• Nie Znaleziono Wyników

Interaction Between a Moving Oscillator and an Infinite Beam on Elastic Foundation with Transition Zone in Stiffness – Green’s Function Approach

N/A
N/A
Protected

Academic year: 2021

Share "Interaction Between a Moving Oscillator and an Infinite Beam on Elastic Foundation with Transition Zone in Stiffness – Green’s Function Approach"

Copied!
2
0
0

Pełen tekst

(1)

Delft University of Technology

Interaction Between a Moving Oscillator and an Infinite Beam on Elastic Foundation with Transition Zone in Stiffness – Green’s Function Approach

Mazilu, Traian; Faragau, Andrei; Lu, Tao; van Dalen, Karel

Publication date 2018

Document Version

Accepted author manuscript Citation (APA)

Mazilu, T., Faragau, A., Lu, T., & van Dalen, K. (2018). Interaction Between a Moving Oscillator and an Infinite Beam on Elastic Foundation with Transition Zone in Stiffness – Green’s Function Approach. Abstract from 13th World Conference on Computational Mechanics 2018 , New York, United States.

Important note

To cite this publication, please use the final published version (if applicable). Please check the document version above.

Copyright

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons. Takedown policy

Please contact us and provide details if you believe this document breaches copyrights. We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.

(2)

13th World Congress on Computational Mechanics (WCCM XIII) 2nd Pan American Congress on Computational Mechanics (PANACM II) July 22-27, 2018, New York, NY, USA

Interaction Between a Moving Oscillator and an Infinite Beam on Elastic

Foundation with Transition Zone in Stiffness – Green’s Function Approach

Traian Mazilu1, Andrei B. Faragau2, Tao Lu2, Karel N. van Dalen2

1 University Politehnica of Bucharest, Splaiul Independentei nr. 313, sector 6, Bucharest,

CP 060042, Romania

2 Faculty of Civil Engineering and Geosciences, Delft University of Technology,

Stevinweg 1, 2628 CN Delft, The Netherlands

ABSTRACT

Transition zones in railway lines are areas between different track structures such as the transition from conventional track (ballasted track) to slab track, to a tunnel or a viaduct. The main feature of a transition zone is that it exhibits a dramatic change in structural behaviour to bridge the difference in the adjacent track parts. This change causes high dynamic loads which contribute to quality deterioration of the track. Two main factors influence the magnitude of the interaction forces between trains and track in transition zones. Firstly, the abrupt change in track stiffness. This stiffness is determined by the mechanical features of the entire track structure; the conventional track is a compliant structure, while slab track, tunnels and viaducts are relatively stiff. A train passing a stiffness change induces a variation of track deflection under the moving dead loads and, consequently, also a variation in the wheelset’s vertical momentum leading to higher (dynamic) loads. Secondly, settlements of the backfill and its foundation are typically larger than those of stiff structures, leading to unevenness of the track. This abstract deals with the issue of the dynamic analysis of an infinite Euler-Bernoulli beam on elastic foundation with transition in foundation stiffness, subjected to a moving oscillator. This model is one of the simplest ones for a vehicle passing a transition zone. The equations of motion are solved by means of the time-domain Green’s function method using convolution integrals in terms of the unknown contact force. Considering the track as an aperiodic structure, the Green’s functions (receptances) are calculated in a stationary reference frame (i.e., non-moving sources). Two methods of solution are investigated. The first one is based on the Laplace Transform, where the response consists of a contribution from the initial conditions and one from the moving contact force. By choosing the initial conditions in accordance with the response of a beam with homogenous foundation subjected to a moving load, the free vibrations and waves due to oscillator entrance are suppressed and steady-state behaviour is achieved before the oscillator reaches the transition zone. The second method is based on the Fourier Transform, which automatically ensures this steady-state behaviour. Both methods are exemplified in the paper. The influence of the length of the transition zone and the speed of the moving oscillator on the contact force are analysed; both sub-critical and super-critical speeds are considered.

Cytaty

Powiązane dokumenty

In gas-diesel mode (GD) gaseous fuel is the main source of energy and a pilot fuel oil injection of approximately 5% is used to start combustion process.. The pilot fuel is

Pamiętnik Literacki : czasopismo kwartalne poświęcone historii i krytyce literatury polskiej 11/1/4,

7a „Przedmowę“ pod wspólnym tytułem: „Do piszących o elekcyi lub sukcesyi tronu polskiego, a mianowicie do Wojciecha Turskiego“, bezpośrednio zaś po niej

Piotr Fast (redaktor naczelny), Michał Głuszkowski, Justyna Pisarska, Joanna Darda-Gramatyka, Paweł Łaniewski (sekretarz redakcji). Korekta Jutyna Pisarska Skład i łamanie

15 H. Benkm ann, Besondere Aufgaben im Kriege, in: Heimatbuch des Landkreises Allenstein, Langenhagen 1968, ss. Som platzki, Masurische Gnadenhochzeit, Schm allenberg

Przy ukazywaniu (na bogatym i starannie dobranym materiale historycznym) sze- regu zwdązków przyczynowych między rozwojem życia ekonomicznego, spo- łecznego, kulturalnego i

He states that the aim of his book is to make a small contribution to the reconstruction of the history of the philosophical problem of death (p. 13), which is, in my opinion,