academic year: 2021

Share "On the Relative Growth of Subordinate Functions"

Copied!
4
0
0

Pełen tekst

(1)

ANNALES

UNIVEESITATIS MARIAE CURIE-SKŁODOWSKA LUBLIN -POLONIA

VOL. XXII/XXIII/XXIV, 3 SECTIO A 1968/1969/1970

Instytut Matematyki, Uniwersytet Marii Curie-Skłodowskiej, Lublin

ZBIGNIEW BOGUCKI AND JÓZEF WANIURSKI

On the Relative Growth of Subordinate Functions O względnym wzroście funkcji podporządkowanych

Об относительном росте подчиненных функций

1. Introduction

Suppose /, F are functions regular in the unit disk K, both vanishing at the origin. The function / is said to be subordinate to F in K, if there exists a function to regular in K such that <o(0) = 0, |co(z)| < 1 in K and f(z) = F(co(2)). Then we write: f -3 F. As a rule it happens that in all sufficiently small disks Kr = {z: |z| < r} the most important functio­

nals corresponding to r and / are dominated by the relevant functionals corresponding to r and F, whenever f -3 F. Many authors were concerned with the problem of determinating the largest disk where such a domi­

nation takes place. E.g. Golusin [2] showed that, if f -3 F and a(r), A(r) denote the area of Riemann surfaces being the maps of Kr under f and F resp., then a(r) < A(r) for any re . It seems that E. Reich was first to investigate a problem of more general type. Instead of evaluating the radius where a(r) is dominated by A(r) he was concerned with the estimates of the ratio a (r)/A (r) in the whole unit disk under the assumption f -3 F. He showed [4] that a(r)/A(r) < w2m~2, for ——— < r2

m m

, m =1,2,..., which implies Golusin’s result in case m = 1.

w+1

Now, we can similarly consider functionals others than the area.

The most interesting case is perhaps the absolute value at corresponding points. Thus we are led to the following problem.

Suppose An, n =1,2,..., is the class of functions f regular in K

(2)

30 Zbigniew Bogucki, Józef Waniurski

such that f(z) = anzn + an+1zn+1 + ..., an^ 0. Suppose, moreover, is a fixed subclass of the class $ of functions regular and univalent in K subject to the usual normalization. Find for a given positive integer n and given re (0,1) the l.u.b. x(r,n,S0) of the ratio \f(z)/F(z)\ for all fe An and all Fe 80 satisfying f -3 F, \z\ < r.

In this paper we find the solution for the class $0 such that: fe So,

|j?| < 1, implies t]~1f(i'iz)e S„.

Suppose £n, n =1,2,..., is the class of functions u>, w(z) = anzn + + an+1zn+1+..., which are regular in K and satisfy an> 0 and |w(i?)| < 1 for all ZeK.

A reasoning similar to that used in [3] shows that for a fixed zte K and to ranging over Bn the set of all possible values of co («J is the closed domain Hn(zf) (generalized Eogosinski’s domain) whose boundary con­

sists of three arcs:

(1.1) so(0) = |z1[n+1e<9,arg2^+ —0<arg«7 + |-7r, (1.2) zx(a) = ^(a + italVtl + iakl), 0 a 1, (1.3) «„(a) = «?(o-i|«1|)/(l-»a|»1|), 0< a< 1.

Suppose Qn(zt, 8„) = {u: u = F(«2)/F («,.)}, where zt is a fixed point of K and z2, F range over Hn(2x) and So resp. Under our assumptions on So, the set Qn has the following properties (cf. [1]):

(1.4) Qi(Zi, So) = » So),

(1.5) if 0 < r < R < 1, then Qn(r, 80) c Qn(K, So).

We shall also be concerned with the set 80) = {w: w

= f^/F^)}, where zt is a fixed point of K, fcAn,FeS0, and f F.

2. Main results

Theorem 1. Under the notations of sect. 1 we have:

^o) — Qn(?l1 80)

Proof. Suppose ueQ^z^So). This means that there exist feA Fe So and zte K such that / -3 F and u = f^/F^). Now, the condition f -3 F implies that there exists coe Bn such that ftz) = Ffw/zU nml nl«n /(*x) = F^)). If z2 = co(,l}, then *aeHM,cL [3]. We can trite:

u — f^zJ/FlZi) — F(co(z1))/F(z1) — F(za)/F(zl) and this means that ueQn{zv,8o) by (1.4), i.e. 80) <= Qn^i, So).

Suppose now qeQ^So). Hence q = -F(z2)/F(Sl) with zte K and Since «jeHnCSj), there exists coeBn such that za = co(zt),

(3)

On the relative growth of subordinatefunctions 31 cf. [3]. Consequently, q — F(m(z1))IF(sl) = /(z1)/J’(z1), where F(i»(z))

= f{z)eAn. This means that qe £>„1^, So), i.e. Qn(«i, 80) c 80)t or, finally,

Qn(?ii $o) — $(>)•

Corollary. If zeKr,feAn,FeS0 and f-3F, then sup|/(z)/P(z)| =sup{|w|: We£n(z,80)}.

Hence we have the solution of the problem

x(r, n, 80) = sup{|w|: WeQn(z, 80)}

Theorem 2. Suppose SQ is the class 8C of convex functions. Then x(r,l,Sc) = max{l, r(l — r)-1},

1 "4" i*

x(r, n, N6) =* rn_1 ~---- — for n^2.

Theorem 3. For the class 8* of starlike functions we have:

x(r, 1, 8*) — max{l, r(l— r)~2},

h(r,n,S) = J for n^ 2.

The proofs of Theorems 2, 3 will be published in vol. 18 of the Michigan Mathematical Journal.

REFERENCES

[1] Bogucki, Z., On a theorem of M. Biernacki concerning subordinate functions, Ann. Univ. Mariae Curie-Sklodowska, Sectio A, 19 (1965), 5-10.

[2] Goluzin, G. M., On majorants of subordinate analytic functions I, (Russian) Mat. Sbornik N. S. 29 (71) (1951), 209-224.

[3] Lewandowski, Z., Starlike majorants and subordination, Ann. Univ. Mariae Curie-Sklodowska, Sectio A, 15 (1961), 79-84.

[4] Reich, E., An inequality forsubordinate analyticfunctions. Pacific Journ. Math, vol. IV (1954), 259-274.

STRESZCZENIE

Niech An,n = 1,2, ..., oznacza klasę funkcji/(z) = aHzn + an+1zn+1 + +..., > 0, regularnych w kole jednostkowym K. Oznaczmy przez So ustaloną, podklasę klasy N funkcji regularnych i jednolistnych w kole K, takich, że:

*) fe 8„, |j/| < 1, implikuje so- Niech x(r,n,S0) — swp\f(z)/F(z)\, gdzie

fe An,Fe80,f -ZF, |«|<r.

(4)

32 Zbigniew Bogucki, Józef Waniurski

Twierdzenie 1 i wniosek po nim następujący mówi, że

**) x(r,n, 8„) = sup{|w|: weQn(g, 80)},

gdzie Qn(z, So) = |w: w = > £^7 C, f przebiegają odpowiednio:

obszar Eogosinskiego Hn(z) i 80.

Korzystając z warunku **) można wyznaczyć efektywnie funkcję x.

Jeśli 80 jest klasą funkcji odpowiednio : wypukłych 8C i gwiaździstych S*, wówczas (twierdzenia 2,3):

x (r, l,$c) = max{l, r(l— r)-1}, x(r, n, 8C) = + r n > 2, 1 — rn

x(r, 1,8*) = max{l, r(l —r)-*}, x(r, n, 8*) = , n >2.

Dowody twierdzeń 2,3, ukażą się w pracy oddanej do druku w periodyku Michigan Mathematical Journal, vol. 18.

РЕЗЮМЕ

Пусть Л„, » = 1, 2, 3,..., обозначает класс функций f(z) = onz + регулярных в единичном круге К. Через 8„ обозначим фиксированный подкласс класса $ регулярных и одно­

листных функций в круге К, которые удовлетворяют условию:

*) =>î7'V(’î»)«^0

Пусть x(r,n,S0) = sup|/(2)/jF(z)|„ при feAn,Fe80,f -jF, |z|

Из теоремы 1 этой работы вытекает, что

**) x(r,n,80) =sup{|w|: weQn(z, So)}, при Qn(z, So) = {w. W = /(f )//(«)}, teHn(z),fe Sü.

Из условия **) вытекает, что

x(r, 1, 8е) = тах{1,г(1 —г)-1}, х(г, п, 8е) = гя~1-1+Г-, »> 2 1 гп

х(г,1,8*) = тах{1, г(1-г)~2}, х(г, и, S*) = г"-1 ,п>2 (теоремы 2, 3).

Доказательства теорем 2, 3 находятся в печати в журнале Michigan Mathematical Journal, vol. 18.

Cytaty

Powiązane dokumenty

£5 J Eenigenourg, P., Youhikawa, H., xn application 01 tne method of Zmorovic in geometric function theory, J. anal, and Appl. W pracy wyznaczono promień wypukłości spiralnej w

We now examine problems about the growth of |#'(z) | where g is analytic and bounded in A (and not necessarily univalent) and for simplicity take the bound to be 1.!. The

O sumach częściowych pewnej klasy funkcji jednolistnych Об отрезках ряда Тейлора одного класса однолистных функций.. Subsequently the

Suppose »S'o is a fixed subclass of the class $ of functions regular and univalent in the unit disk h\ and subject to the usual normalization.. Suppose, moreover, that f -3 F,

Axentiev [1] investigated the univalence of the Taylor suras fn(z) for /eRo and showed that for a fixed integer n and for any feR0 we have ^fi(z) &gt; 0 inside the disc |«| &lt; rn,

Lappan, Criteria for an analytic function to be Bloch and a har- monic or meromorphic function to be normal, Complex Analysis and its Applica- tions (Harlow), Pitman Research Notes

It follows at onoe from relation (2.1) that inequality (1.2) holds, then So C So- In particular, the class So contains known subclasses ctf the class of univalent

On Some Generalization of the Well-known Class of Bounded Univalent Functions 51 is an extremal function in many questions investigated in the class S(M).. It is evident that,