• Nie Znaleziono Wyników

Measurements on a refrigeration system under the ICMOS-CRP program

N/A
N/A
Protected

Academic year: 2021

Share "Measurements on a refrigeration system under the ICMOS-CRP program"

Copied!
203
0
0

Pełen tekst

(1)

Measurements on

a refrigeration system

under the ICMOS-CRP program

Report OEMO 95/24

R.F. van Kuilenburg

Delft / Den Haag / Zoetermeer

august 1995

TU Delft

Delft University of Technology

Faculty of Mechanical Engineering and Marine Technology

Department of Marine Technology

van Buuren -van Swaay

Van Buuren - Van Swaay

Zoetermeer

(2)

INTRODUCTION

3

REFRIGERATION PROCESS

4

2.1 GENERAL WORKLNG OF A REFRIGERATION SYSTEM

4

2.2

A

SHORT DESCRIPTION OF THE USED REFRIGERATION

SYSTEM

3 PLACEMENT OF SENSORS AND SENSOR INFORMATION

8

3.1

SENSOR LOCATIONS

8

3.2 SENSOR PARAMETERS, SPECIFICATIONS AND DATATRANSFORMATION

8

4. MEASUREMENT PROGRAM

15

4.1

CHOICE

OF

WORKING CONDITIONS AND FAULTS

is

4.2 LOCATION OF THE DIFFERENT BYPASS PIPING AND VALVES

16

5 ACTUAL MEASUREMENTS

18

5.1 POSTPROCESSING OF THE MEASURED DATA

18

5.1.1 Pressure measurements

18

5.1.2 Temperature measurements

18

5.1.3 ( 'alculation of the .freon.flow

19

5.1.4 Measured/au/is

20

5.2 MEASUREMENTS ON 21-06-1995

5.2 MEASUREMENTS

ON

22-06-1995

5.2 MEASUREMENTS

ON

23-06-1995

43

5.2 MEASUREMENTS ON 26-06-1995

54

5.2 MEASUREMENTS ON 27-06-1995

65

5.2 MEASUREMENTS ON 28-06-1995

76

5.2 MEASUREMENTS ON 29-06-1995

87

APPENDICES

98

PROPERTIES

OF

FREON

EQUIPMENT SETTINGS

LOGBOOK

ORGANISATION

OF

FILES AND

DISKS

pag i

104.f"

TU Delft

measurements on a refrigeration system

(3)

004.,

TU Delft

Subscripts

discharge (in combination with compressor variables)

env

environmental variable

inlet, interior dimension

mass

o

outlet

suction (in combination with compressor variables

sub

subcooling

sup

superheat

compressor

chw

chilled water (cold water)

cond

condensor

crk

crank

crkc

crankcase

cw

cooling water

cyl

cylinder

cylw

cylinderwall

fd

filter/drier element

oil

oil

Pi

piping

pist

piston

refrigerant

tu

tube

ev

evaporator

exp

expansion valve

Indices

(I)

flow

in

, kg/s

p

pressure

N/m2

P

power

W

T

temperature (abs)

K

t

temperature (rel)

°C

measurements on a refrigeration system

van Buuren -van Swaay

(4)

0*,

TU Delft

1.

Introduction

This measurement report is the second result of a measurement program, done under the ICMOS- CRP

research programl of the faculty of Mechanical Engineering and Maritime Technology, Technical

University of Delft.

The measurements were done on a refrigeration system located at Van Buuren

- Van Swaay b.v.

Zoetermeer. The goal of the measurement program is twofold. The first goal is to provide data for

tuning and validating the mathematical model of a refrigeration system developed by Grimmelius. The

second goal is to provide trainings and testing data for a diagnosis system build by van Kuilenburg and

Grimmelius. To capture the whole working range of the refrigeration system, all the faults

are

introduced at four different working points of the refrigeration system. These four points span the entire

working range of the refigeration system.

In

this report only the measurements are presented, in

a graphical way. No attempt will be made to

explain the different symptoms and system behaviour. In the second chapter, a short description of the

refrigeration process and real refrigeration system is given. The third chapter describes the measurement

equipment such as sensors and processing equipment. The following seven chapters gives the data

grouped per meausument day. The last chapters give the measurements of each introduced fault

individually.

The different partners in this project are Van Buuren - Van Swaay and the TU-Delft2

The measurements were done by R.F. van Kuilenburg and H.T. Grimmelius.

I wish to thank the following people for their assistance and help during the measurements :

H.T. Grimmelius

,

TU-Delft

G. Been,

Van Buuren - Van Swaay

M. van Willigen,

Van Buuren - Van Swaay

R. Houtenbos,

Van Buuren - Van Swaay

measurements on a refrigeration system

van Buuren -van Swaay

Robert van Kuilenburg

03-08-1995

ICMOS - CRP = Intelligent Control and Monitoring Systems - Compressor Refrigeration System

2 TU-Delft

= Technical University of Delft

(5)

0*i

TU Delft

measurements on a refrigeration system

2.

Refrigeration process

In this chapter the theoretical basis is treated of the refrigeration process. Also the real refrigeration

system layout is given together with the data of the different parts of the refrigeration system

2.1.

General working of a refrigeration system

A refrigeration plant has the following basic system scheme and basic components

"1;'W

1

figure 2-1, basic scheme of a refrigeration

system

The whole purpose of a refrigeration system is to transport energy(Q2) from a relative low temperature

level to a relative high temperature level (Q1). The compressor (1) compresses the freon which comes

from the evaporator (4). To compress the freon an amount of energy is needed (W), this energy causes

an increase of the enthalpy of the freon. At this high pressure the (still) gaseous freon is condensed in

the condensor, releasing energy (Q1) to a cooling medium at a relatively high temperature level. Now

the pressure of the freon is adiabatically decreased in the choking device (3). At this low pressure the

freon is evaporated in the evaporator (4) at a relatively low temperature level. The transportation of this

energy costs energy due to mechanical losses in the various components and thermodynamic losses.

Compressor

Condensor

Choking device

Evaporator

(6)

TU Delft

measurements on a refrigeration system

It is custom to plot the process in a log(p) - h diagram of the refrigerant fluid

QI

figure 2-2, refrigeration process plotted in a schematic log(p) - lz diagram of

freon-22

In this diagram the coexistent area of the cooling medium is drawn. After compression (1) the gas is

superheated. In the condensor (2) the gas is first cooled to a saturated gas and then condensed to liquid.

Often the temperature (energy) of the gas is lowered beyond the point where just all the gas has become

liquid. This is done to prevent the liquefied gas to evaporate before it reaches the evaporator due to

pressure losses in the pipes or height differences. This is called "under-cooling" of the gas. After the

choking-valve the gas is evaporated (4). The temperature of the gas is more increased then absolutely

necessary, to ensure that only gas reaches the compressor. If liquid reaches the compressor, the

compressor can brake down (liquid is hard to compress). The extra temperature increase of the gas is

called "super-heating''.

A log(p) - h diagram of R22 (freon)

is

given in appendix A

2.2.

A short description of the used refrigeration system3

The installation is a cold water maker, used for cooling the research rooms at Van Buuren - Van Swaay.

For this investigation the system is coupled to a reheater, in order to simulate the desired workloads for

the refrigeration system. The installation is filled with freon R22, with a lowest temperature of -1 °C.

This implies that the pressure in the installation is at least 4.5 bar (abs). The condensor is cooled with

normal water, of which the flow can be controlled by a valve.

3 See for a detailed description of the refrigeration system : van der Heiden. OEMO 94/12

van Buuren-vanSwaay

pag 5

Installation specifications :

Electrical power

: 14 kW

Cooling capacity

:80 kW

Coldwater temp

: 3.5 - 9 °C

Cooling water temp

: 20 - 35 °C

(7)

TU Delft

coldwater

measurements on a refrigeration system

3

fifilter

(empty)

a

evaporator compressor control measurements spy-glass filter/dryer expansion valve

figure 2.3 real refrigeration system, used for zenerating the data

condensor

van Buuren -van Swaay

cooling water

<

(8)

TU Delft

measurements on a refrigeration system

==1

(9)

goitr

T U Delft

measurements on a refrigeration system

3.

Placement of sensors and sensor information

In this chapter the location and specifications of the sensors is given. Information about data processing

equipment and the transformation of the data is given.

3.1.

Sensor locations

The sensors are placed according to figure 3.1. These locations are similar with the actual placement of

the sensors on the system.

1ST

\ J19)

P6

P2

figure 3-1, placement of the sensors on the refrigeration system

3.2.

Sensor parameters, specifications and datatransformation

In the following tables, the specifications and parameters of the used sensors are given. The

transformation of the signal in the dataloggers (if used) can also be found in this tables. The signals are

collected in two different dataloggers (due to some practical problems, two are used). The NETDAQ

2645A and the HYDRA 2625A, both manufactered by Fluke. For more details about the dataloggers

see appendix B. In figure 3.2 the path is visualised, the signals follow before they are saved on disk.

PS

61.N,

pag 8

(10)

synchronisation puts sensors netdaq saving computerl datatranstormation visualisation trIggerpuis

...

.. saving computer 2 datahonstorrnation visualisation hydra sensors

figure 3-2, signal path from sensor to disk

The two dataloggers are coupled by means of a synchronisation puls generated in the Hydra. The

sample interval is 9 sec. A external synchronisation puls is used for creating a common signal on both

loggers. This synchronisation signal is used in two ways. It is used in combining the two separate

datafiles into one and it marks the beginning and end of a fault simulation.

The software of the NETDAQ is running under the standard Windows interface. For the control of the

Hydra a custom program is used developed at Van Buren van Swaay. This program runs under

CONCURRENT DOS.

pag 9

Sensor

PI

Parameter

NH , Oilpressure

Description

Compressor oilpressure, 1-pipe and schrader

in + pipe oilpressure safety

Sensortype

E&H Cerabar PMC 133

0/16 bar : 24V DC

Signal

4-20 mA

Datalogger

Netdaq 2645A (Fluke)

Channel number

101

Data transformation

Remarks

Sensor

P2

Parameter

pc; , Suction pressure

Description

Suction pressure compressor, 1/4" flare

schrader on surface suction pipe closing valve

Sensortype

B&H 10 bar

Signal

0-10 V

Datalogger

Netdaq 2645A (Fluke)

Channel number

106

Data transformation

-Remarks

(11)

skr

TU Delft

measurements on a refrigeration system

=1=02

p4,,

0

Sensor

P3

Parameter

pm , discharge pressure compressor

Description

Compressor discharge pressure, 1/4" flare

schrader on surface outlet pipe closing valve

Sensortype

E&H Cerabar PMC 133

0/20 bar ; 24V DC

Signal

4-20 mA

Datalogger

Netdaq 2645A (Fluke)

Channel number

103

Data transformation

-Remarks

-Sensor

P4

Parameter

Pcondo , pressure after condensor

Description

Condensor liquid out 1-piece and schrader on

connection for the water control valve

Sensortvpe

B&H 20 bar

Signal

0- WV

Datalogger

Netdaq 2645A (Fluke)

Channel number

107

Data transformation

Remarks

-Sensor

P.5

Parameter

, pressure before expansion valve

Description

Liquid before expansion valve, additional 1/4"

Hare schrader on liquid pipe

Sensortype

B&H 20 bar

Signal

0- 10 V

Datalogger

Netdaq 2645A (Fluke)

Channel number

105

Data transformation

Remarks

Sensor

P6

Parameter

pevi , pressure before evaporator

Description

Inletpressure evaporator, additional 1/4" flare

schriider on pipe

Sensor-type

B&H 10 bar

Signal

0- 1() V

Datalogger

Netdaq 2645A (Fluke)

Channel number

104

Data transformation

(12)

goi

TU Delft

measurements on a refrigeration system

van Buuren -van Swaay

pag 1

I

Sensor

Parameter

pcd , carterpressure

Description

Caterpressure, T-pipe and schriideron

connection of oilpressure safety

Sensortype

E&H Cerabar PMC 133

0- 16 bar ; 24V DC

Signal

4 -

20 mA

1

Datalogger

Netdaq 2645A (Fluke)

Channel number

102

Data transformation

Remarks

-Sensor

TO

Parameter

, room temperature

Description

Roomtemperature

Sensortype

Cu - Const insertion sensor (1.5 mm)

Signal

TK

Datalogger

Hydra 2625A (Fluke)

Channel number

5

Data transformation

function = Type T thermocouple

Remarks

Sensor

TI

Parameter

t0,1

, oil temperature

Description

Oil temperature carter, tight coupling on relief

valve

Sensortype

Cu - Const insertion sensor (1.5 mm)

Signal

TK

Datalogger

Hydra 2625A (Fluke)

Channel number

6

Data transformation

function = Type T thermocouple

Remarks.

Sensor

T)

Parameter

tc;

, suction temperature (freon) compressor

Description

Suction temperature freon gas, tight coupling

on plate burn out filter

Sensortype

Cu -

Const insertion sensor (1.5 mm)

Signal

TK

Datalogger

Hydra 2625A (Fluke)

Channel number

7

Data transformation

function = Type T thermocouple

(13)

-pktr

TU Delft

measurements on a refrigeration system

van Buuren -van Swaay

'ag 12

Sensor

T3

Parameter

trd , outlet temperature (freon) compressor

Description

Outlet temperature, surface sensore on pipe

Sensortype

NiCr - Ni surface sensor

Signal

TK

Datalogger

Hydra 2625A (Fluke)

Channel number

8

Data transformation

function = Type K thermocouple

Remarks

-Sensor

T4

Parameter

tam& , temperature freon after condensor

Description

Liquid temperature after condensor, surface

sensor on pipe

Sensortype

NiCr - Ni surface sensor

Signal

TK

Datalogger

Hydra 2625A (Fluke)

9

Channel number

Data transformation

function = Type K Thermocouple

Remarks

-Sensor

T5

Parameter

t,pi , temperature freon before expansion valve

Description

Liquid temperature before expansion valve,

1

surface sensor on pipe

Sensortype

NiCr - Ni surface sensor

Signal

TK

Datalogger

Hydra 2625A (Fluke)

Channel number

10

Data transformation

function = Type K thermocouple

iernarks

' Sensor

T6

Parameter

t; , temperature freon before evaporator

Description

Liquid - Gas temperature at the entrance of

evaporator

Sensortype

NiCr - Ni surface sensor

Signal

TK

Datalogger

Hydra 2625A (Fluke)

Channel number

15

Data transformation

function = Type K thermocouple

Remarks

(14)

TU Delft

measurements on a refrigeration system

CI=

pag, 13

Sensor

17

Parameter

takc , temperature inside carter

Description

Cartertemperature, tight coupling on blind nut

carter

Sensortype

Cu - Const insertion sensor (1.5 ram)

Signal

TK

Datalogger

Hydra 2625A (Fluke)

Channel number

16

Data transformation

function = Type T thermocouple

Remarks

Sensor

T8

Parameter

te,,,i

, inlet temperature cooling water

Description

Inlet temperature cooling water

Sensonve

PT -

100 insertion sensor

Signal

P1100

Datalogger

Hydra 2625A (Fluke)

Channel number

1

Data transformation

function = 4 terminal RID , RTD RO = 100

Remarks

Sensor

T9

Parameter

t,,,, outlet temperature cooling water

Description

Cool ingwater outlet temperature

Sensortype

PT -

100 insertion sensor

Signal

PT100

Datalogger

Hydra 2625A (Fluke)

Channel number

2

Data transformation

function = 4 terminal RTD, RTD RO = 100

Remarks

-Sensor

110

Parameter

tow; , inlet temperature cold water

Description

Coldwater inlet temperature

Sensortype

PT -

100 insertion sensor + F25

Signal

RS 232

Datalogger

Hydra 2625A (Fluke)

Channel number

3

Data transformation

function = 4 terminal RID, RID RO = 100

Remarks

Sensor

T11

Parameter

tchw, . outletlet temperature cold water

Description

Coldwater inlet temperature

Sensortype

PT -

100 insertion sensor + F25

Signal

RS 232

Datalogger

Hydra 2625A (Fluke)

Channel number

4

Data transformation

function = 4 terminal RTD, RTD RO = 100

(15)

T U Delft

measurements on a refrigeration system

CM=

pag 14

Sensor

Fl

Parameter

(1), , flow freon

Description

Flow freon (R22). Venturi in elongolated pipe.

Valve after venturi !

Sensortype

Tekflo venturi VN20 + AP transmitter

range 0-3 mwk

Signal

0 -

20 rriA

Datalogger

Netdaq 2645A (Fluke)

Channel number

108

Data transformation

Remarks

Sensor

F2

Parameter

flow cooling water

Description

Flow cooling water, E&H Discomag in pipe

Sensorpe

E&H Discomag

range 0 - 6 m3/h

Signal

4 -

20 mA

Datalogger

Hydra 2625A (Fluke)

Channel number

17

Data transformation

function = VDC 300 mV Range

Scale Factor = 0.0375

Offset = -1.5

Remarks

Sensor

F3

Parameter

kn. , flow cold water

Description

Flow cold water, F&P in workload simulator

Sensortype

F&P

range 0 - 30 m3/h

Signal

4 -

20 mA

Datalogger

Hydra 2625A (Fluke)

Channel number

18

Data transformation

function = VDC 300 mV Range

Scale Factor = 0.0001875

Offset = -0.0075, data signal * 1000 in comp

Remarks

Sensor

El

Parameter

Pe. ,

compressor electrical power

Electrical power compressor engine

Electrical wiring on power net

Description

Sensortype

power sensor

0 - 100 kW

Signal

0- 100 mA

Datalogger

Netdaq 2645A (Fluke)

Channel number

109

Data transformation

(16)

okk

TU Delft

measurements on a refrigeration system

4.

Measurement program

In this chapter the measurement program is explained

4.1.

Choice of conditions and faults

The aim of the measurement program is to cover as much as possible the whole working range.' of the

refrigeration system while introducing the different faults. Therefore the choice has been made to

introduce the faults at four different working points of the system. These working points are chosen

such that most of the working range of the compressor is covered. The following conditions have been

chosen

4 for detailed measurents over the whole working range, see van der Heiden OEMO 94/12

5 A,B.C,D = working point of system, 1..40 is a unique measurement number

In table 4.2 the different simulated faults are given. These faults could easely introduced, with only

simple modifications on the refrigeration system.

pag 15

Code

T,

Teond Peonil (1)rnew CDehw Tchnelicw Tevichw

A

3°C

40°C

15.32 bar

2.02 in A

11.1 rn3/h

13.1 °C

11.8 °C

B

9 °C

40 °C

15.32 bar

2.60 m3/h

11.2 m A

13.2 °C

20.5 °C

C

9°C

45 "C

17.30 bar

2.02 m3/h

11.2 m3/h

13.3 °C

19.2°C

D

3°C

45°C

17.20bar

1.62 m3/h

11.2 m3/h

13.5°C

11.0°C

fault number Place

Fault

Action

Code5

Compressor

1

suction side

increased resistance

suction line valve

Al, B18

C28, D12

2

discharge side

increased resistance

discharge line

valve

A2, B19

C29, D13

3

power main

one phase

disconnected

removal of one

phase

B44

Condensor

4

water side

too much cooling

water

water supply

A3, B20

C33, D14

5

water side

too little cooling

water

water supply

A40, B21

C34, D15

Liquid line

Expansion valve

6

liquid line

increased resistance

liquid line valve

A5, B22

C32. D37

7

valve

no pressure

correction

close press. con.

line

A41, B26

C36, DIO

8

valve

stuck

open bypass

valve

A8, B25

C35, D39

Evaporator

9

refrigerant side

leakage over

evaporator

by-pass

A7, B24

C31, DII

10

water side

increased resistance

water contol

valve

A6, B23

C30, D38

(17)

ckf,,

TU Delft

measurements on a refrigeration system

4.2.

Location of the different bypass piping and valves

In figure 4.1 the location of the different valves which are used to simulate the different faults is given.

The dotted lines give the extra valves and piping which are installed to simulate several faults. These are

not part of the original refrigeration system, but are specially installed for this measurement program.

The code of each location corresponds with the numbers given in table 4.2. The automatic flow control

of the cooling water has been shut off during the measurents.

F 10

Dip

F 8 F 9

X*

0

figure 4-1 locations where the different faults are introduced

0

X

disconnected

(18)

TU Delft

measurements on a refrigeration system

van Buuren-van Swaay

(19)

Olt(

TU Delft

measurements on a refrigeration system

5.

Actual measurements

In this chapter (which is the main body of the report) the actual results of the measurements are given.

First general data is given such as initial values, correcttion factors and the formulas used in the

calculations. After this the measurents are given in a graphical way (looking at 10,000 numbers can be

very boring).

5.1.

Post processing of the measured data

5.1.1.

Pressure measurements

When a refrigeraton system has been opened, the system must be tested afterwards for leaks. This

system has been tested at a pressure of 10 bar for about 24 hours. It is clear that all pressure sensors

must give a reading of 10 bar when the system is tested. This procedure of testing gives a handy tool for

checking the pressure sensors. In table 5.1

the actual readings are given of the sensors and the

correction factors derived from it. These correction factors ensure that all the sensors give the same

relative reading.

5.1.2.

Temperature measurements

For this experiment these are not extra calibrated.

van Buuren -van Swaay

pag 18

Channel

Parameter

Value at testing

Correction

factor

Value at testing 0 bar

101

Oilpressure compressor

9.96 bar

+0.04 bar

0.04

102

Carter pressure

9.89 bar

+0.11 bar

-0.03

103

Outlet pressure compressor

9.99 bar

+0.01 bar

-0.03

104

Pressure before evaporator

9.95 bar

+0.05 bar

-310'3

105

Pressure before expansion valve

9.95 bar

+0.05 bar

210

106

Suction pressure compressor

9.89 bar

+0.11 bar

1iO3

(20)

se '`,1

TU Delft

5.1.3.

Calculation of the freon flow

The freon flow through the system is measured by a venturi in the connection between the condensor

and the expansion valve. The venturi transforms the velocity of

theLwata

to a pressure difference. This

pressure difference can be measured and transformed in a velocity of the freon. The venturi has been

calibrated with water and must be re-calculated for the use of freon.

According to Bemoulli6 the following relation is valid

CI)freon CD

treon =

VI

2

Amin

2

A

11111X

measurements on a refrigeration system

-pf(PI P2)

VP!

P 2 freon

kgis

figure 5-1, venturi

Finally the following formula emerges for calculating the freon flow :

42.75

3

0

For the calculation of the specific mass of freon the following formula is used :

Pr P,

van Buurcn -van Swaay

The pressure signal has a bias, this bias is calculated by looking at the signal while the installation is not

runnin

.

Warning : In many cases the flow measurement is very inaccurate because of the occurence of bubbles

in the fluid. These bubbles ruin the flow measurement. The occurence of bubbles is given in the

meaurements.

6 for more information see : Stroming en Warmteoverdracht I. Ir. H. Leidens, TU-Delft

pag 19

Channel

Parameter

Value at testing

Correction factor

108

mass flow freon

-0.73188

0.71388

log(l / p)= 130 +13, log(p)+ (321)+1311)3

130=

3.11554

13=

10

2

132= 3.1469 10

(21)

TU Delft

For the calculation of the constant in the formula the following method is used.

The enthapy of the freon at the outlet of the condensor and the enthapy at the outlet of the evaporator

are compared with each other. This gives a increase of enthalpy of the freon per kg over the evaporator.

Also the decrease of the enthalpy of the cold water is calculated over the evaporator. Since the

flow

of

the cold water is known, the flow of the freon can be easly calculated from a energy balance over the

evaporator.

This is done for four different points.

corr_ factor =

Ire'

3600

VAPJ

5.1.4.

Measurement faults

A wrong measured signal wiil be given the value

of -1

measurements on a refrigeration system

pug 20

Measurement number

day 23-06-1995

A tch,

°C

Och,

ml/h

Pwaler

kg/m3

Specific heat water

kJ/kg

Cooling power

kJ/s

100

3.6

11.1

998

4.18

46.3052

200

4

11.2

998

4.18

51.9137

700

4.8

11.2

998

4.18

62.2964

850

3.2

11.2

998

4.18

41.5309

Measurment

number

peowo

bar

tcon,k,

°C

Pei

bar

tn

°C

1-1,do

kJ/kg

FIci

kJ/kg

Flow freon

kg/s

corr

factor

100

15.50

38.90

5.46

11.20

248.58

411.57

0.284

42.539

200

15.83

39.50

5.75

14.50

250.12

414.72

0.315

44.944

700

17.28

43.30

6.71

19.20

254.69

416.63

0.384

46.176

850

17.41

42.40

5.66

11.90

254.48

413.05

0.261

38.779

(22)

ttr

T U Delft

5.2.

Measurements on 21 - 06 - 1995

measurements on a refrigeration system

For detailed information about the measurements on day 21-06-1995 see appendix C

row numers are the row number in the excel sheet, not the row numbers of the ascii files !

van Buuren -van Swaay

pag 2 I

a

Filenames

dag21.xls

Excel 5.0 worksheet

dag21.txt

Ascii (spaces as delimiters)

Begin time

10:28:49

End time

15:59:52

Number of

measurements

2209

Measured faults

Al (11:59 until 13:40)

608- 1281

Compressor suction side, increased resistance

A2 (14:00 until 14:40)

1414- 1681

Compressor discharge side, increased

resistance

A3 (14:59 until 15:45)

1808 - 2115

(23)

r, CD

15

14

100

14

0

time Hydra

500

1000

1500

2000

2500

temperature cooling water in

0

500

1000

1500

2000

2500

measurement number dag 21-06-1995

120

35

cr)

30

ci

r--) 25

(/) a)

20

cr)

-0

15

500

1000

1500

2000

2500

temperature cooling water out

...

..

...

r_F-11

(24)

15

co 14

(.9

13

-to

a)

a)

12

-co

011

-10

0

12

25

cn 24

cia) 23

a)

22

73 21

6

-200

kreiu"Senar

temperature cold water in

rwmwmmworrnmrew-wrntncirvev:imitAliwitymarty,INANthmovvvuult,,rumAmiv

500

1000

1500

2000

2500

temperature cold water out

1000

environmental temperature

1500

500

1000

1500

measurement number dag 21-06-1995

2000

2500

2000

2500

500

0

(25)

50

(I) 40

c)a) 30 a) ELL) 20 cs) a)

temperature oil carter

1000

1500

suction temperature compressor

2000

2500

Co

0

73 Cr)

10

o

15

500

o

500

1000

1500

2000

2500

discharge temperature compressor

80

"(.-3

0 60

a) .15)

a) 40

200

500

1000

1500

2000

2500

(26)

a)

a) 25

ta)

-0

20

15

10

oo

III

freon temperature after condensor

45

u) 40

ow 35

qtrirm

500

1000

1500

2000

2500

measurement number dag 21-06-1995

L-12 30 cy) ca)

13 25

200

...

500

1000

1500

2000

2500

freon temperature before expansion valve

40

35

0

0 30

0

500

1 000

1 500

2000

2500

(27)

co a)

50

co 40

ow 30

cn

a) 20

CD)

11.5

100

HI

carter temperature

2000

2500

500

1000

1500

measurement number dag 21-06-1995

2000

2500

I I I

'I

2000

2500

a) co>" Ca o.) Ca 1. a)

73 10

0

10

8

6

co

4

2

o

500

1000

1500

flow cooling water

12

500

1000

1500

(28)

ii

8

synchronisation puls hydra

500

1000

oil pressure compressor

...

...

1500

2000

2500

500

1000

1500

2000

2500

time Netdaq

2000

2500

500

1000

1500

measurement number dag 21-06-1995

20

15

10

-6

5

18

0 16

1

14

12

(29)

15

5

0

6

11)

0

4

0

111111101111111111111001....

111111111111M111.111

carter pressure compressor

discharge pressure compressor

freon pressure before evaporator

500

1000

1500

2000

2500

500

1000

1500

2000

2500

measurement number dag 21-06-1995

500

1000

1500

2000

(30)

1

16

10

16

_14

.5z)

8-10

freon pressure before expansion valve

500

1000

1500

2000

2500

suction pressure compressor

0

500

1000

1500

2000

2500

measurement number dag 21-06-1995

8

7

40

500

1000

1500

2000

2500

(31)

0.5

0

-0.5

0

10

20

15

5

oo

500

1000

1500

2000

2500

pressure meausurement flow freon

electrical power compressor

synchronisation puls netdaq

500

1000

1500

2000

1 1

2500

500

1000

1500

2000

2500

(32)

1

0.8

0.6

0.4

0.2

0

1100

1080

1060

cn

E 1040

cr)

1020

1000o

0.4

0.35

0.3

-g0.25

0.2

0.150

corrected measurement flow feon

specific weight freon

500

1000

1500

r4t(0

2000

2500

500

1000

1500

2000

2500

flow freon

...

500

1000

1500

measurement number dag 21-06-1995

2500

(33)

TU Delft

5.3.

Measurements on 22 - 06 - 1995

measurements on a refrigeration system

row numers are the row number in the excel sheet, not the row numbers of the ascii files !

For detailed information about the measurements on day 22-06-1995 see appendix C

van Buuren -van Swaay

pag 32

Filenames

dag22.x ls

Excel 5.0 worksheet

dag22.txt

Ascii (spaces as delimiters)

Begin time

09:00:08

End time

16:59:50

Number of

measurements

3199

Measured faults

A5 (09:45 until 10:30)

307 - 606

Liquid line, increased resistance

A6 (11:30 until 12:40)

1006- 1472

Increased resistance cold water line

A7 (13:10 until 14:21)

1672 - 2146

Leakage over evaporator

A8 (15:00 until 16:59)

2407 - 3204

Expansion valve stuck, open by-pass

Remarks

Power measurement off

from 09:00:08 until

09:19:38. Restart on

09:19:38

No data available after

16:59 of fault A8

(34)

16

120

40

co 35

(7.) 30

(I) oci,

25

.6).

Q) 20

-0

15

time Hydra

500

1000

1500

2000

2500

3000

temperature cooling water out

0

500

1000

1500

2000

2500

3000

measurement number dag 22-06-1995

10

500

1000

1500

2000

2500

3000

temperature cooling water in

14.5

.E.5

14

Tf)

(3u) 13.5

er,

13

a)

-0

13111 a

12.5

(35)

0

16

a)

0 14

a)

t

a))

12

-0

100

26

g) 22

-0

21

0

),,n.r...rassenauoiriaiuro.4 lei...NJ

temperature cold water in

500

1000

1500

2000

2500

3000

temperature cold water out

500

1000

1500

environmental temperature

2000

500

1000

1500

2000

measurement number dag 22-06-1995

2500

3000

16

n 14

o 12

a) 10

2500

3000

(36)

cT) 10

80

cf)

5 70

-di (-),) 60

2 50

ci)

-0 40

30

2500

3000

500

1000

1500

2000

discharge temperature compressor

2500

. ..

3000

0

500

1000

1500

2000

2500

3000

measurement number dag 22-06-1995

50

temperature oil carter

...

t.

(7)

`-') 40

a) tzT) cu

-0 35

300

500

1000

1500

2000

suction temperature compressor

20

(f)

(37)

I

TD

0

Ai-40

co .:(72 30 C-) co a)

t20

a) -c)

40

cn

o30

C))

cu 20

-0

0

S.

0

500

freon temperature after condensor

1000

1500

2000

measurement number dag 22-06-1995

2500

3000

100

500

1000

1500

2000

2500

3000

freon temperature before expansion valve

100

500

1000

1500

2000

2500

3000

freon temperature before evaporator

(38)

_ a

0

a) 35

cr)

73 30

250

3

c- o

E

15

10

carter temperature

500

1000

1500

2000

2500

3000

flow cooling water

flow coldwater

500

1 000

1500

2000

2500

3000

measurement number dag 22-06-1995

50

u) 45

500

1 000

1500

2000

2500

3000

(39)

20

15

10

-6

>

120

9

4

+40

synchronisation puls hydra

oil pressure compressor

0

a) cr)

0

5

20

18

16

14

500

2500

3000

1000

1500

2000

measurement number dag 22-06--1995

0

500

1500

time Netdaq

3000

2500

1000

2000

500

1000

3000

2500

1500

2000

(40)

I.

7

s: 10

8

7

0

carter pressure compressor

500

1000

...

1500

freon pressure before evaporator

2000

2500

3000

0

500

1000

1500

2000

measurement number dag 22-06-1995

2500

3000

(7)

a

4

0

500

1000

1500

2000

2500

3000

discharge pressure compressor

16

+.040.4 En

14

17-) *el)" .51.5 12

(41)

15

5

7

6

_c)

5

4

16

14

8

0

freon pressure before expansion valve

500

1000

1500

2000

2500

3000

suction pressure compressor

500

1000

1500

2000

2500

3000

pressure after condensor

0

500

1000

1500

2000

2500

3000

(42)

1

0.5

1

o

A

pressure meausurement flow freon

500

1000

1500

2000

2500

3000

electrical power compressor

20

15

10

500

1000

1500

2000

2500

3000

synchronisation puls netdaq

20

15

10

5

0o

500

1000

1500

2000

2500

3000

(43)

1 1

0.8

0.6

T.C2

z.10.4

0.2

1120

1100

1080

lip 1060

1040

0.6

0.2

500

1000

A

corrected measurement flow feon

1500

specific weight freon

2000

2500

3000

0

500

1000

1500

2000

2500

3000

flow freon

500

1000

1500

2000

2500

3000

measurement number dag 22-06-1995

woNti

(44)

114,

TU Delft

5.4.

Measurements on day 23-06-1995

measurements on a refrigeration system

row numers are the row number in the excel sheet, not the row numbers of the ascii files !

For detailed information about the measurements on day 23-06-1995 see appendix C

van Buuren -van Swaay

a

pag 43

Filenames

dag23.xls

Excel 5.0 worksheet

dag23.txt

Ascii (spaces as delimiters)

Begin time

08:55:17

End time

16:58:53

Number of

measurements

3225

Measured faults

D 10 (11:35 until 13:35)

1071 - 1871

No pressure correction

D 11 (13:45 until 14:16)

1938 -2145

Leakage over evaporator

DI2 ( 14:26 until 15:06)

2211 -2478

Suction line increased resistance

D13 (15:23 until 15:54)

2591 - 2798

Discharge line, increased resistance

D14 (16:05 until 16:27)

2871 -3018

Too much cooling water

D15 (16:34 until 16:54)

3065 - 3198

Too little cooling water

Remarks

first set of data are the

four different working

points (A,B,C,D)

A (8:58)

25

B (09:20) 171

C (10:26) 611

D (10:53) 791

Bulb is re-placed above

the by-pass pipe, see

pictures.

(45)

16

14

a) (r)

12

0

-10

14

120

40

-a

100

11111 MI

...

500

1000

time Hydra

temperature cooling water in

1500

temperature cooling water out

2000

2500

3000

500

1000

1500

2000

2500

3000

measurement number dag 23-06-1995

500

1000

1500

2000

2500

3000

(46)

0

-ts12

50

16

6

25

u) 24

oa) 23

a)

w 22

ro) a) 773 21

200

temperature cold water in

...

1500

environmental temperature

500

1000

1500

2000

measurement number dag 23-06-1995

500

1000

1500

2000

2500

3000

temperature cold water out

2500

3000

0

500

1000

2000

2500

3000

(47)

cs)

la

5

...

temperature oil carter

7

0

500

1000

1500

2000

2500

3000

measurement number dag 23-06-1995

25

(,) 20

50

...

100

500

1000

1500

2000

2500

3000

suction temperature compressor

500

1000

1500

2000

2500

3000

discharge temperature compressor

90

80

. ...

c_)

(-0 70

a) a)

60

...

50

(48)

0

40

a)

0 30

cr) a) ra)

a) 20

-o

100

40

15

500

1000

freon temperature after condensor

1500

freon temperature before expansion valve

freon temperature before evaporator

2000

500

1000

1500

2000

measurement number dag 23-06-1995

2500

3000

500

1000

1500

2000

2500

3000

2500

3000

(49)

a

50

..9 40

a) cn

a) 30

a)

cr)

a)

-0 20

10.5

500

1000

1500

2000

2500

3000

measurement number dag 23-06-1995

100

carter temperature

10o

10

8

6

4

2

12

11.5

500

1000

1500

2000

2500

3000

flow cooling water

....

o

500

1000

1500

2000

2500

3000

flow coldwater

ipmiiii

MEW]

11

(50)

0

20

18

12

10

synchronisation puls hydra

...

oil pressure compressor

0

500

1000

1500

2000

2500

3000

measurement number dag 23-06-1995

0

500

1000

1500

2000

2500

3000

time Netdaq

9

8

_CI

7

tfs

6

5

10

15

20

-5

5

0-500

1000

1500

2000

2500

3000

(51)

18

-16

10

40

carter pressure compressor

discharge pressure compressor

1500

2000

2500

3000

freon pressure before evaporator

500

1000

1500

2000

measurement number dag 23-06-1995

2500

3000

0

500

1000

500

1000

1500

2000

2500

3000

(52)

15

6

5

18

16

(-314

0

40

freon pressure before expansion valve

...

500

1000

1500

2000

2500

3000

suction pressure compressor

500

1000

...

1500

pressure after condensor

2000

2500

...

3000

500

1000

1500

2000

2500

3000

(53)

I.

0.5

1

o

2015

-Zr=

t 10

>

Ta.5

5-0

0

A:1=mm

0

500

1000

pressure meausurement flow freon

500

1000

1500

2000

2500

3000

electrical power compressor

1500

synchronisation puts netdaq

500

1000

1500

2000

2500

3000

measurement number dag 23-06-1995

10

5

2000

2500

(54)

0

0o

1120

(-1100

1080

cg 1060

1:5)

1040

1020

-0

0.5

0.4

0.3

0.2

0.10

corrected measurement flow feon

411nr----*--liAA

A ivvvvy

500

1000

1500

2000

2500

3000

specific weight freon

500

1000

1500

2000

2500

3000

flow freon

500

1000

1500

2000

2500

3000

measurement number dag 23-06-1995

(71)

0.8

0.6

0.4

'

0.2

03 I.

...

(55)

TU Delft

5.5.

Measurements on day 26-06-1995

measurements on a refrigeration system

van Buuren -van Swaay

row numers are the row number in the excel sheet, not the row numbers of the ascii files !

For detailed information about the measurements on day 26-06-1995 see appendix C

pag 54

Filenames

dag26.xls

Excel 5.0 worksheet

dag26.txt

Ascii (spaces as delimiters)

Begin time

12:28:17

End time

17:44:11

Number of

measurements

1621

Measured faults

BI6 (12:28 until 13:59)

6 - 616

compressor, increased resistance suction line

B18 (15:16 until 16:07)

639 - 979

compressor, increased resistance suction line

B19 (16:26 until 17:06)

I 105 - 1372

compressor, increased resistance discharge line

Remarks

From 13:59 until 15:16

no data available due to

going down of the

electrical net

(56)

17

16

0

ul)

1 5

14

0

-= 13

14

S' 13.5

13

a) a) cs)

4=9 1 2.5

120

120

time Hydra

200

400

600

800

1000

1200

1400

1600

temperature cooling water in

200

400

600

800

1000

temperature cooling water out

1200

1400

1600

40

..._<72 30 a) c_) a) 13.)

ty-)20

a)

-o

100

200

400

600

800

1000

1200

1400

1600

(57)

35

u) 30

a) 6.) a)

25

0

200

temperature cold water in

1

200

400

600

800

1000

environmental temperature

1200

I I I I

400

600

800

1000

1200

measurement number dag 26-06-1995

1400

1600

1400

1600

100

200

400

600

800

1000

1200

1400

1600

(58)

1

7154

600

800

1000

1200

1400

1600

suction temperature compressor

I-I I r r I

50

80

0 60

a) 40

200

...

200

400

600

800

1000

1200

1400

1600

discharge temperature compressor

200

400

tic

1

temperature oil carter

60

(r)

-(7) 40

20

0

0

200

400

25

I i

S' 20

U) 15

a)

1 0

1400

1600

600

800

1000

1200

(59)

a)

2 25

a)

-° 20

150

40

35

a)-(-)u, 30

0

25-cr)

-cs 20

150

oo

200

400

600

800

1000

1200

1400

1600

freon temperature before expansion valve

200

400

600

800

1000

1200

1400

1600

freon temperature before evaporator

...

200

400

600

800

1000

1200

1400

1600

measurement number dag 26-06-1995

freon temperature after condensor

RI

40

-5

35

7-f)

a-=

0

30

...

20

15

0

ci) 10

(60)

I.

SO

S)

40

C7) ,,F5) 30

a) 20

w 10

-0

0

100

carter temperature

flow cooling water

flow coldwater

12

11.5

I

200

400

600

800

1000

1200

1400

1600

measurement number dag 26-06-1995

200

400

600

800

1000

1200

1400

1600

0

4

T-3.5

3

l'ilsv4Av-fvon."41,.

2.5

20

200

400

600

800

1000

1200

1400

1600

(61)

1

4_

20

15

10

-6

10

1

synchronisation puls hydra

oil pressure compressor

q4ePthitiiim

0

200

400

600

800

1000

1200

1400

1600

1400

200

400

0

600

800

time Netdaq

1600

1200

1000

40

200

400

600

800

1000

1200

1400

1600

measurement number dag 26-06-1995

20

c, 15

E 10

0

(62)

5

200

400

600

800

1000

1200

1400

1600

measurement number dag 26-06-1995

40

carter pressure compressor

9

5

40

200

400

600

800

1000

1200

1400

discharge pressure compressor

1600

1 5

-0 1 0

c't3

5

-0

200

400

600

800

1000

1200

1400

freon pressure before evaporator

1600

..

..

(63)

a) 'CA

0

cr) 0:1

15

10

Aci

\

0

200

400

600

800

1000

1200

1400

1600

suction pressure compressor

freon pressure before expansion valve

...

0

200

400

600

800

1000

1200

1400

1600

measurement number dag 26-06-1995

cv _c] Cd Cd

5

200

400

600

800

1000

1200

1400

1 600

pressure after condensor

16

14

17;

_c2

12

....

9_

TD

a

('Tz's

8

6

(64)

J--1

1

0.5

>

oo

200

400

600

800

1000

1200

1400

1600

electrical power compressor

pressure meausurement flow freon

Afvo"

1

200

400

600

800

1000

1200

1400

1600

measurement number dag 26-06-1995

v-17. a)

0

a) G)

16

14

12

100

20

15

10

200

400

600

800

1000

1200

1400

1600

(65)

o

800

1000

flow freon

-1200

1200

ttle4A44`1611A/erY444/'

1400

1600

1400

1600

200

400

600

800

1000

1200

1400

1600

measurement number dag 26-06-1995

C 12 C

-a)

1050

200

400

600

1

000o

co

0.5

0.4

0.3

-4

kyi-ves."^bAkNitetr.4.4.-.46,-*44.44i1

0

0.1

corrected measurement flow freon

1.5

-a) _c)

0.5

200

400

600

800

1000

S )ecific weight freon

1200

F

1150

)

(66)

4,04.r

TU Delft

5.6.

Measurements on day 27-06-1995

measurements on a refrigeration system

row numers are the row number in the excel sheet, not the row numbers of the ascii files !

For detailed information about the measurements on day 27-06-1995 see appendix C

=ED

pag 65

Filenames

dag27.x Is

Excel 5.0 worksheet

dag27.txt

Ascii (spaces as delimiters)

Begin time

08:58:53

End time

15:59:47

Number of

measurements

2807

Measured faults

B20 (09:18 until 09:45)

too much cooling water

134- 314

B21 (09:52 until 10:19)

too little cooling water

361 - 541

B22 (10:26 until 10:54)

liquid line freon , increased resistance

587 - 774

B23 (11:00 until 11:22) chilled water, increased resistance

814 - 961

B24 (11:30 until 12:10)

leakage over evaporator, opening by-pass

1014- 1281

valve evaporator

B25 (13:00 until 13:14)

expansion valve stuck, opening by-pass valve

1614- 1707

expansion valve

B26 (13:30 until 1401)

no pressure correction, closing valve

1814- 2021

C28 (14:20 until 15:07)

compressor suction side, increased resistance

2147 - 2461

C29 (15:09 until 15:37)

compressor discharge side, increased

2471 - 2661

resistance

C30 (15:39 until 16:00)

chilled water, increased resistance

2674 - 2812

Remarks

Switching from working

point B - C

(14:01 - 14:09)

2021 -2074

(67)

120

40

-(.7) 35 CT) cf()) 30

- 25

735 cY)

73 20

15-0

500

1000

1500

2000

2500

3000

temperature cooling water in

14

11.L111_

500

1000

1500

2000

2500

3000

temperature cooling water out

time Hydra

500

1000

1500

2000

2500

3000

measurement number dag 27-06-1995

14

a)

12

'g

(68)

0

500

1000

temperature oil carter

100041061

discharge temperature compressor

1500

2000

2500

3000

1

...

500

1000

1500

2000

2500

3000

measurement number dag 27-06-1995

0

500

1000

1500

2000

2500

3000

suction temperature compressor

50

U) 40 y_

*i3

30

co

a) 20

...

(1) 10

0

(69)

-40

.1-c_3 35 a)

u) 30

'En 25

-0

20

15

40

L-3 30

a) C)

cT) 20

Cll

1:3 10

0

20

0

1111111111

I

"'III

...

freon temperature after condensor

freon temperature before expansion valve

freon temperature before evaporator

...

500

1000

1500

2000

2500

3000

measurement number dag 27-06-1995

500

1000

1500

2000

2500

3000

0

500

1000

1500

2000

2500

3000

(70)

50

)

40

"5

carter temperature

...

500

1000

1500

2000

2500

3000

flow cooling water

20

500

1000

1500

2000

2500

3000

measurement number dag 27-06-1995

0

500

1000

1500

2000

2500

3000

flow coldwater

12

10

8

co

6

TD

4

2

4

6

8

Cytaty

Powiązane dokumenty

The comparison of vascular plant species composition of eutrophic deciduous forests in Białowieża Forest and Valday; all species absent in Valday.. and present in less than 1/6

Ustawa z 1 VIII 1909 o odpowiedzialności państwa oraz innych związków za naruszenie obowiązków urzędowych urzędników przy wykonywaniu władzy publicznej (Zbiór ustaw

To the right of the photo is the most important information about the offer: product name, price, badge of Super Seller, average product rating on a scale of 1–5, percentage

[5] and Zhao and Faltinsen [2] are consistent with the present method at small deadrise angles: w i t h decreasing the deadrise angle, the discrepancy between the two solutions

Quantity and quality measurements are performed at the WWTP as part of daily operation. For this study only a small number of measurements is used as indicated in figure 1:

In this paper, a comparison has been presented between remotely sensed bathymetric data obtained with the cBathy algorithm and groundtruth bathymetric data of the

Kühn analysed organic components of ground and paint layers from other paintings by Vermeer using microchemical tests, but apparently no tests were possible on the two samples

• The objective reality in WSS operating are different types of undesirable events which cause the deterioration of water quality (final product) and lower the level