• Nie Znaleziono Wyników

Riemannian Vector Fields and Pontrjagin Numbers

N/A
N/A
Protected

Academic year: 2021

Share "Riemannian Vector Fields and Pontrjagin Numbers"

Copied!
4
0
0

Pełen tekst

(1)

ANNALES UNIVERSITATIS MARIAE CURIE-SKLODOWSKA LUBLIN-POLONLA

VOL.XXXIX,! 4______________SECTIOA________________________ 1985 Instytut Matematyki

Uniwersytet Marii Curie-Sklodowskiej

W.MOZGAWA

Riemannian Vector Fields and Pontrjagin Numbers

Riemannowskie pola wektorowe i liczby Pontriagina Римановы векторные поля и числа Понтрягина

In this note we shall give a partial generalization of the Bott theorem [2j on infinitesimal isometries and characteristic numbers to the so called Riemannian vectorfields without singularities.

Let 7 be an oriented Riemannian foliation of dimension one on a compact, connected manifold

hi

(cf. (5|, [6)). Such a foliation is also called a Riemannian flow (cf.(3]) on

M.

Let

Q

= TA// he the normal, (quotient)bundle and:

TT

О —+TT —*TM Q О

the exactsequence of fibrebundles.

Definition. A vectorfield RX on

M

is said to be Riemannian ifits orbits are leaves ofcertain Riemannian flow.

The Riemannianvector field gives areduction of the bundle BRA/) of linear frames on A/ to a subbundle with structural group consisting of matrices

a , 6 0 , A

where

a

E

R*, b

E В"-1,

A

E

GL.(n

-1, Д). The frames of ÄB1 (A/) are the adaptedframes to 7. i.e. such ones that the first of them is tangent to 7.

To the bundle

Q

there corresponds the associated principal fibre bundle Bj.(A/), the bundle of transversal frames. In [5] P.Molinohas shown that this bundle admits the reduction to the subbundle of the orthoncrmal transversal frames

E?.

(2)

114 W. Mocgawa

Letst be a transversal metric in

Q

which corresponds to this reduction and g a bundle-like metric in

TM

associatedwith

gr

(cf. [6], (7J). Let

R.El(M)

be a reduction of thefibre bundle

Jl.Bi(M)

toa bundle with astructural groupconsisting ofmatrices

0 ,

A

where

A £

O(n-l,jR) and

El(M)

thereduction ofBx(Af) tobundle withthe structural group

O(n, R).

We have:

REl(M) E'(M) .

Let

pr : R* —r R*~l,

(x°,x*,... ,x"-1) H-+ (xl,...,x“_l). With each frame in

H.E1

(Af) we canassociate a frame in

Ej-

by the formula :

A(eo,ei,...,e«_i) = (eir,...,c»-ir) where g(e,) =e,r, » = - I and eo €

TT.

Conversely :

A ^eir, • ,e»-ir) = (co,ei,--.,e«-x)

where(ei,...,e»_i) are determineduniquely by the bundle-likemetric

g.

A map­

ping:

is an isomorphism of the groups. So we have proved:

Lemma 1.

The principal fibre bundles HE1(M) and Ej- are isomorphic.

On the bundle E} we have the canonical form 0y = (0j-,...,0J.-1) (cf. [5]) and on £El(Af) we have the canonical form 0 = (00,©1,...,0"-1). These forms are connectedbythe relation:

A*©r =

pr

o 0 (»)

P.Molinoin [5] definedalifted foliation Zl1! on£j. starting with a Riemannian foliation

T

on Af. Let ÆX^I be such lifting -of the Riemannianvector field

JLX

to

Ej.

Using the mappingA we have therefore thevector field A^ÆX.

Lemma 2. t\-tcx0 = (l,0,...,0).

Proof. = 0 for » = l,...,n — 1 follows from (») and the fact that

©r is the basic formfor the lifted foliation J2X(lL

ip,~inx^°

= 1 follows from the calculations in a local chart adapted to

R.X.

It is proved in [5] that:

=0

where fly » the curvature form on

Ej-.

We know (cf. [l]) that:

° 0 = A’Or

(3)

Riemannian Vector Fields and Pontrjagin Numbers 115

where 0 is the curvature form in ÂEÿ, so we have:

1 о <p, о 0 = igx'iiftf = 0 . Hence:

‘xrlÂXi‘»O = 0 • From this fact and the formula

n; = A

e‘

we obtain

Lemma 8. fl= 0 mod(в1,...,©"-1).

Theorem. The Pontrjagin numbers ofthe manifold M (dimAf = n = 2*) are zeros.

Proof. Using the Lemma3 itis sufficient to write aninvariantpolynomial:

Р*(П,...,П). («)

Since in(»») the formsв1,...,в"-1 willrecurat least two times so:

P»(Q,..,,Q) = 0.

REFERENCES

fl| Bel’ko, I.V., Affine transformations of a transversai project a He connection of a manifold mtk a foliation (Russian), Mat.Sb., 117(150) (1982), 181-195.

i3j Bott,R., Vector fields and characteristic nambera, Michigan Math.J., 14 (1967), 221-244.

|S| Carrière, Y., Plots ricmanniens, Astérisque, 116 (1984), 21-52.

|4i Kobayashi,S., Transformation Groapsin Differential Geometry, Springer Verlag New York-Heidelberg Berlin 1972.

;Sj Molino, P.,Geometric globale des feaiiietages ricmanniens, Nederl.Akad.Wetensch.Indag.Math., Sa (1982) 45-76.

|6| Rein hart,B.L.,Foia<eé manifolds talk bnndle-like metrics, Ann. <rf Math., 69 ,1959) 119-182.

|7| Reinhart,B.L.,Differential Geometry of Foliations, Springer Verlag New York-Heidelberg-Berlin 1982,

STRESZCZENIE

W pracy pokazano, źe znikanie liczb Pontriagina zwartej, zorientowanej i spójnej rozmaitości jest warunkiem koniecznym istnienia 1-wymiarowej foliacji riemannowskiej.

РЕЗЮМЕ

В данной работе доказывается, что обращение в нуль чисел Понтрягина компакт­

ного, ориентированного и связного многообразия - это необходимое условие существо­

вания одномерного, ориентированного риманово слоения.

(4)

Cytaty

Powiązane dokumenty

Find the second component of the substitute nodal force vector for the truss element loaded as shown in the figure.. Solve the truss

This corollary implies a theorem on existence of local analytic solutions of nonlinear systems of partial differential equations, of the type of the Cartan–K¨ ahler theorem, as

In this paper, we generalize the Friendship Theorem to the case that in a group of at least three people, if every two friends have one or two common friends and every pair of

Besides these the proof uses Borel–Carath´ eodory theorem and Hadamard’s three circles theorem (the application of these last two theorems is similar to that explained in [4], pp..

With- out it the Theorem is not true, nor is the remark of the introduction saying that the conditions on f imply the geometry (in particular, the curvature) bounds for M. In the

2. We will state Bott’s theorem in a general form, after intro- ducing the concept of an equivariant sheaf, which is a useful extension of the original defi- nition given in [B2].

A complete metrizable space F without the bounded multiplier property such that every atomless F-valued countably additive measure defined on a a-field is convexly

We can say that in…nity is not a safe place for hiding, at least for curves of Type + : In particular, there are no smooth handsome annuli of Type + : The reader will see that the