• Nie Znaleziono Wyników

A theorem of the Romanovski type for double singular integrals

N/A
N/A
Protected

Academic year: 2021

Share "A theorem of the Romanovski type for double singular integrals"

Copied!
5
0
0

Pełen tekst

(1)

ANNALES SOCIETATIS MATHEMATICAE POLONAE Series I: COMMENTATIONES MATHEMATICAE XXVIII (1989) ROCZNIKI POLSKIEGO TOWARZYSTWA MATEMATYCZNEGO

Séria I: PR ACE MATEMATYCZNE XXVIII (1989)

St a n is l a w Si u d u t (Krakôw)

A theorem of the Romanovski type for double singular integrals

Abstract. In a paper by Taberski [2], among many other results, Theorem 6.2 (concerning the convergence of some double singular integrals on a given rectangle) is proved. It is the purpose of this note to prove an other theorem of this type.

1. Let a, b be positive real and let x0, y0 be real and P = < — a, a) x x ( — b,b}. Let X be a metric space and let £ be a given subset of X.

Suppose that £0 is an accumulation point of E.

Denote by К a real-valued function defined on R 2 x E satisfying the following conditions:

(1) K ^ O and K (-, -, Ç) is measurable for every £ e £ ;

(2) K(-,s,£) is even, 2a-periodic and non-increasing on (0, a) for all

£ eE, s e <0, b};

(3) K(t, -, £) is even, 2b-periodic and non-increasing on <0, by for all £ eE and t e <0, a );

a b

(4) lim f f K(t, s, Ç)dsdt = 1 (£e£);

«-*0-a-b

(5) lim K(ô, 0, £) = lim K{0, ô, £) = 0 for every Ô e(0, min (a, b)).

Denote b y '/a real-valued function defined on R2 satisfying the following conditions:

(6) / is Lebesgue integrable on the rectangle P;

(7) for each s é ( —b , b ) the function /( • , s) is 2a-periodic;

(8) for each t e ( — a, a ) the function f ( t , •) is 2b-periodic;

(9) the relation

j *o + A

lim - f f ( t , s ) d t = f ( x 0, s )

h->0 H x q

holds uniformly with respect to almost all s e ( — b,b}, and this relation holds for s = y0;

(2)

356 S t a n i s i a w Si udut

(10) the relation

i ?о + т

lim - j' f( t , s )d s = f ( t , y 0)

X~ * ° x У0

holds uniformly with respect to almost all f e < - a , a), and this relation holds for t = x 0.

For C > 0, let Zc denote the set

a

\(x, y, S)eR2 xE: |y0- y | f K ( t , 0 , i ) d t < C and

- a

b

|x0 —x| f K{0, s, f)ds <C).

- b

2. Theorem. Suppose that the functions K , f satisfy the conditions listed in Section 1.

Then, for any C > 0,

lim ] f f{ t, s)K(t — x, s - y , f)dsdt = / ( x 0, y0)

— a — b

as (x, y, f) ->(x0, y0> U) and (x, y, f ) e Z c.

P ro o f. Fix C > 0 and write

g(t, s ) = f ( t , s ) - f ( x 0, y0),

a b

W { x , y , f ) = f C g { t , s ) K { t - x , s - y , f ) d s d t .

— a — b

It is sufficient to show that W{x, y, f) ->0 as (x, y, £) -►(x0, y0, £0) and (x, y, f ) e Z c .

We may clearly assume that

(11) — a < x0 ^ 0, - b < y o ^ 0 , 0 <S <min{a + x0, b + y 0), 0 < |x0- x | <{ô and 0 < \y0 - y \ <i<5.

Let us divide the rectangle P into the rectangles Pi j (ci, Ci + j y x (dj, dj +1У

for 1 ^ i ^ 3 and 1 < 7 ^ 3, where c1 = —a, c2 = x 0 — S, c3 = x0 + S, c4 = a and dt = - b , d2 = y0- ô , d3 = y0 + ô, d4 = b.

If we write

f j = J.fôKL s ) K ( t - x , s - y , if) ds dt,

(3)

Theorem o f the Romanovski type 357

then W(x, y, £) = Y, hj and it is enough to show that

i . j = i

(12) / y ->0 as (x, y, <*) ->(x0, y0, £o) and (x, y, £)eZc, whenever 1 < г ^ 3 and 1 < j ^ 3.

We shall now prove (12) for the integrals / 13, 112 and / 22.

Let us consider first the integral 713. In view of (2), (3) and (11) we have

x 0 ~ ô b

| / , 3| « f I' \g (t ,s )\ d sd fK (i ô , iS , i)

- а Уо + д

<M \-K(±0, 0, 0 ,

a b

where \\g\| = f f |g(t, s)\dsdt.

— a — b

Hence, by (5), / 13 -*0 as (x, y, £) ->(x0, y0, C0)- Analogously, / n , I 31, / 33 tend to zero as (x, y, £) ->(x0, y0, £0).

Now we prove (12) for the integral / 12.

We begin with

(13) |/ i 2| = | J J { / (t, s) — f (x0, y0)}K(t — x, s - y , Ç)dsdt\

- a y Q - 0

X Q - à y Q + à

< | f f { f ( t , s ) - f ( t , y 0) } K { t - x , s - y , Ç ) d s d t \

- a y Q - 0

х0~дУ0 + â

+ .f .f \ f { t , y 0) - f ( x 0, y 0) \ K ( t - x , s - y , Z ) d s d t = A + B.

- a y ç ) - à

Applying (2) and (3), we obtain

x0-ô

(14) B ^ 2 6 - f \ f { t , y o) - f { x o, y o) \ K ( t - x , 0 , £ ) d t

- a

XQ-Ô

« 2ô-( f (|/(r, V’o)l +1/ ( ^0, Уо)!И<)КЙ,5, 0, c)

3

$ 26■( ( |

f(t, y0)\dt

+ 2 a\f (x 0, j>„)|)-.K(R 0, f).

By assumption (10), there exists т0 > 0 (т0 < b) such that

(4)

358 S t a n i s t a w Si udut

1 У0 + х0

- ! т° уо

f ( t , s)ds + 1 ^ | / ( f , y 0)|

for almost all t e ( — a, a}. Hence, by (14),

B ^ 2 S [ - \ \ f \ \ + 2a + 2a \f(x0, y0)| О, £);

T0 thus

(15) B -*0 as (x, y, £) ->(x0, y0, £o) (see (5)).

By virtue of (10) there exists, for every s > 0, a number Ô > 0 such that 1 Уо ±T

- f { f ( t , s ) - f ( t , y 0)\ds

T JL

^ £

for almost all t e ( — a , a ) when 0 <t^;<5. Hence, by Lemma 2.1 ([1], p. 174),

* 0 ~ ‘5 b

J' £ { J* K ( t - x , s, Ç)ds + 2\y0- y \ K ( t - x , 0, Ç)}dt

— a — b

a b a

< £ - { J ‘ J' K ( t - x , s, Ç)dsdt + 2\y0- y \ j K { t - x , 0, Ç)dt\

(see [1], p. 176, for the similar situation).

Therefore, if the points (x, y, £)eZ c are sufficiently near to (x0, y0, £o)>

we have

(16) Л ^ 2 г -(1 + С)

(see (4) and the definition of Zc).

In view of (13), (15) and (16) we have (12) for the integral / 12. For the integrals / 21, / 23, h i the proof of (12) is similar to the above one.

Let us pass to the integral I 22. Write x0 + <5 У0 + <*

|/2г1^ | f f {f ( t , s ) - f ( t , y 0) } K ( t - x , s - y , Ç ) d s d t \ x0~â yo~ô

y 0 + ô XQ + Ô

+ | j J { f ( t , y 0) - f { x 0, y 0) } K { t - x , s - y , Ç ) d t d s \

У 0 ~ 0 X Q ~ Ô

= Ai + A 2.

We estimate the integrals A 1 and A 2 as the integral A, i.e., we apply Lemma 2.1 ([1], p. 174) to each of them. Consequently, A t and A 2 tend to zero as (x, У, £) -*(xo> Уо» *so) and (x, y, £)eZ c . Hence (12) is true for the integral / 22. The above remark completes the proof of the theorem.

(5)

Theorem o f the Romanovski type 359

3. R e m a r k 1. Our theorem implies Taberski’s result ([1], p. 175).

P roof. Assume that f, К satisfies the assumptions of Taberski’s theorem and put / (t, s) = f (r), K (f, s, Ç) = К (t, £), a = n, b = Applying our theo­

rem, we are done.

R e ma r k 2. The request that both limits (9) and (10) are uniform cannot be omitted.

Counterexample. Let a = b = 1, E = (0, 1), Co = *o — Уо = ®- We define the functions f K ( -, -, Ç) (£e£) for t, se< — 1, 1) by:

f{t , s) = |t-s|/(t2 + s2) if t2 + s2 > 0, /(0 , 0) = 0;

( o i f ( ( , s ) 6 < - i , i > 2\ < - e . o 2-

Let f (t + k-2, s + l-2) = f (t, s), К (t+k-2, s + l-2, () = K(t, s, Ç) for all integers к, l.

The function К satisfies all assumptions of our theorem. The function / satisfies conditions (6), (7), (8), but not (9) and (10), because

lim - \ f ( t , s ) d t = 0 = /(0, s) 1 h but not uniformly a.e. on ( —1, 1), л-о h ô

l i m - f / ( f , s)ds — 0 = f ( t , 0) 1 T also not uniformly a.e. on ( —1, 1).

r -*0 T 0

It is easy to check that l l

lim f f f { t , s ) K ( t - x 0, s - y 0, Ç)dsdt = i l n 2 , J i J i

whence is not true that

f f f ( t , s)K(t — x, s - y , Qdsdt -> /( 0, 0) = 0 - i -T

as (x, y, Ç) -+(x0, y0, fo) and (x, y, ^)eZ c (observe that (x0, y0, £)eZ c for all £e£).

References

[1] R. T a b e r s k i, S in g u la r in te g r a ls d e p e n d in g o n tw o p a r a m e te r s , Roczniki PTM, Séria I, Prace Mat. 7 (1962), 173-179.

[2] —, O n d o u b le in te g r a ls a n d F o u r ie r s e r ie s , Ann. Polon. Math. 15 (1964), 97-115.

Cytaty

Powiązane dokumenty

Central limit theorems for functionals of general state space Markov chains are of crucial importance in sensible implementation of Markov chain Monte Carlo algorithms as well as

The Theorem remains valid as

Our approach differs from Hata’s in the use of the p-adic valuation of the factorials occurring in the transformation formulae corresponding to the left cosets of T in Φ, in place

We investigate ramification properties with respect to parameters of integrals (distributions) of a class of singular functions over an unbounded cycle which may intersect

ROCZNIKI POLSKIEGO TOWARZYSTWA MATEMATYCZNEGO Séria I: PRACE MATEMATYCZNE XXX (1990).. S tanislaw S iudut

Another example (different from Goodman’s example) has been constructed by W... Krzyzewski for suggesting the

In the present note we intend to clarify the actual p art of the algebraic and topological conditions in this important result, obtaining thus a sur­..

S is conceived as a topological space with the topology determined by the