• Nie Znaleziono Wyników

WYBRANE ASPEKTY ANTYOKSYDACYJNEJ I PROOKSYDACYJNEJ AKTYWNOŚCI SELENU W KORZENIACH KUKURYDZY (ZEA MAYS L.)

N/A
N/A
Protected

Academic year: 2021

Share "WYBRANE ASPEKTY ANTYOKSYDACYJNEJ I PROOKSYDACYJNEJ AKTYWNOŚCI SELENU W KORZENIACH KUKURYDZY (ZEA MAYS L.)"

Copied!
5
0
0

Pełen tekst

(1)

Rocz. AR Pozn. CCCLXXXIII, Ogrodn. 41: 487-491

© Wydawnictwo Akademii Rolniczej im. Augusta Cieszkowskiego w Poznaniu, Poznań 2007 PL ISSN 0137-1738

BARBARA HAWRYLAK, MARIA SZYMAŃSKA

WYBRANE ASPEKTY ANTYOKSYDACYJNEJ I PROOKSYDACYJNEJ AKTYWNOŚCI SELENU

W KORZENIACH KUKURYDZY (ZEA MAYS L.)

Z Katedry Fizjologii Roślin Akademii Rolniczej w Lublinie

ABSTRACT. In order to study physiological role of selenium in higher plants, maize was cultivated in a water culture without selenium or amended with selenite or selenate, in concentrations of 25 or 50 μmol·m-3. Selenium at 25 μmol·m-3 in selenate form acted as an antioxidant and promoted roots growth. However, at concentration 50 μmol·m-3 of selenate and at all concentrations of selenite, it was a prooxidant, caused lipid bilayer damage by lipid peroxidation.

Key words: selenium, glutathione, malonodialehyde, maize

Wstęp

Selen uznano za pierwiastek niezbędny dla zwierząt oraz bakterii, który w ślado- wych ilościach odgrywa zasadniczą rolę w ich metabolizmie, zwłaszcza w reakcjach antyoksydacyjnych. Organizmy wymagające selenu do prawidłowego funkcjonowania zawierają niezbędne selenobiałka, jak np. peroksydaza glutationowa (GSH-PX) (Terry i in. 2000). Enzym ten zapobiega m.in. peroksydacji lipidów błon komórkowych, kata- lizując reakcję utleniania glutationu. Występowanie peroksydaz selenozależnych stwierdzono w komórkach glonów Chlamydomonas reinhardtii, natomiast do tej pory nie wykazano ich obecności w roślinach wyższych (Ellis i Salt 2003). Dlatego też, pytanie o niezbędność selenu dla tych gatunków pozostaje w dalszym ciągu kontrower- syjne. Związki selenu są przez rośliny dosyć łatwo pobierane i gromadzone, chociaż większość gatunków charakteryzuje się małą tolerancją na ten pierwiastek i jego aku- mulacja w tkankach wywołuje liczne zaburzenia metaboliczne (Terry i in. 2000). Jed- nak coraz więcej danych wskazuje, że niskie stężenia selenu wpływają korzystnie na rośliny. Selen może zwiększać tolerancję roślin na stres oksydacyjny indukowany pro- mieniowaniem UV (Hartikainen i Xue 1999), a także opóźniać ich starzenie (Xue i in.

2001). Ostatnio wykazano jego synergistyczny wpływ na transkrypcję enzymów anty-

(2)

oksydacyjnych, takich jak SOD (dysmutaza ponadtlenkowa) i GSH-Px (Seppänen i in.

2003). Dlatego sugeruje się, że selen również w roślinach może pełnić funkcję antyok- sydanta lub aktywować mechanizmy łagodzące skutki stresu oksydacyjnego.

Przedstawione w niniejszej pracy dane, stanowią jedynie część cyklu badań nad an- tyoksydacyjną i prooksydacyjną aktywnością selenu w tkankach roślinnych. Ze względu na obiecujący charakter uzyskanych wyników zachęcają do kontynuacji tych ekspery- mentów.

Materiał i metody

W eksperymencie przeprowadzonym metodą kultur wodnych badano wpływ selenu na wybrane wskaźniki fizjologiczne korzeni kukurydzy (Zea mays L. var. saccharata Kcke. ‘Złota Karłowa’). Około dziesięciodniowe siewki umieszczano w słojach szkla- nych, wypełnionych 1,5-krotnie stężoną pożywką Hoaglanda I (pH 6,2). Po trzech dniach wzrostu roślin do pożywki wprowadzano selen w formie seleninu (Na2SeO3 · 5H2O) lub selenianu (Na2SeO4)w stężeniach: 0 (kontrola), 25 lub 50 μmol·dm-3. Wege- tacja przebiegała w warunkach kontrolowanej gęstości strumienia fotonów w zakresie fotosyntetycznie czynnym (270 µmol·m-2·s-1), przy fotoperiodzie 14/10 h oraz w tempe- raturze 25/20°C (dzień/noc). Po 14 dniach od wprowadzenia selenu do środowiska odżywczego roślin, w korzeniach analizowano zawartość dwualdehydu malonowego (Boominathan i Doran 2002) oraz całkowitego glutationu (Anderson 1985). Bazując na długości systemu korzeniowego wyznaczono indeks tolerancji (IT) (Mc Neilly 1994). W wysuszonym w temperaturze 105°C materiale roślinnym oznaczano zawar- tość selenu metodą absorpcyjnej spektrometrii gazowej z systemem generacji wodor- ków (HGAAS). Doświadczenie przeprowadzono w dwóch niezależnych powtórzeniach.

Do statystycznego opracowania danych liczbowych zastosowano test Tukeya dla par średnich (NIR) na poziomie istotności P = 0,05.

Wyniki i dyskusja

Oddziaływanie selenu na procesy fizjologiczne zachodzące w roślinach zależy od jego wewnątrzkomórkowego stężenia. W przeprowadzonym eksperymencie wykazano zwiększenie zawartości selenu w korzeniach kukurydzy wraz ze wzrostem jego stężenia w pożywce. Porównując stosowane formy chemiczne pierwiastka stwierdzono, że jego zawartość w korzeniach była istotnie większa w postaci seleninu niż selenianu. Analo- giczne wyniki uzyskali Zayed i in. (1998), badając wpływ różnych związków selenu na ich akumulację i translokację w roślinach użytkowych. Zróżnicowana zawartość selenu jest najprawdopodobniej związana z odmiennymi mechanizmami pobierania poszcze- gólnych form tego metaloidu. Stwierdzono mianowicie, że rośliny pobierają selenin pasywnie, podczas gdy przyswajanie selenianu jest procesem regulowanym metabolicz- nie (Terry i in. 2000).

(3)

Tabela 1 Wpływ wewnątrzkomórkowej zawartości selenu na wybrane wskaźniki fizjologiczne

korzeni kukurydzy

The effect of intracellular concentration of selenium on selected physiological indices of maize roots

Warunki wegetacji Vegetation conditions Forma Se

Se form

Se (μmol·dm-3)

Se (mg·g-1 s.m.)

Se (mg·g-1 d.w.)

IT (%)

MDA (nmol·g-1 św.m.)

MDA (nmol·g-1 f.w.)

Glutation (nmol·g-1 św.m.)

Glutathione (nmol·g-1 f.w.) Kontrola

Control

0 2,62 a 100,0 b 12,40 b 122 a

25 384 d 91,5 b 15,48 c 194 d

Selenin Selenite

50 479 e 66,3 a 22,12 d 168 c

25 57 b 131,2 c 9,04 a 153 bc

Selenian Selenate

50 120 c 102,5 b 15,77 ce 134 ab

Średnie wartości w kolumnach oznaczone tą samą literą nie różnią się istotnie statystycznie.

Means in each column followed by the same letter are not significantly different.

Analizy uszkodzenia błon komórkowych przez reaktywne formy tlenu dokonuje się zazwyczaj szacując stopień peroksydacji lipidów na podstawie zawartości dwualdehydu malonowego (MDA) – końcowego produktu destrukcji nienasyconych kwasów tłusz- czowych. Uzyskane w badaniach wyniki wykazały, że korzenie kukurydzy, rosnącej w obecności 25 μmol·dm-3 selenianu, zawierały niższy poziom MDA w porównaniu z roślinami kontrolnymi. Spadek zawartości MDA może wskazywać na antyoksydacyj- ne właściwości selenu. W tych warunkach wykazano także stymulujący wpływ selenia- nu na elongację systemu korzeniowego (IT = 131%), a także około 25-procentowy wzrost zawartości glutationu. Odpowiedni poziom glutationu chroni komórki przed szkodliwym wpływem wolnych rodników, wywołujących niespecyficzne utlenienie białek i lipidów (Bartosz 2004).

Selenian w stężeniu 50 μmol·dm-3 oraz obie stosowane stężenia seleninu (25 i 50 μmolּdm-3) wpłynęły na wzrost zawartości MDA, co wskazuje na prooksydacyjnie działanie selenu. Mimo że w tych warunkach zwiększała się również zawartość gluta- tionu, to ten mechanizm obrony komórek przed stresem oksydacyjnym nie był na tyle skuteczny, aby zapobiec uszkodzeniom lipidów błon komórkowych. Dane te sugerują, że fitotoksyczność selenu, oprócz zaburzeń metabolicznych, może być spowodowana prooksydacyjnym działaniem tego metaloidu. Natomiast potencjał wzrostowy korzeni nie ulegał istotnym zmianom, z wyjątkiem roślin uprawianych w obecności 50 μmol·dm-3 seleniniu, gdzie stwierdzono około 34-procentową redukcję długości w porównaniu z kontrolą. Selenin w stężeniu 50 μmol·dm-3 spowodował także zaburzenia geotropizmu systemu korzeniowego, co przejawiało się prawie poziomym ustawieniem korzeni bocznych względem korzenia głównego. Mniejsza tolerancja korzeni kukurydzy na selenin może być związana z większą, w porównaniu z selenianem, akumulacją selenu w tych organach.

(4)

Doświadczenia Hartikainen i in. (2000), prowadzone na roślinach życicy trwałej, wykazały, że selen w niskich stężeniach może działać antyoksydacyjnie, hamując pe- roksydację lipidów oraz stymulując aktywność GSH-Px. Natomiast w obecności wyso- kich stężeń selenu w podłożu stwierdzono wzrost poziomu szkodliwych produktów peroksydacji, koncentracji tokoferoli oraz drastyczny spadek plonowania.

Wnioski

1. Selenian w stężeniu 25 μmol·dm-3 wykazuje działanie antyoksydacyjne, hamując proces peroksydacji lipidów oraz stymulując elongację systemu korzeniowego kukurydzy.

2. Obecność w środowisku odżywczym kukurydzy selenianu w stężeniu 50 μmol·dm-3 oraz seleninu w stężeniach 25 i 50 μmol·dm-3 potęguje gromadzenie szkodliwych pro- duktów peroksydacji w korzeniach.

3. Selen, niezależnie od stosowanej formy, wpływa na wzrost zawartości glutationu w tkankach korzeni.

4. Korzenie kukurydzy gromadzą więcej selenu, jeżeli jest on dostarczany w formie seleninu niż selenianu, co wiąże się również z ich większą tolerancją na selenian.

Literatura

Bartosz G. (2004): Druga twarz tlenu: wolne rodniki w przyrodzie. PWN, Warszawa.

Boominathan R., Doran P.M. (2002): Ni-induced oxidative stress in roots of the Ni hyperaccu- mulator, Alyssum bertolonii. New Phytol. 156: 205-215.

Ellis D.R., Salt D.E. (2003): Plants, selenium and human health. Curr. Opin. Plant Biol. 6: 273- 279.

Hartikainen H., Xue T. (1999): The promotive effect of selenium on plant growth as trigged by ultraviolet irradiation. J. Environ. Qual. 28: 1272-1275.

Hartikainen H., Xue T., Piironen V. (2000): Selenium as an anti-oxidant and pro-oxidant in ryegrass. Plant Soil 225: 193-200.

Mc Neilly T. (1994): Metal toxicity. W: Soil mineral stresses. Approaches to crop improvement.

Red. A.R.Yeo, T.J. Flowers. Springer-Verlag, Berlin Heidelberg.

Seppänen M., Turakainen M., Hartikainen H. (2003): Selenium effects on oxidative stress in potato. Plant Sci. 165: 311-319.

Terry N., Zayed M., De Souza M.P., Tarun A.S. (2000): Selenium in higher plants. Annu. Rev.

Plant Physiol. Plant Mol. Biol. 51: 401-432.

Xue T., Hartikainen H., Piironen V. (2001): Antioxidative and growth-promoting effect of selenium in senescing lettuce. Plant Soil 237: 55-61.

Zayed A.M., Lytle C.M., Terry N. (1998): Accumulation and volatilization of different chemi- cal species of selenium by plants. Planta 206: 284-292.

(5)

SELECTED ASPECTS OF ANTIOXIDANT AND PROOXIDANT ACTIVITY OF SELENIUM IN MAIZE ROOTS (ZEA MAYS L.)

S u m m a r y

Selenium is an essential element for antioxidation reactions in humans, animals and bacteria.

In higher plants, however, the role of selenium is still unclear. The objective of this experiment was to investigate the effect of exogenous selenium in its selenite or selenate form on the growth, glutathione concentration and lipid peroxidation in roots of maize seedlings. At low concentration (25 μmol·dm-3), selenate tended to stimulate the root elongation, the accumulation of glutathione and it acted as an antioxidant, inhibiting lipid peroxidation. At higher concentration of selenate (50 μmol·dm-3) and at all concentrations of selenite (25 and 50 μmol·dm-3), selenium was a prooxidant. The accumulation of lipid peroxidation products was enhanced and glutathione concentration increased. Root elongation did not change in presence of 25 and 50 μmol·dm-3 selenite and selenate, respectively. However, selenite at dosage of 50 μmol·dm-3 exerted distur- bance in root growth and morphology.

Cytaty

Powiązane dokumenty

Tegoroczna konferencja by³a sposobnoœci¹ do wymiany opinii i pogl¹dów oraz prezentacji wyników badañ na temat form i sposobów legitymizacji w³adzy w pañstwach Europy Œrodkowej

W środowisku sportowym rola autorytetu i dobrego przykładu postępowania sprowa- dza się między innymi do stanowienia wśród obecnych w sporcie licznych niebezpie- czeństw i

Опора на беседу как средство повествования не может ограничиться централь- ным повествующим «Я», она предполагает наличие не одного,

Thus, it can be assumed that (paradoxically enough) signifi- cant friction joint corrosion increases its load capaci- ty. However, this concerns the state before the first yield

Due to the fact that the chemical composition of the red mud waste could pose a potential threat to the environment due to leaching toxic substances from the waste, which may

Erosive wear tests of the coatings rein-forced by WC, made at the lowest heat input (240 J/mm), showed a typ- ical mechanism of erosive wear for MMC materials, with

Rys. Przekroju próbki po cięciu tlenowym: a) od górnej krawędzi, b) od dolnej krawędzi. The sectional view of the sample after cutting oxygen: a) from the upper edge, b)

Podwyższenie prawdopodobieństwa wykrywania mniejszych pęknięć można również osiągnąć przez odpowiedni dobór okresów pomiędzy prowadzonymi badaniami