• Nie Znaleziono Wyników

[ ] (TW) c 2 t q = c 2 ( (1+( q) 2 ) 1/2 q ) q : I R (t, x) q(t, x) R (TW) c q quasilinear partial differential (TW)

N/A
N/A
Protected

Academic year: 2022

Share "[ ] (TW) c 2 t q = c 2 ( (1+( q) 2 ) 1/2 q ) q : I R (t, x) q(t, x) R (TW) c q quasilinear partial differential (TW)"

Copied!
50
0
0

Pełen tekst

(1)

Ұ࣍ݩԣ೾໛ܕͱͯ͠ͷ೾ಈํఔࣜ

ฏ੒ 31 ೥ 3 ݄ খᖒɹప http://www.ozawa.phys.waseda.ac.jp/index2.html

ۭؒҰ࣍ݩʢۭ࣌ೋ࣍ݩʣॎܕ໛ܕͷߟ࡯ʢʰҰ࣍ݩॎ೾໛ܕͱͯ͠ͷ೾ಈํఔࣜʱҎ Լ [ॎ] ͱͯ͠Ҿ༻͢ΔʣʹҾ͖ଓ͖ԣ೾໛ܕͱͯ͠ͷ೾ಈํఔࣜͷॳظ஋໰୊ͷղ๏ʹब

͍ͯߟ͑Δɻ

̍ɽԣ೾໛ܕɹ

Ұ࣍ݩతͳݭ stringʢ҃͸Ꭲ৚ springʣΛ఻೻͢Δԣ೾໛ܕ transversal wave model ͱ

ͯ࣍͠ͷํఔࣜΛߟ͑Δɿ

(TW)c t2q = c2

(1 + (∂q)2)−1/2∂q

͜͜ʹ q ͸ೋ࣍ݩۭ࣌ R × R ͷ෦෼ྖҬ I × R (I ⊂ R ͸ॳظ࣌ࠁ 0 ΛؚΉ࣌ؒ۠ؒ) ʹ ԙ͚ΔεΧϥʔ৔

q : I × R  (t, x) −→ q(t, x) ∈ R

Ͱ͋Γ (TW)c͸ q ʹब͍ͯͷೋ֊४ઢܕภඍ෼ํఔࣜ quasilinear partial differential equation of second order ͷܗΛऔ͍ͬͯΔɻ࣌ؒ࣠ͷई౓ม׵t −→ c±1t ʹґΓ c = 1 ͷ

৔߹

(TW) t2q = ∂

(1 + (∂q)2)−1/2∂q

Λߟ࡯ͷର৅ͱͯ͠΋ҰൠੑΛࣦΘͳ͍ͷͰɺҎԼͰ͸ઐΒ (TW) ͷղ๏ʹब͍ͯ࿦͡Δɻ

̎ɽҰ֊૒ۂܥ΁ͷؼண

(TW) ͷҰ֊ԽΛਤΔҝɺ৽ͨͳະ஌വ਺ u ٴͼ v Λ

u = ∂tq, v = ∂q (2.1)

ͱஔ͍ͯ (TW) ͔Β৽ͨʹ u, v ͷຬͨ͢΂͖ํఔࣜ (ͷܥ) ΛٻΊΑ͏ɻ(TW) ͸ (2.1) ʹ ґΓ

tu = ∂

(1 + v2)−1/2v

(2.2) ͱද͞ΕΔɻ(2.2) ͷӈลͷඍ෼Λ࣮ߦ͢Δͱ

tu = (1 + v2)−1/2∂v − (1 + v2)−3/2v2∂v

= (1 + v2)−3/2

(1 + v2)− v2

∂v

= (1 + v2)−3/2∂v (2.3)

(2)

ͳΔҰ֊ͷํఔ͕ࣜಘΒΕΔɻͦ͜ͰϕΫτϧ஋ະ஌വ਺

U =

u v



: I × R  (t, x) −→

u(t, x) v(t, x)



∈ R2

Λಋೖ͢Δͱɺͦͷຬͨ͢΂͖ํఔࣜܥ͸

(HS) tU + A(U)∂U = 0

ͷܗͰ༩͑ΒΕΔɻ͜͜ʹ

A(U) =



0 −(1 + v2)−3/2

−1 0



(2.4)

Ͱ͋Γ (HS) ͸ (2.3) ʹՃ͑ͯࣗ໌ͱظ଴͞ΕΔؔ܎ࣜ

tv = ∂u (2.5)

ΛऔΓೖΕͨํఔࣜܥʹ֎ͳΒͳ͍ࣄ͕෼͔Δɻ(2.4) Λର֯Խͯ͠ɺೋͭͷ୯ಠҰ֊ภ ඍ෼ํఔ͔ࣜΒ੒Δ৽͍͠ܥʹॻ͖׵͑Α͏ɻߦྻ A(U) ͷݻ༗஋͸ ±(1 + v2)−3/4Ͱ͋

Δɻ࣮ࡍ

det (λI − A(U)) = det



λ (1 + v2)−3/2

1 λ



= λ2− (1 + v2)−3/2 ͱͳΔ͔ΒͰ͋Δɻͦ͜Ͱ λ< 0 < λ+ͱͳΔ༷ʹ

λ±:=±(1 + v2)−3/4 (2.5)±

ͱஔ͜͏ɻରԠ͢Δݻ༗ϕΫτϧ e±(U) ͸

e±(U) :=

∓(1 + v2)−3/4 1



(2.6)±

Ͱ༩͑ΒΕΔɻ࣮ࡍ

A(U)e±(U) =



0 −(1 + v2)−3/2

−1 0

 ∓(1 + v2)−3/4 1



=

−(1 + v2)−3/2

±(1 + v2)−3/4



=±(1 + v2)−3/4

∓(1 + v2)−3/4 1



= λ±e±(U)

ͱͳΔ͔ΒͰ͋Δɻೋͭͷݻ༗ۭؒRe±(U) ͷ੒͢௚࿨෼ղ R2 = 

±

Re±(U) ʹର͢Δ

U ͷ෼ղΛߟ͑ɺͦͷ܎਺ʹ૬౰͢Δ੒෼Λۭ࣌ೋม਺വ਺ͱͯ͠ v±ͱදͦ͏:

U =

u v



=

±

v±e±(U) = v+e+(U) + ve(U) =

(1 + v2)−3/4(v− v+) v++ v



(3)

͜ΕΑΓ

(1 + v2)3/4u = v− v+ v = v++ v

(2.7)

͕ै͍ v±͸ u ٴͼ v ʹґͬͯ

v±= 1

2(v ∓ (1 + v2)3/4u) (2.8)±

ͱද͞ΕΔɻ೾ಈവ਺ U ͷ (ۭؒ) ಋവ਺ ∂U ͷ Re±(U) ্΁ͷ෼ղ΋ಉ༷ʹߟ͑ɺͦͷ

܎਺ʹ૬౰͢Δവ਺Λ w±ͱදͦ͏ɻ

∂U =

∂u

∂v



=

±

w±e±(U) =

(1 + v2)−3/4(w− w+) w++ w



͜ΕΑΓ

(1 + v2)3/4∂u = w− w+

∂v = w++ w

(2.9)

͕ै͍ w±͸ ∂u ٴͼ ∂v ʹґͬͯ

w± = 1

2(∂v ∓ (1 + v2)3/4∂u) (2.10)±

ͱද͞Εɺߋʹ v±ʹґͬͯ

w± = 1 2

∂(v++ v)∓ (1 + v2)3/4

(1 + v2)−3/4(v− v+)

= 1 2

∂(v++ v)± ∂(v+− v)± [(1 + v2)3/4∂((1 + v2)−3/4)](v+− v)

= ∂v± 3

4(1 + v2)−1v∂v(v+− v)

= ∂v± 3

4(1 + v2)−1(v++ v)(∂v++ ∂v)(v+− v)

= 1

4(1 + v2)−1[4(1 + v2)∂v±∓ 3(v+2 − v2)(∂v++ ∂v)]

= 1

4(1 + v2)−1[4(1 + v2++ 2v+v+ v2)∂v±∓ 3(v2+− v2)∂v+∓ 3(v+2 − v2)∂v]

= 1

4(1 + v2)−1[(4 + v2±+ 7v2 + 8v+v)∂v±∓ 3(v2+− v2)∂v] (2.11)±

ͱද͞ΕΔɻ

u ٴͼ v ͷํఔࣜ (HS) ͔Β (2.7)-(2.10)±ʹґΓ v±, w±ͷํఔࣜΛಋग़͠Α͏ɻA(U) ͷݻ༗஋ λ±͕ (2.5)±Ͱ༩͑ΒΕΔͱӠ͏ࣄ৘ʹؑΈ v±, w±ʹ ∂t+ λ±∂ Λ࡞༻ͤ͞

(4)

(∂t± (1 + v2)−3/4∂)v±

= 1

2(∂t± (1 + v2)−3/4∂)(v ∓ (1 + v2)3/4u)

= 1

2(∂tv ± (1 + v2)−3/4∂v) ∓ 1

2(1 + v2)3/4(∂tu ± (1 + v2)−3/4∂u)

1 2

(∂t± (1 + v2)−3/4∂)(1 + v2)3/4 u

= 1

2(∂u ± (1 + v2)−3/4∂v) ∓1

2(1 + v2)3/4((1 + v2)−3/2∂v ± (1 + v2)−3/4∂u)

3 4

(1 + v2)−1/4v∂tv ± (1 + v2)−1v∂v u

= 1

2(∂u ± (1 + v2)−3/4∂v) ∓1

2(1 + v2)−3/4∂v − 1 2∂u

3

4(1 + v2)−1/4vu∂u − 3

4(1 + v2)−1vu∂v

= 3

4(1 + v2)−1

±(1 + v2)3/4∂u + ∂v uv

= 3

2(1 + v2)−1w

(1 + v2)−3/4(v− v+)

(v++ v)

= 3

2(1 + v2)−7/4(v+2 − v2)w±

= 3 2

1 + (v++ v)2)−7/4

(v2+− v2)w±, (2.12)±

(∂t± (1 + v2)−3/4∂)w±

= 1

2(∂t± (1 + v2)−3/4∂)(∂v ∓ (1 + v2)3/4∂u)

= 1

2(∂t∂v ± (1 + v2)−3/42v) ∓ 1

2(1 + v2)3/4(∂t∂u ± (1 + v2)−3/42u)

1

2[(∂t± (1 + v2)−3/4∂)(1 + v2)3/4]∂u

= 1

2(∂2u ± (1 + v2)−3/42v) ∓ 1

2(1 + v2)3/4

(1 + v2)−3/2∂v

1 22u

3 4

(1 + v2)−1/4v∂tv ± (1 + v2)−1v∂v

∂u

= 1 2

(1 + v2)3/4

(1 + v2)−3/2

∂u

3

4(1 + v2)−1/4v(∂u)2 3

4(1 + v2)−1v∂v∂u

=± 3

2(1 + v2)−7/4v(∂v)2 3

4(1 + v2)−1/4v(∂u)23

4(1 + v2)−1v∂v∂u

=± 3

2(1 + v2)−7/4v(w++ w)2 3

4(1 + v2)−1/4v

(1 + v2)−3/4(w+− w)2 +3

4(1 + v2)−1v(w++ w)(1 + v2)−3/4(w+− w)

=± 3

4(1 + v2)−7/4v

2(w++ w)2− (w+− w)2± (w+2 − w2)

(2.13)±

ΛಘΔɻ

(5)

Ҏ্ΛవΊΔͱ࣍ͷ༷ʹͳΔ:

ɹԣ೾໛ܕ t2q = ∂((1 + (∂q)2)−1/2∂q) (TW) Ұ֊Խ ? u = ∂tq, v = ∂q

Ұ֊૒ۂܥ tu = (1 + v2)−3/2∂v

tv = ∂u (HS)

ର֯Խ

ඍ෼ଛࣦফ໓Խ

?

v± = 1

2(v ∓ (1 + v2)3/4u)

(1 + v2)3/4 u = v− v+

v = v++ v

w±= 1

2(∂v ∓ (1 + v2)3/4∂u) ⇔

(1 + v2)3/4 ∂u = w− w+

∂v = w++ w

(DHS) ඍ෼ඇଛࣦܕ

Ұ֊૒ۂܥ

(∂t± (1 + v2)−3/4∂)v± = 3

2(1 + v2)−7/4(v+2 − v2)w±

(∂t± (1 + v2)−3/4∂)w±

=±3

4(1 + v2)−7/4v

2(w++ w)2− (w+− w)2± (w+2 − w2)

̏ɽඍ෼ඇଛࣦܕҰ֊૒ۂܥͷॳظ஋໰୊ʹؔ͢Δجૅఆཧ

ඍ෼ඇଛࣦܕҰ֊૒ۂܥ (DHS) Λಛੑۂઢ๏Λ༻͍ͯߋʹॻ͖׵͑Α͏ɻ࣌ؒ۠ؒ

I = [−T, T ] ্ͷ C1∩ W1 ஋࿈ଓവ਺ v± ∈ C (I; (C1∩ W1)(R)) ͕Ұ૊༩͑ΒΕͨ΋ͷ ͱͯ͠ɺҰ֊ඇઢܕඍ෼ํఔࣜͷॳظ஋໰୊

⎧⎪

⎪⎨

⎪⎪

tξ±(t, x) = ∓ (1 + v(t, ξ±(t, x))2)−3/4ɹ

=∓ (1 + (v+(t, ξ±(t, x)) + v(t, ξ±(t, x)))2)−3/4, ξ±(0, x) = x

(3.1)±

Λ༩͑Δɻ͜Ε͸ [ॎ] ୈ 2 અ (2.2) ͷ α Λ

α = ∓(1 + v2)−3/4=∓(1 + (v++ v)2)−3/4

ͱͨ͠΋ͷʹ֎ͳΒͳ͍ɻT > 0 Λॆ෼খ͘͞औΕ͹ɺ[ॎ] ఆཧ̍ٴͼ̎ΑΓ (3.1)±͸ I = [−T, T ] ্ʹҰҙతͳղ ξ± ∈ X = C1(I × R) ∩ C(I; ˙W1) Λ࣋ͪ

Tt±(x) = ξ±(t, x), (t, x) ∈ I × R

Ͱఆ·ΔҰܘ਺ม׵଒ (Tt±; t ∈ I) ͸ [ॎ] ఆཧ̎ͷੑ࣭Λ I0 = I = [−T, T ] ্Ͱຬͨͯ͠

͍Δࣄ͕෼͔Δɻߋʹ [ॎ] ఆཧ̏ͷܥ̍Λ (DHS) ʹద༻͢Ε͹ (v±, w±) ͷຬͨ͢΂͖ੵ

(6)

෼ํఔࣜ

v±(t) = v±(t, ·)

= v±0 ◦ (Tt±)−1+

 t

0 F±(1)(v±, w±)(s, Ts±◦ (Tt±)−1(·))ds, (3.2)±

w±(t) = w±(t, ·)

= w±0 ◦ (Tt±)−1+

 t

0 F±(2)(v±, w±)(s, Ts±◦ (Tt±)−1(·))ds (3.3)±

͕ಋ͔ΕΔɻ͜͜ʹ F±(1)(v±, w±) ٴͼ F±(2)(v±, w±) ͸ F±(1)(v±, w±) = 3

2(1 + (v++ v)2)−7/4(v2 − v2)w±, (3.4)±

F±(2)(v±, w±) =±3

4(1 + (v++ v)2)−7/4(v++ v)

2(w++ w)2− (w+− w)2± (w+2 − w2) (3.5)±

ͱ͠ (v±0, w±0) ͸ (v±, w±) ͷॳظ஋ͱ͢Δ:

v±0(x), w0±(x)

= (v±(0, x), w±(0, x)) , x ∈ R

I ্ͷ C1∩ W1 ஋࿈ଓവ਺Λ 4 ͭͷ੒෼ͱ͢ΔۭؒΛ X1 = X1(I) ͱ͢Δ:

X1(I) = C

I; (C1∩ W1)(R; R4)

={(v±, w±); v±, w± ∈ C

I; (C1∩ W1)(R; R) } (v±, w±)∈ X1(I) ʹର͠

(v±, w±) =



±

v±; L(I; W1)





±

w±; L(I; W1)



ͱஔ͖ X1(I) ͷดٿ XR1 = XR1(I) Λ

XR1(I) = {(v±, w±)∈ X1(I); (v±, w±) ≤ R}

ͱఆٛ͢ΔɻI ্ͷ C1∩ W1 ∩ H1஋࿈ଓവ਺Λ 4 ͭͷ੒෼ͱ͢ΔۭؒΛ Y1 = Y1(I) ͱ

͢Δ:

Y1(I) = X1(I) ∩ C

I; H1(R; R4)

= C

I; (C1∩ W1 ∩ H1)(R; R4) } (v±, w±)∈ Y1(I) ʹର͠

|||(v±, w±)||| =



±

v±; L(I; H1∩ W1)





±

w±; L(I; H1∩ W1)



ͱஔ͖ Y1(I) ͷดٿ YR1 = YR1(I) Λ

YR1(I) = {(v±, w±)∈ Y1(I); |||(v±, w±)||| ≤ R}

(7)

ͱఆٛ͢ΔɻҰ֊ͣͭ׈Β͔͞Λ্ۭ͛ͨؒΛ෉ʑX2 = X2(I) ٴͼ Y2 = Y2(I) ͱ͠ɺ

ͦͷดٿΛ෉ʑXR2 = XR2(I) ٴͼ YR2 = YR2(I) ͱ͢Δ:

X2(I) = C

I; (C2∩ W2)(R; R4) ,

XR2(I) = {(v±, w±)∈ X2(I); (v±, w±) ∨ (∂v±, ∂w±) ≤ R},

Y2(I) = C

I; (C2∩ W2 ∩ H2)(R; R4) ,

YR2(I) = {(v±, w±)∈ Y2(I); |||(v±, w±)||| ∨ |||(∂v±, ∂w±)||| ≤ R}

XR1, XR2, YR1, YR1͸

d ((v±, w±), (˜v±, ˜w±)) =



±

v±− ˜v±; L(I; L)





±

w±− ˜w±; L(I; L)



ʹґͬͯఆ·Δڑ཭ d Ͱ׬උڑ཭ۭؒͱͳΔɻ

ੵ෼ํఔࣜܥ (3.2)±-(3.3)±ͷ࣌ؒہॴղͷଘࡏͱҰҙੑɺॳظ஋ʹؔ͢Δղͷ࿈ଓґ ଘੑɺղͷਖ਼ଇੑ (׈Β͔͞)ɺ࣌ؒۃେղͷଘࡏͱҰҙੑʹब͍ͯɺఆཧͷܗͰవΊͯஔ

͜͏ɻ

ఆཧ̍ (࣌ؒہॴ W1 ղͷଘࡏͱҰҙੑ)

೚ҙͷ ρ > 0 ʹର͠ T = T (ρ) > 0 ͕ଘࡏ͠



±

v0±; W1





±

w0±; W1



≤ ρ

ͳΔ೚ҙͷ (v±0, w±0)∈ (C1∩ W1)(R; R4) ʹର͠ (3.2)±ٴͼ (3.3)±͔Β੒Δੵ෼ํఔࣜܥ

͸ I = [−T, T ] ্

(v±, w±)∈ X1(I)

ͳΔղΛ།Ұͭ࣋ͭɻߋʹ (v±, w±)∈ C1(I; C ∩ L) Ͱ͋Γ (v±, w±) ͸Ұ֊૒ۂܥ (DHS) Λ I × R ্ຬͨ͢ɻ

ఆཧ̎ (ॳظ஋ʹର͢Δղͷ L࿈ଓґଘੑ)

I ⊂ R Λॳظ࣌ࠁ 0 ΛؚΉ༗քด۠ؒͱ͠ (v±, w±)∈ X1(I) Λ

(v±(0), w±(0)) = (v0±, w0±)∈ C1∩ W1 ͳΔ (3.2)±-(3.3)±ͷղͰ͋Δͱ͠

(v±n0 , w±n0 ); n ≥ 1

⊂ C1 ∩ W1 Λ W1 ʹԙ͍ͯ༗քͰ Lʹԙ͍ͯ (v±0, w±0) ʹऩଋ͢

Δྻͱ͢Δɻ͜ͷͱ͖೚ҙͷ n ʹର͠ (v±n(0), w±n(0)) = (v0±n, w0±n) ͳΔରԠ͢Δղ (v±n, w±n)∈ X1(I) ͷྻ͕ଘࡏ͠ C(I; L) ʹԙ͍ͯ (v±, w±) ʹऩଋ͢Δɻ

ఆཧ̏ (ղͷਖ਼ଇੑ (׈Β͔͞))

I ⊂ R Λॳظ࣌ࠁ 0 ΛؚΉ༗քด۠ؒͱ͠ (v±, w±)∈ X1(I) Λ

(v±(0), w±(0)) = (v0±, w0±)∈ C1∩ W1 ͳΔ (3.2)±-(3.3)±ͷղͱ͢Δɻ͜ͷͱ͖

(8)

(1) (v±0, w±0)∈ C2∩ W2 ͳΒ͹ (v±, w±)∈ X2(I) ͱͳΔɻ (2) (v±0, w±0)∈ H1ͳΒ͹ (v±, w±)∈ Y1(I) ͱͳΔɻ

(3) (v±0, w±0)∈ C2∩ W2 ∩ H2ͳΒ͹ (v±, w±)∈ Y2(I) ͱͳΔɻ

ఆཧ̐ (ॳظ஋ʹର͢Δղͷ W1, L∩ L2, W1 ∩ H1࿈ଓґଘੑ) I ⊂ R Λॳظ࣌ࠁ 0 ΛؚΉ༗քด۠ؒͱ͢Δɻ

(1) (v±, w±) ∈ X2(I) Λ (v±(0), w±(0)) = (v0±, w0±) ∈ C2 ∩ W2 ͳΔ (3.2)±-(3.3)± ͷ ղͰ͋Δͱ͠

(v±n0 , w0±n); n ≥ 1

⊂ C2 ∩ W2 Λ W2 ʹԙ͍ͯ༗քͰ W1 ʹԙ

͍ͯ (v±0, w±0) ʹऩଋ͢Δྻͱ͢Δɻ͜ͷͱ͖೚ҙͷ n ʹର͠ (v±n(0), w±n(0)) = (v±n0 , w0±n) ͳΔରԠ͢Δղ (v±n, w±n) ∈ X2(I) ͷྻ͕ଘࡏ͠ C(I; W1) ʹԙ͍ͯ

(v±, w±) ʹऩଋ͢Δɻ

(2) (v±, w±)∈ Y1(I) Λ (v±(0), w±(0)) = (v±0, w±0)∈ C1∩W1 ∩H1ͳΔ (3.2)±-(3.3)±ͷ ղͰ͋Δͱ͠

(v±n0 , w±n0 ); n ≥ 1

⊂ C1∩W1∩H1Λ W1∩H1ʹԙ͍ͯ༗քͰ L∩L2 ʹԙ͍ͯ (v±0, w0±) ʹऩଋ͢Δྻͱ͢Δɻ͜ͷͱ͖೚ҙͷ n ʹର͠ (v±n(0), w±n(0)) = (v±n0 , w0±n) ͳΔରԠ͢Δղ (v±n, w±n) ∈ Y1(I) ͷྻ͕ଘࡏ͠ C(I; L∩ L2) ʹԙ͍

ͯ (v±, w±) ʹऩଋ͢Δɻ

(3) (v±, w±) ∈ Y2(I) Λ (v±(0), w±(0)) = (v±0, w±0) ∈ C2∩ W2 ∩ H2ͳΔ (3.2)±-(3.3)± ͷղͰ͋Δͱ͠

(v0±n, w±n0 ); n ≥ 1

⊂ C2 ∩ W2 ∩ H2 Λ W2 ∩ H2 ʹԙ͍ͯ༗

քͰ W1 ∩ H1 ʹԙ͍ͯ (v±0, w±0) ʹऩଋ͢Δྻͱ͢Δɻ͜ͷͱ͖೚ҙͷ n ʹର͠

(v±n(0), w±n(0)) = (v±n0 , w0±n) ͳΔରԠ͢Δղ (v±n, w±n) ∈ Y2(I) ͷྻ͕ଘࡏ͠

C(I; W1 ∩ H1) ʹԙ͍ͯ (v±, w±) ʹऩଋ͢Δɻ

ఆཧ̑ (࣌ؒۃେ W1 ղͷଘࡏͱҰҙੑ)

೚ҙͷ (v±0, w±0) ∈ (C1 ∩ W1)(R; R4) ʹର͠ɺ(3.2)±-(3.3)±͸ॳظ࣌ࠁ 0 ΛؚΉ։۠ؒ

(T, T+) ্

(v±, w±)∈ C

(T, T+); (C1∩ W1)(R; R4) ͳΔۃେղΛ།Ұͭ࣋ͭɻ·ͨ (v±, w±)∈ C1

(T, T+); C ∩ L

Ͱ͋Γ (v±, w±) ͸Ұ֊

૒ۂܥ (DHS) Λ (T, T+)× R ্ຬͨ͢ɻߋʹ

• T+ < +∞ ͳΒ͹ɹ lim

t↑T+



±

v±(t); W1





±

w±(t); W1



= +

• T > −∞ ͳΒ͹ɹ lim

t↓T



±

v±(t); W1





±

w±(t); W1



= +

(9)

࣍અҎ߱ɺఆཧ̍-̑ͷূ໌Λ༩͑Δɻ

̐ɽඍ෼ඇଛࣦܕҰ֊૒ۂܥͷجૅఆཧͷূ໌(ͦͷ 1ɿิॿఆཧ)

؆୯ͷҝ I = [0, T ] ͱ͠ t ≥ 0 ͷ৔߹ͷΈߟ͑Δɻ࣍ͷิ୊͸͠͹͠͹༻͍Δɻ

ิ୊̍ɹ༗քด۠ؒ I = [0, T ] ⊂ R ্ͷ (C1∩ W1)(R; R) ஋࿈ଓവ਺

v±, ˜v±

I; (C1∩ W1)(R; R) ʹର͠ [ॎ] ఆཧ̍ɼ̎Ͱఆ·ΔҰܘ਺ม׵଒Λ෉ʑ

(Tt±; t ∈ I), ( Tt±; t ∈ I) ͱ͢Δɻ͜ͷͱ͖࣍ͷධՁ͕੒ཱͭɻ

(1) ೚ҙͷ t ∈ I, x, y ∈ R ʹର͠

∂Tt± ≤ exp

3 2

±

 t

0 ∂v±(t) dt



, (4.1)±

∂ Tt± ≤ exp

3 2

±

 t

0 ∂˜v±(t) dt



, (4.2)±

|Tt±(x) − Tt±(y)| ≤ exp

3 2

±

 t

0 ∂v±(t) dt



|x − y|

+3 2

±

 t

0

exp

3 2

±

 t

t ∂v±(t) dt



v±(t)− ˜v±(t) dt (4.3)±

(2) M = M(T ), M = M(T ), N = N(T ), N = N(T ) Λ M = M(T ) = 3

2

±

 T

0 ∂v±(t) dt, M =  M(T ) = 3

2

±

 T

0 ∂˜v±(t) dt, N = N(T ) = MeM = M(T ) exp(M(T )), N =  N(T ) = MeM= M(T ) exp( M(T ))

ͱஔ͘ɻT0 > 0 ͕ଘࡏ͠ N(T0)∨ N(T0) < 1

2ͱͳΔɻ͜ͷͱ͖೚ҙͷ T ≤ T0 ٴͼ

೚ҙͷ t ∈ [0, T ] ʹର͠ Tt±ٴͼ Tt±ͷٯ (Tt±)−1ٴͼ ( Tt±)−1͕ଘࡏ࣍͠ͷධՁ͕೚

ҙͷ t, s ∈ [0, T ] ʹରͯ͠੒ཱͭɻ

(10)

∂(Tt±)−1− 1 N(T )

1− N(T ), (4.4)±

∂( Tt±)−1− 1 N(T )

1− N(T ), (4.5)±

(Tt±)−1− (Ts±)−1 |t − s|

1− N(T ), (4.6)±

(Tt±)−1− ( Tt±)−1 3 2

1 + N(T ) 1− N(T )

±

 t

0 v±(t)− ˜v±(t) dt, (4.7)±

Ts±◦ (Tt±)−1− Ts±◦ ( Tt±)−1

≤ 3 exp(M(T )) 1 1− N(T )

±

 t∨s

0 v±(t)− ˜v±(t) dt, (4.8)± sup

θ∈[0,1]

∂

Ts±◦ ( Tt±)−1+ θ(Ts±◦ (Tt±)−1− Ts±◦ ( Tt±)−1)

−1



1

1− 2(N(T ) ∨ N(T )) (4.9)±

ิ୊̎ɹ༗քด۠ؒ I = [0, T ] ্ͷ (C2∩ W2)(R; R) ஋࿈ଓവ਺

v±, ˜v± ∈ C

I; (C2∩ W2)(R; R) ʹର͠ิ୊̍ͱಉ༷ͷઃఆͷԼͰ࣍ͷධՁ͕੒ཱͭɻ

(1) ೚ҙͷ t ∈ I ʹର͠

2Tt±

≤ 8 exp

3 2

±

 t

0 ∂v±(t) dt



±

 t

0

2v±(t) + ∂v±(t) 2 dt,

(4.10)±

2Tt±

≤ 8 exp

3 2

±

 t

0 ∂˜v±(t) dt



±

 t

0

2v˜±(t) + ∂˜v±(t) 2 dt,

(4.11)±

|∂Tt±(x) − ∂ Tt±(y)|

≤ 12 exp

3 2

±

 t

0

( ∂v±(t) + ∂˜v±(t) )dt



·

±

 t

0

2v±(t) + ∂v±(t) 2

dt·

±

 t

0 v±(t)− ˜v±(t) dt (4.12)±

(2) ೚ҙͷ T ≤ T0ٴͼ೚ҙͷ t ∈ [0, T ] ʹର͠

2(Tt±)−1 ≤ 4 eM(T ) (1− N(T ))3

±

 T

0

2v±(t) + ∂v±(t) 2

dt, (4.13)±

(11)

∂(Tt±)−1− ∂( Tt±)−1

≤ 24 eM+M (1− N)3

±

 t

0

(2v±(t) + ∂v±(t) 2)dt·

±

 t

0 v±(t)− ˜v±(t) dt + 18 eM+M

(1− N)2

±

 ∂˜v± L(L)+ ∂v± L(L)

·

±

 t

0

(2v±(t) + ∂v±(t) 2)dt·

±

 t

0 v±(t)− ˜v±(t) dt + 3

2

eM (1− N)2

±

 t

0 ∂v±(t)− ∂˜v±(t) dt (4.14)±

(ิ୊̍ͷূ໌) ɹ (3.1)±ʹݟ༷ͨʹ

α = α± =∓(1 + v2)−3/4 =∓(1 + (v++ v)2)−3/4 ͱ͓͚͹೚ҙͷ (t, x) ∈ I × R ʹର͠

Tt±(x) = x +

 t

0 α±(t, Tt±(x))dt (4.15)±

͕੒ཱͭͷͰ྆ลΛඍ෼͢Δͱ౳ࣜ

∂Tt±(x) = 1 +

 t

0 ∂α±(t, Tt±(x))∂Tt±(x)dt (4.16)±

͕ಘΒΕΔɻ͜ΕΑΓෆ౳ࣜ

|∂Tt±(x) − 1| ≤

 t

0 ∂α±(t) |∂Tt±(x) − 1|dt+

 t

0 ∂α±(t) dt (4.17)±

͕ै͏ɻ(4.17)±ʹάϩϯ΢Υʔϧͷิ୊Λద༻ͯ͠ಘΒΕΔෆ౳ࣜ

|∂Tt±(x) − 1| ≤ exp

 t

0 ∂α±(t) dt



− 1 ΑΓ

∂Tt±− 1 ≤ exp

 t

0 ∂α±(t)



− 1 (4.18)±

ΛಘΔɻ͜͜Ͱ

∂α± =±3

2(1 + v2)−7/4v∂v, ∂α±(t) 3

2 ∂v(t) 3

2( ∂v+(t) + ∂v(t) ) = 3 2

±

∂v±(t)

Cytaty

Powiązane dokumenty

L u, Existence and asymptotic behavior of nonoscillatory solutions of second order nonlinear neutral equations , Acta Math. R u a n, Types and criteria of nonoscillatory solutions

Zadanie 1 Pomi dzy dwa jednakowe, cienkie, równomiernie naładowane ładunkiem Q pier cienie o promieniu R, ustawione równolegle w odległo ci 2h, wsuni to

p: Feng finishes his homework q: Feng goes to the football match.. (c) Write in symbolic form the

Na wejściówkę trzeba umieć zastosować powyższe zasady działania na potęgach do obliczenie złożonych wyrażeń.... W razie jakichkolwiek pytań, proszę pisać

Na wejściówkę trzeba umieć zastosować powyższe zasady działania na potęgach do obliczenie złożonych wyrażeń.... W razie jakichkolwiek pytań, proszę pisać

- Jednostką statystyczną jest każde miasto województwa zachodniopomorskiego zbadane w dniu 31.. Możemy podstawić do wzoru. liczba ludności wynosi 1,4 [tys] lub mniej a w

For “small” R d and long rigid beams it can happen that locally r +r &lt; 0 which looks non physical on the contact between subsoil and foundation (tension is impossible!); it is

(ii) On graph paper, using a scale of 1 cm for 1 unit on the x-axis and 1 cm for 5 units on the A-axis, plot the points from your table and join them up to form a smooth curve.. (i)