• Nie Znaleziono Wyników

1. Introduction. Let Q(x) denote the largest prime factor of Y

N/A
N/A
Protected

Academic year: 2021

Share "1. Introduction. Let Q(x) denote the largest prime factor of Y"

Copied!
32
0
0

Pełen tekst

(1)

XCV.1 (2000)

On the largest prime factor of integers

by

Chaohua Jia (Beijing) and Ming-Chit Liu (Hong Kong)

1. Introduction. Let Q(x) denote the largest prime factor of Y

x<n≤x+x12

n.

We are interested in a lower bound of Q(x). On the Riemann Hypothesis, one can show that Q(x) > x holds for sufficiently large x.

In 1973, Jutila [11] showed that, for sufficiently large x, Q(x) > x

ϕ

, where ϕ =

23

− ε. Balog [1], [2] improved it to ϕ = 0.772. Balog, Harman and Pintz [3] obtained ϕ = 0.82. Heath-Brown [7] got ϕ =

1112

− ε. Recently, Heath-Brown and C. Jia [8] showed ϕ =

1718

− ε.

In this paper, we use some ideas coming from [5], [6], and [8]–[10] on the sieve method and a delicate application of the estimate of Deshouillers and Iwaniec [4] on the mean value of Dirichlet polynomials and ζ function. Then we can prove the following:

Theorem. Let ε be a sufficiently small positive constant. Then, for suf- ficiently large x, we have

Q(x) > x

2526−ε

.

Throughout this paper, we suppose that ε is a sufficiently small positive constant and that B = B(ε) is a sufficiently large positive constant. We choose ε such that K =

8ε 261

+

ε2



is an integer. Suppose that x (> x

0

(ε)) is sufficiently large,

v = x

2526ε2

, P = x

ε8

, T

0

= x

12ε6

.

Let c, c

1

and c

2

denote positive constants which have different values at different places. m ∼ M means that there are positive constants c

1

and c

2

such that c

1

M < m ≤ c

2

M.

2000 Mathematics Subject Classification: 11N36.

Project supported partially by the Natural Science Foundation of China.

[17]

(2)

We often use M (s) (M standing here for any capital letter except P and L) to denote a Dirichlet polynomial in the form

M (s) = X

m∼M

a(m) m

s

,

where a(m) is a sequence of complex numbers with a(m) = O(1). We also use P (s) to denote

P (s) = X

P <p≤2P

1 p

s

, where p denotes a prime number.

All calculations in this paper can be verified on the PC computer. The paper containing full details is obtainable from the authors.

2. Some preliminary lemmas

Lemma 1. Suppose that M N = v and that M (s), N (s) are Dirichlet polynomials. Let b = 1 + 1/log x, T

1

= log

2B

x. Assume that v/x

12

 M  x

12

. Then for T

1

≤ T ≤ T

0

, we have

2T

\

T

|M (b + it)N (b + it)P

K

(b + it)| dt  log

−B

x.

This is Lemma 1 of [8].

Lemma 2. Suppose that M N L = v and that M (s), N (s) are Dirichlet polynomials,

L(s) = X

l∼L

1 l

s

. Let b = 1 + 1/log x, T

2

=

L. Assume that M  v

1325

, N  v

6.525

. Then for T

2

≤ T ≤ T

0

, we have

2T

\

T

|M (b + it)N (b + it)L(b + it)P

K

(b + it)| dt  log

−B

x.

This can be proved in the same way as in Lemma 2 of [8].

Lemma 3. Suppose that M N DL = v and that M (s), N (s), D(s) are Dirichlet polynomials,

L(s) = X

l∼L

1 l

s

. Let b = 1+1/log x, T

2

=

L. Assume further that M  v

1325

and that N, D

lie in one of the following regions:

(3)

(i) N  v

2.625

, D  N

12

v

6.525

;

(ii) v

2.625

 N  v

17526

, D  N

43

v

2675

; (iii) v

17526

 N  v

5.225

, D  N

34

v

6.525

; (iv) v

5.225

 N  v

6.525

, D  N

−2

v

1325

. Then for T

2

≤ T ≤ T

0

, we have

2T

\

T

|M (b + it)N (b + it)D(b + it)L(b + it)P

K

(b + it)| dt  log

−B

x.

P r o o f. If v/x

12

 M  v

1325

, it can be dealt with by Lemma 1. We assume that M  v/x

12

. Let M (s)P

K

(s) = H(s). Then H = M P

K

 x

12

. It suffices to show

I =

2T

\

T

M

 1 2 + it

 N

 1 2 + it

 D

 1 2 + it

 L

 1 2 + it

 P

K

 1 2 + it

 dt

=

2T

\

T

H

 1 2 + it

 N

 1 2 + it

 D

 1 2 + it

 L

 1 2 + it

 dt

 x

12

log

−B

x.

Applying Cauchy’s inequality and the mean value estimate for Dirichlet polynomials, we obtain

I 



2T

\

T

H

 1 2 +it



2

dt



1

2



2T

\

T

N

 1 2 +it

 D

 1 2 +it



2

L

 1 2 +it



2

dt



1

2

 x

14



2T

\

T

N

 1 2 + it

 D

 1 2 + it



2

L

 1 2 + it



2

dt



1

2

.

If D  N, an application of Theorem 2 of Deshouillers and Iwaniec [4]

yields

2T

\

T

N

 1 2 + it

 D

 1 2 + it



2

L

 1 2 + it



2

dt

 T

ε4

(T + T

12

N

34

D + T

12

N D

12

+ N

74

D

32

).

Thus, when N, D lie in one of the following regions:

(a) N  v

17526

, D  N ;

(b) v

17526

 N  v

5.225

, D  N

34

v

6.525

;

(c) v

5.225

 N  v

6.525

, D  N

−2

v

1325

,

(4)

we have

2T

\

T

N

 1 2 + it

 D

 1 2 + it



2

L

 1 2 + it



2

dt  T

01+ε4

. If D  N, changing the roles of N and D, we get

2T

\

T

D

 1 2 + it

 N

 1 2 + it



2

L

 1 2 + it



2

dt

 T

ε4

(T + T

12

D

34

N + T

12

DN

12

+ D

74

N

32

).

Thus, when N, D lie in one of the following regions:

(d) N  v

2.625

, N  D  N

12

v

6.525

; (e) v

2.625

 N  v

17526

, N  D  N

43

v

2675

, we have

2T

\

T

N

 1 2 + it

 D

 1 2 + it



2

L

 1 2 + it



2

dt  T

01+ε4

.

Combining the regions (a)–(e), we get the regions in Lemma 3. If N, D lie in one of these regions, then

I  x

14

T

012+ε8

 x

12

log

−B

x.

This completes the proof of Lemma 3.

We define w(u) as the continuous solution of the equations

 w(u) = 1/u, 1 ≤ u ≤ 2;

(uw(u))

0

= w(u − 1), 2 < u.

In particular, when 2 ≤ u ≤ 3,

w(u) = 1 + log(u − 1)

u .

Lemma 4. For the function w(u), we have the following bounds:

(i) w(u) ≤ 1/1.763 if u ≥ 2;

(ii) w(u) ≤ 0.5644 if u ≥ 3;

(iii) w(u) ≤ 0.5617 if u ≥ 4.

See Lemma 5 of [8].

Define

(1) g(u) =

 

 

1/u if 1 ≤ u ≤ 2;

(1 + log(u − 1))/u if 2 < u ≤ 3;

0.5644 if 3 < u ≤ 4;

0.5617 if 4 < u.

(5)

We see that for u ≥ 1,

(2) w(u) ≤ g(u).

Lemma 5. Let E = {n : t < n ≤ 2t} and z ≤ t. Set P (z) = Y

p<z

p, S(E, z) = X

t<n≤2t (n, P (z))=1

1.

Then for sufficiently large t and z, we have S(E, z) = w

 log t log z

 t log z + O

 t

log

2

z

 . See Lemma 6 of [8].

3. Sieve method. Let

N (d) = X

x<dp1...pK≤x+x12

P <pi≤2P

1,

A = {n : 2

−K

v < n ≤ 2v, n repeats N (n) times}, A

d

= {a : a ∈ A, d | a},

P (z) = Y

p<z

p, S(A, z) = X

(a, P (z))=1a∈A

1.

If we prove that

(3) Φ = X

x<pp1...pK≤x+x12 P <pi≤2P 2−Kv<p≤2v

1 > 0

then we obtain the assertion of the Theorem.

In the following, we set

B = {n : v < n ≤ 2v}, (4)

X = x

12

 X

P <p≤2P

1 p



K

. (5)

Buchstab’s identity yields

(6) Φ = S(A, (2v)

12

) = S(A, v

251

)− X

v251<p≤v1225

S(A

p

, p)− X

v1225<p≤(2v)12

S(A

p

, p).

By the discussion in Lemma 8 of [8] with the application of Lemma 1, we

(6)

can get the asymptotic formula

(7) X

v1225<p≤(2v)12

S(A

p

, p) = X v

X

v1225<p≤(2v)12

S(B

p

, p) + O

 X

log

2

v

 .

The discussion in Lemma 9 of [8] yields the asymptotic formula (8) S(A, v

251

) = X

v · S(B, v

251

) + O

 X

log

2

v

 . Applying Buchstab’s identity again, we get

(9) X

v251<p≤v1225

S(A

p

, p)

= X

v251<p≤v1225

S(A

p

, v

251

) − X

v251<p≤v1225

X

v251<q<p q< 2v

p



1 2

S(A

pq

, q).

By the discussion in Lemma 9 of [8], the first sum on the right side in (9) has an asymptotic formula.

We therefore need to deal with the sum X

v251<p≤v1225

X

v251<q<p q< v

p



1

2

S(A

pq

, q).

Removing the sum with v

1225

< pq ≤ v

1325

which has an asymptotic formula, we have to consider the sums

1

= X

v251<p≤v1125

X

v251<q<p q<v1225

p

S(A

pq

, q), (10)

2

= X

v6.525<p≤v1225

X

v1325

p <q<p q< v

p



1

2

S(A

pq

, q).

(11)

Now we define the deficiency of a sum as defined in Section 3 of [9]. If

Σ = X

p, q

S(A

pq

, q) ≥ X

v (1 + O(ε)) X

p, q

S(B

pq

, q) − C X log v ,

then we call the constant C the deficiency of Σ. Of course any constant

greater than C can be used as the deficiency of Σ. If a sum has an asymptotic

formula, then its deficiency is 0.

(7)

When we write X

p, q

S(A

pq

, q) ≥ 0 = X v

X

p, q

S(B

pq

, q) − X v

X

p, q

S(B

pq

, q), by Lemma 5 and the prime number theorem, we have

X v

X

p, q

S(B

pq

, q) = (1 + O(ε)) X v

X

p, q

w

 log

pqv

log q

 v

pq log q

= (1 + O(ε))X \ dx x log x

\ w

 log

xyv

log y

 dy y log

2

y

= (1 + O(ε)) X log v

\ dt t

\ w

 1 − t − u u

 du u

2

. Hence, the deficiency is

\ dt t

\ w

 1 − t − u u

 du u

2

.

Similarly, we can define the deficiency of the sum in 2n (n ≥ 2) variables.

4. The deficiency of Ω

1

. Applying Buchstab’s identity twice, we get

1

= X

v251<p≤v1125

X

v251 <q<p q<v1225

p

S(A

pq

, q) (12)

= X

v251<p≤v1125

X

v251 <q<p q<v1225

p

S(A

pq

, v

251

)

X

v251 <p≤v1125

X

v251<q<p q<v1225

p

X

v251<r<q r< 2v

pq



1 2

S(A

pqr

, v

251

)

+ X

v251 <p≤v1125

X

v251<q<p q<v1225

p

X

v251<r<q r< 2v

pq



1 2

X

v251<s<r s< 2v

pqr



1

2

S(A

pqrs

, s),

where p, q, r, s denote prime numbers.

Note that pq < v

1325

, r < q < v

6.525

in the second term in the above for-

mula. By the discussion in Lemma 9 of [8] with the application of Lemma 2,

we see that the first two terms in the above formula have asymptotic for-

(8)

mulas. Therefore we have to deal with the sum

(13) Λ = X

v251<p≤v1125

X

v251<q<p q<v1225

p

X

v251<r<q r< v

pq



1

2

X

v251<s<r s< v

pqr



1

2

S(A

pqrs

, s).

We call the above procedure process I. In the following, we shall discuss the deficiency of Λ in some cases. Firstly qrs > v

1325

is assumed.

I. qrs > v

1325

. Now we discuss the deficiency of

Γ = X

v1375<p≤v2375

X

v1375<q<p q<v1225

p

X

v1325 q



1 2<r<q

r< v pq



1

2

X

v1325 qr <s<r s< v

pqr



1 2

S(A

pqrs

, s).

Let Γ ≥ 0. Then the deficiency of Γ is

23 75

\

1375

dt t

min(t,

\

1225−t)

1375

du u

u

\

12(1325−u)

dr r

×

min(r,12(1−t−u−r))

\

1325−u−r

w

 1 − t − u − r − s s

 ds s

2

23 75

\

1375

dt t

min(t,

\

1225−t)

1375

du u

u

\

12(1325−u)

dr r

×

min(r,12(1−t−u−r))

\

1325−u−r

g

 1 − t − u − r − s s

 ds s

2

≤ 0.021170.

Next we assume qrs < v

1325

. The sum with v

1225

≤ qrs < v

1325

can be removed, so that we can assume qrs < v

1225

. As in [9], we use qrs < v

1325

qrs < v

1225

to mean that the sum with v

1225

≤ qrs < v

1325

is removed.

II. qrs < v

1225

, prs > v

1325

. The corresponding deficiency is

11 25

\

255

dt t

min(t−251

\

,1225−t)

12(1325−t)

du u

u

\

12(1325−t)

dr r

min(r,1225

\

−u−r)

1325−t−r

w

 1 − t − u − r − s s

 ds

s

2

,

(9)

where we used the fact that min

 r, 12

25 − u − r



r 2 + 1

2

 12

25 − u − r



< 1

2 (1 − t − u − r).

We discuss several cases.

1. r < v

2.625

. The corresponding deficiency is

1125

\

7.8 25

dt t

1225

\

−t

1 2(1325−t)

du u

min(u,

\

2.625)

1 2(1325−t)

dr r

r

\

13 25−t−r

w

 1 − t − u − r − s s

 ds s

2

. Applying Buchstab’s identity twice, we get

X

v7.825<p≤v1125

X

v1325 p



1

2<q<v1225 p

X

v1325 p



1 2<r<q r<v2.625

X

v1325 pr <s<r

S(A

pqrs

, s)

= X

v7.825<p≤v1125

X

v1325 p



1

2<q<v1225 p

X

v1325 p



1 2<r<q r<v2.625

X

v1325 pr <s<r

S(A

pqrs

, v

251

)

X

v7.825<p≤v1125

X

v1325

p



1

2<q<v1225

p

X

v1325

p



1 2<r<q r<v2.625

X

v1325

pr <s<r

X

v251<t<s

S(A

pqrst

, v

251

)

+ X

v7.825<p≤v1125

X

v1325 p



1

2<q<v1225 p

X

v1325 p



1 2<r<q r<v2.625

X

v1325 pr <s<r

X

v251<t<s

X

v251<w<t

S(A

pqrstw

, w), where t and w denote prime numbers.

In the second sum above, let m = pq, n = r, d = st. Note that st < s

2

<

r

2

< r

12

v

6.525

. By the discussion in Lemma 9 of [8] with the application of Lemma 3, we can get an asymptotic formula. We deal with the first sum in the same way.

The corresponding deficiency of the third sum is

1125

\

7.825

dt t

1225

\

−t

12(1325−t)

du u

min(u,

\

2.625)

12(1325−t)

dr r

r

\

1325−t−r

ds s

×

s

\

251

dy y

y

\

251

w

 1 − t − u − r − s − y − z z

 dz

z

2

.

(10)

1) ptw > v

1325

. The deficiency is

11 25

\

7.825

dt t

12 25

\

−t

12(1325−t)

du u

min(u,

\

2.625)

12(1325−t)

dr r

r

\

12(1325−t)

ds s

×

s

\

12(1325−t)

dy y

y

\

1325−t−y

g

 1 − t − u − r − s − y − z z

 dz z

2

≤ 0.000108.

We now discuss the remaining cases which are similar to case 1), and write the deficiencies in brackets.

2) ptw < v

1225

, psw > v

1325

(0.000006). 3) psw < v

1225

, prw > v

1325

(0.000010). 4) prw < v

1225

, prt > v

1325

(0.000033). 5) prt < v

1225

, pqt > v

1325

(0.000013). 6) pqt < v

1225

(0.000012).

Therefore the total deficiency in 1. is 0.000182.

2. v

2.625

< r ≤ v

17526

. The corresponding deficiency is

9.4 25

\

17539

dt t

min(t−251

\

,1225−t) max(12(1325−t),2.625)

du u

min(u,

\

17526) max(12(1325−t),2.625)

dr r

×

min(r,1225

\

−u−r)

1325−t−r

w

 1 − t − u − r − s s

 ds s

2

. 1) s < r

23

v

1375

. The corresponding deficiency is

9.4 25

\

17552

dt t

12 25

\

−t max(2.625,2625−3t)

du u

min(u,

\

17526) max(2.625,2625−3t)

dr r

×

13 75

\

23r

1325−t−r

w

 1 − t − u − r − s s

 ds s

2

. We use the discussion in 1. Let m = pq, n = r, d = st. Note that st < s

2

<

r

43

v

2675

. We have to deal with a sum whose deficiency is

9.425

\

52 175

dt t

1225

\

−t max(2.625,2625−3t)

du u

min(u,

\

17526) max(2.625,2625−3t)

dr r

1375

\

23r

13 25−t−r

ds s

×

s

\

251

dy y

y

\

251

w

 1 − t − u − r − s − y − z z

 dz

z

2

.

(11)

We discuss the following cases.

i) ptw > v

1325

(0.000029). ii) ptw < v

1225

, psw > v

1325

(0.000006).

iii) psw < v

1225

, prw > v

1325

(0.000175). iv) prw < v

1225

, prt > v

1325

(0.000041).

v) prt < v

1225

, pqt > v

1325

(0.000015). vi) pqt < v

1225

(0.000013).

Hence, the total deficiency in 1) is 0.000279.

2) s > r

23

v

1375

. The corresponding deficiency is

9.4 25

\

17539

dt t

min(t−251

\

,1225−t) max(12(1325−t),2.625)

du u

min(u,

\

17526) max(12(1325−t),2.625)

dr r

×

min(r,1225

\

−u−r) max(1325−t−r,137523r)

w

 1 − t − u − r − s s

 ds s

2

. We have to estimate the deficiency of the sum

(14) Σ = X

v17539 <p≤v9.425

X

v1325

p



1 2<q< p

v251

v2.625<q<v1225

p

X

v1325

p



1 2<r<q v2.625<r<v17526

X

v1325

pr <s<r v1375

r23 <s<v1225

qr

S(A

pqrs

, s).

We shall employ Buchstab’s identity in the following way:

S(A

pqrs

, s) = S

 A

pqrs

,

 2v pqrs



1

2

 (15)

+ X

s≤k<max s, 2v pqrs



1

2

 S(A

pqrsk

, k), providing pqrs

2

< v.

The first term on the right side of (15) counts prime numbers and the second term counts almost-prime numbers. If pqrs

3

> 2v, then the second term is 0.

An application of the decomposition in (15) yields

Σ = X

v17539 <p≤v9.425

X

v1325 p



1 2<q< p

v251

v

2.625<q<v1225

p

X

v1325 p



1 2<r<q v2.625<r<v17526

(16)

X

v1325 pr <s<r v1375

r23 <s<v1225

qr

S

 A

pqrs

,

 2v pqrs



1

2



(12)

+ X

v17539 <p≤v9.425

X

v1325

p



1 2<q< p

v251 v2.625<q<v1225

p

X

v1325

p



1 2<r<q v2.625<r<v17526

X

v1325 pr <s<r v1375

r23

<s<v1225 qr s< 2v

pqr



1 3

X

s≤k< 2v pqrs



1 2

S(A

pqrsk

, k)

= Σ

1

+ Σ

2

.

We call the above procedure process II. We call Σ

1

the prime term and Σ

2

the almost-prime term.

i) The deficiency of the prime term is

9.425

\

17539

dt t

min(t−251

\

,1225−t) max(12(1325−t),2.625)

du u

min(u,

\

17526) max(12(1325−t),2.625)

dr r

×

min(r,1225

\

−u−r) max(1325−t−r,137523r)

ds

s(1 − t − u − r − s)

≤ 0.019316.

ii) The deficiency of the almost-prime term is

9.425

\

17539

dt t

min(t−251

\

,1225−t) max(12(1325−t),2.625)

du u

min(u,

\

17526) max(12(1325−t),2.625)

dr r

min(r,1225−u−r,

\

13(1−t−u−r)) max(1325−t−r,137523r)

ds s

×

1

2(1−t−u−r−s)

\

s

w

 1 − t − u − r − s − k k

 dk k

2

.

a) kps > v

1325

. The corresponding deficiency is

9.4 25

\

17539

dt t

min(t−251

\

,1225−t) max(12(1325−t),2.625)

du u

min(u,17526,

\

5.525+t2−u) max(12(1325−t),2.625)

dr

r

(13)

×

min(r,13(1−t−u−r))

\

max(1325−t−r,137523r,251−t+u+r)

ds s

×

1

2(1−t−u−r−s)

\

max(s,1325−t−s)

w

 1 − t − u − r − s − k k

 dk k

2

, where we used the fact that

13

(1 − t − u − r) ≤

1225

− u − r.

α) kqrs > v

1325

(0.003549). β) kqrs < v

1225

(0.001012).

b) kps < v

1225

(0.000156).

Thus the total deficiency in 2) is 0.024033 and that in 2. is 0.024312.

3. r > v

17526

. The corresponding deficiency is

17558

\

5 25

dt t

min(t−251

\

,1225−t) max(12(1325−t),17526)

du u

u

\

max(12(1325−t),17526)

dr r

×

min(r,1225

\

−u−r)

13 25−t−r

w

 1 − t − u − r − s s

 ds s

2

.

1) The deficiency of the prime term is 0.017964.

2) The deficiency of the almost-prime term is

17558

\

5 25

dt t

min(t−251

\

,1225−t) max(12(1325−t),17526)

du u

u

\

max(12(1325−t),17526)

dr r

×

min(r,1225−u−r,

\

13(1−t−u−r))

1325−t−r

ds s

×

12(1−t−u−r−s)

\

s

w

 1 − t − u − r − s − k k

 dk k

2

. a) kps > v

1325

(0.000960). b) kps < v

1225

. There are two subcases:

α) kqrs > v

1325

(0.003065); β) kqrs < v

1225

(0.000757).

Therefore the total deficiency in 3. is 0.022746 and that in II is 0.047240.

III. prs < v

1225

, pqs > v

1325

. The corresponding deficiency is

10 25

\

1475

dt t

min(t,

\

1225−t)

12(1425−t)

du u

u−

\

251

1325−t−u

dr r

min(r,1225

\

−t−r)

1325−t−u

w

 1 − t − u − r − s s

 ds

s

2

.

(14)

1. q < v

17526

. Applying process I again and writing m = prs, n = q and d = t, we have to deal with a sum whose deficiency is

1025

\

17546

dt t

min(1225−t,

\

17526)

12(1425−t)

du u

u−

\

251

1325−t−u

dr r

min(r,1225

\

−t−r)

1325−t−u

ds s

×

s

\

1 25

dy y

y

\

1 25

w

 1 − t − u − r − s − y − z z

 dz z

2

. 1) pqw > v

1325

(0.000334). 2) pqw < v

1225

, pqt > v

1325

(0.000006). 3) pqt <

v

1225

(0.000013).

Hence, the total deficiency in 1. is 0.000353.

2. v

17526

< q < v

5.225

.

1) s < q

34

v

6.525

. Applying process I again and writing m = prs, n = q and d = t, we have to deal with a sum whose deficiency is

17558

\

5.225

dt t

min(1225

\

−t,5.225) max(12(1425−t),17526,2625−4t)

du u

u−

\

251

1325−t−u

dr r

×

min(r,1225−t−r,

\

6.52534u)

1325−t−u

ds s

s

\

251

dy y

×

min(y,12(1−t−u−r−s−y))

\

1 25

w

 1 − t − u − r − s − y − z z

 dz z

2

, where we used the fact that s <

1225

−t−r and s <

6.525

34

u ⇒ t+u+r +3s = (t + r + s) + (u + 2s) < 1 ⇒ s <

12

(1 − t − u − r − s).

i) pqw > v

1325

: a) pstw > v

1325

(0.000324); b) pstw < v

1225

, prtw > v

1325

(0.000108); c) prtw < v

1225

, prsw > v

1325

(0.000010); d) prsw < v

1225

, prst >

v

1325

(0.000006); e) prst < v

1225

(0.000363). ii) pqw < v

1225

, pqt > v

1325

(0.000300).

iii) pqt < v

1225

, pqtw > v

1325

(0.000322). iv) pqtw < v

1225

(0.000006).

Hence, the total deficiency in 1) is 0.001439.

2) s > q

34

v

6.525

(0.002038).

Thus the total deficiency in 2. is 0.003477.

3. v

5.225

< q (< v

6.525

).

1) s < q

−2

v

1325

. Applying process I again and writing m = prs, n = q

and d = t, we have to deal with a sum whose deficiency is

(15)

6.8 25

\

5.225

dt t

min(t,

\

1225−t)

5.225

du u

u−

\

251

1325−t−u

dr r

×

min(r,1225−t−r,

\

1325−2u)

13 25−t−u

ds s

s

\

1 25

dy y

×

min(y,12(1−t−u−r−s−y))

\

1 25

w

 1 − t − u − r − s − y − z z

 dz z

2

. i) pqw > v

1325

(0.001662). ii) pqw < v

1225

, pqt > v

1325

(0.000020).

iii) pqt < v

1225

, pqtw > v

1325

(0.000019). iv) pqtw < v

1225

(0).

Therefore the total deficiency in 1) is 0.001701.

2) s > q

−2

v

1325

.

i) The deficiency of the prime term is 0.009678.

ii) The deficiency of the almost-prime term is

6.825

\

5.225

dt t

min(t,

\

1225−t)

5.225

du u

2u−t−

\

251

1325−2u

dr r

min(r,1225

\

−t−r)

1325−2u

ds s

×

1

2(1−t−u−r−s)

\

s

w

 1 − t − u − r − s − k k

 dk k

2

, where we used the fact that min r,

1225

− t − r 

3r

+

23 1225

− t − r 

<

1

3

(1 − t − u − r).

a) kps > v

1325

(0.000006). b) kps < v

1225

, kpr > v

1325

(0.000653). c) kpr <

v

1225

: α) kqrs > v

1325

(0.002882); β) kqrs < v

1225

(0.001823).

Hence, the total deficiency in 2) is 0.015042 and that in 3. is 0.016743.

Therefore the total deficiency in III is 0.020573.

IV. pqs < v

1225

, pqr > v

1325

. The corresponding deficiency is

259

\

13 75

dt t

min(t,

\

1125−t)

1 2(1325−t)

du u

u

\

13 25−t−u

dr r

×

1225−t−u

\

251

w

 1 − t − u − r − s s

 ds

s

2

.

1. r < v

17526

. Applying process I again and writing m = pqs, n = r and

d = t, we have to deal with a sum whose deficiency is

Cytaty

Powiązane dokumenty

Let Z, N, Q be the sets of integers, positive integers and rational numbers respectively, and let P be the set of primes and prime powers. In this note we prove the following

We did not use Watt’s mean-value bound (Theorem 2 of [12]) in prov- ing Lemma 6, because the hypothesis T ≥ K 4 (in our notation) limits the former’s usefulness in this problem to

For any set X let |X| denote its cardinality and for any integer n, larger than one, let ω(n) denote the number of distinct prime factors of n and let P (n) denote the greatest

The proofs of these results depend on the method of Roth and Halber- stam on difference between consecutive ν-free integers, the results of Baker [1] on the approximations of

correcting the arguments properly, both lemmas are no longer useful and we need different new arguments to obtain a correction to Theorem 3 of [9].. Preliminary remarks

[9] —, —, Estimation of exponential sums over primes in short intervals (II ), in: Pro- ceedings of the Halberstam Conference on Analytic Number Theory, Birkh¨auser, 1996, to

But as [7] contained a substantial mistake concerning a multiple exponential sum (which was already picked out by the present author in 1987), the announced estimate P (x) &gt; x

Consequently, the bounds for hyper-Kloosterman sums of prime power moduli proved by Dąbrowski and Fisher [1] (see (19) and (20) in Section 4) can be rewritten and improved for large