• Nie Znaleziono Wyników

Properties of Integral Operators Corresponding to Ordinary Differential Equations in Banach Spaces

N/A
N/A
Protected

Academic year: 2021

Share "Properties of Integral Operators Corresponding to Ordinary Differential Equations in Banach Spaces"

Copied!
6
0
0

Pełen tekst

(1)

LUBLIN-POLONIA

VOL. XLIII, 11_______________________ SECTIO A _________________________________1989

Fakultät für Mathematik Universität Karlsruhe

S. SCHMIDT

Properties of Integral Operators Corresponding to Ordinary Differential Equations in Banach Spaces

Własności operatorów całkowych związanych

z równaniami różniczkowymi zwyczajnymi w przestrzeniachBanacha

Abstract. Using Darbo’s fixed point theorem, it is shown that initial value problems for ordinary differential equations in Banach spaces have a solution provided the right hand side of the equation is a sum of a /3-Lipschiz and disspative function.

Let E be a Banach space vith norm |• |, T >0, and f : [0, T] x E —» E a continuous function with sup{|/(f,x)| : 0 < t <T, X E E} < M. We denote by (?([(), T],E) the Banachspaceof continuous functions x : [0,T] —> E provided with the norm ||x|| = max{|x(<)| : 0 < t < T}. The existence ofsolutions of the initial value problem

(♦) z(0) =o, *' = /(*,*) (0<*<T)

can be proved by finding afixed point of the operator (I> : C([0,T],E) C([0,T],E) definedby

$x(t)= a+ Z /(r,x(f))dr (x € C([0, ], E), 0 < t < T) .

A function fis called Lipsichitz, ifit satisfies

/3(/[0,T] x A)) < A /?(A) (AC E bounded).

¡3 denotes the Hausdorf measure of noncompactness (for definition and properties see [2], [8]). A compact function f is /3-Lipschitz with A = 0. If thefunction f is Lipschitz with constant A, i.e.

!/(<>•'•) -/(Ly)l < A|x- !/| (0< t < T ; x,y e E) , then it is /? Lipschitz with constant, A. The following results are known.

(2)

102 S. Schmidt Theorem 1.

(i) f is compact => <I> ii compact and 4>(C[0,T], E) C L.

(ii) f is Lipschitz with constant X => <I> is Lipschitz with constant XT.

(iii) f is 0-Lipschitz with constant X => $>: L L is 0 Lipschitz with constant XT [10].

Here L denotes the convex, closed and bounded subset (xE C([0, T],£) : x(0) = a,

|x(<) — xs)| < M\t —s|, 0 < t,s < T} ofC([0,T],£). In case (i) the fixed point theorem ofSchauder gives afixed pointof4>. If AT < 1 we obtain a fixed point of

$ by means ofthefixed point theorems of Banach(case (iii) and of Darbo [3] case (iii)).

Martin [6] usedapproximate solutions to show that the initial valueproblem (*) has a unique solution, if fis disspative, i.e.

-f(t,y)]~ < A|x - 5/| (0 <t <T ; x,ye E) , where [x,t/]_ = lim/,i0|(|*|- |x- /ij/|).

We do not know, if this case can also be treated by a fixed point theorem. As generalization of Theorem 1 we will prove

Theorem 2. Letg,k : [0,T] x E—> E be continuous functions with (1) sup{|g(t,x)|: 0 < t < T , xE £} + sup{|fc(t,x)|: 0< / < T , x £ E] < M such thatg is disspative with constant A (>0) and k is 0-Lipsch.itz with constant k. Define $ : C([0,T],E) —> C([0, T],E) by 'k(x) = y wherey is the unique solution of

j/(0) =a , y' =g(t,y)+ k(t,x(t)) (0 < < < T) .

Then4* w continuous, 4'(C[0, T],.E) C L and : L —*L is 0-Lipschitz with constant

Wewill usethe following lemmata.

Lemma 1 [1]. LetA be a bounded and equicontinuous subset o/C([0, T],E) and A — {x(t): x E A, 0 < t < T}. Then

P(A) = 0(A) .

Lemma 2 [9]. Let k : [0,T] x E —> E be a continuous, bounded and 0- Lipschitzfunction with constant n and A C E bounded. Then to each e > 0 there exists afinite dimensional subspace Y ofE and a continuous and bounded function s : [0,T] x E —♦ Y with theproperty

(2) |fc(f, x) — s(t, x)| < k0(A) +£ (0 < / < T, x E A) .

(3)

Proof ofTheorem2. We define T : C([0,T],£) -+ C([0,T], E) by T(x) = y+x, where yis the unique solution of

!/(0) = a - r(0) , y' =g(t,y + r(<)) (0 <t < T) , or equivalentlyr(r)=z, where z is theunique solution of

(3) z(t)= a + y g(r, z(r)) dr + x(t) (0 << < T) .

If K : C([0,T],E) —>C([0,T],E) denotes the Nemytskii operator Kx(t) = k(t,x(t)) (x Ç C([0, T],E), 0 < t < T) and I : C([0, T], E) —> C([0,T],E)the Integral operator Ix(t) = Jg x(t)dr (x 6 C([0, T],E), 0 < < < T), weclaim

(i)ro/oK=i, (4)

( ii) T is continuous,

( iii) To I isLipschitz with constant ^(eAT — 1). . (5) Equation (4) easily follows from (3) and the definition of4». Since the propo­ sitions (ii) and (iii) can be proved by analogous arguments, weonly show (ii). Let x,u € C'([0,T],E) and T(x) = x+y, T(u) = u + u. Then y, v : [0, T] x E —» E are differentiable functions and, with the properties of [•,•]_ (see Lemma II 5.6 and Lemma VI 4.1 in [7]), weget for t > 0

lv(y) -

v(t)|'_ = [«/(<) - v(<), »/'(<)- v'(f)}_

= l>0)-«(<).»(<, *0) + y(<)-»(<,«(<)+ «(<))]-

< k* - «(<)>«(< +yW - s(L «(<) + «(<))]_ + |w(t)|

< A|sz(<) - v(<)| + |w(t) ,

wherew(<) = g(t,x(t)+y(t))-g(t, u(f) + t/(<)) (0< t< T). From the above inequality and |y(0) — v(0)| = |r(0) — u(0)| we deduce by means of well-known theorems on differential inequalities (see Walter [12])

. Ily - v|| = lira - r« -(r- u)|| <eAT|r(0) - u(0)| + ^(eAT -l)||w|| .

This and the continuity of g gives the continuityof T, and with (4) we obtain the continuity of ’F. Furthermore (1), (3), (4) implies ’P(C([0, T],£)) Ç L. Now we will prove that $ : L -+ L is Lipschitz. Let .Abe a subsetof L and A = (r(t) : x € A, 0 <

t < T}. Thenby Lemma 1,

(6) P(A)= p(A).

We choose e > 0. By Lemma 2 there exist a finite dimensional subspace Y of E and a continuous and bounded functions s : [0, T] x E —» 1 with property (1). If S :C([0, T],E) -+C([0,T], E)denotes theNemytskiioperator ofs, the Arcelà-Ascoli theorem showsthe relative compactness of ZoS(C([0, T],E)) and therefore therelative compactnessofT o I o S(C([0, T], E)). From (2), (5), (6) we deduce for x € A

||r o

I(Kx) -To /(Sr)|| < |(eAT -1)(k/?M) + e)•

(4)

104 S. Schmidt

This implies

/3({ro/oA'(x)-roioS(x):ie>l})< y(eAT-l)(^M)+e) .

Since /?(To I o S(.4)) = 0 and e > 0 isarbitrary, we conclude = /3(To I o K(A)) < qftA).

Corollary . Under the assumptions of Theorem 2 the initial value problem (♦) with f=g +h. has a solution x € C([0, T],E).

Proof. We first choose to 6 (0,T]such that^(eA<0 — 1)< 1. Then fromTheorem 2 and the fixed point theoremof Darbo we obtain a solution x : [0, <o] —♦ E of (*).

Thissolution can be continued to the whole interval [0,T].

This corollary answers the question in [4], [11] and is proved without use of a fixed point theorem in [9]. For completness we refer to a result of Lemmert [5], who proves the monotonicity of an operator 4' corresponding to an initialvalue problem in ordered Banach spaces, where the right hand side is assumed to satisfy some monotonicity conditions.

REFERENCES

[1] Ambrosetti , A. , Un theorema di esistenca per le equazioni differenziah negli spazi di Banach , Rend. Sem. Mat. Univ. Padova 39 (1967), 349-361.

[2] Banas , J. , Goebel , K. , Measures of noncompaciness in Banach spaces , Lecture Notes in Pure and Applied Math. 60, Marcel Dekker, New York - Basel 1980.

[3] Darbo , G. , Puniti uniti in trans formaziom a codominio non compatto , Rend. Sem. Mat.

Univ. Padova 24 (1972), 84-92.

[4] Demling , K. , Open problems for ordinary differential equations in Banach spaces , Proc.

Equa. Diff. (1978), 127-137.

[5] Lemmert , R. , Existenzsätze für gewöhnliche Differential glaichyngen in geordneten Ba- nachräumen , Funkcialaj Ekvac., Ser. internac. 32 (1989), 243-249.

[6] Martin , R. H. JR. ,A global existence theorem for autonomus differential equations in a Banach space, Proc. Amer. Math. Soc. 26 (1970), 307-314.

[7] Martin , R. H. JR. ,Nonlinear operators and differential equations in Banach spaces , John Wiley, New York 1976.

[8] Sadovskil , B. N. , Limit-compact and condensing operators , Russ. Math. Surveys 27 (1972), 85-155.

[9] Schmidt , S. , Existenzsätze für gewöhnliche Differentialgleichungen in Banachräumen , Diss. Univ. Karlsruhe (1989).

[10] Szufla , S. , Some remarks on ordinary differential equations in Banach spaces , Bull. Acad.

Polon. Sei., Ser. Sei. Math., Astronom., Phys. 16 (1968), 795-800.

[Hl Volkmann, P. , Existenzsätze für gewöhnliche Differentialgleichungen in Banachräumen , Mathematica ad diem natalem septuagesimum quintum data, Festschrift Ernst Mohr zum 75.

Geburtstag, 271-287, Fachbereich Mathematik der Technischen Univerität, Berlin 1985.

[12] Walter , W., Differential-und Integral- Ungleichungen , Springer-Verlag, Berlin 1964.

(5)

STRESZCZENIE

Stosując twierdzenie Darbo o punkcie stałym wykazano, że zadanie początkowe dla równania różniczkowego zwyczajnego w przestrzeni Banacha ma rozwiązanie, o ile tylko prawa strona równania jest sumą funkcji ft bipschitzowskiej i dyssypatywnej.

(6)

Cytaty

Powiązane dokumenty

In the last few years a good deal of work has been done on the representation in series form of compact linear maps T acting between Banach spaces X and Y.. When these are

Ibrahim, On existence of monotone solutions for second-order non-convex differential inclusions in infinite dimensional spaces, Portugaliae Mathematica 61 (2) (2004), 231–143..

ANNALES SOCIETATIS MATHEMATICAE POLONAE Series I: COMMENTATIONES MATHEMATICAE XXIII (1983) ROCZNIKI POLSKIEGO TOWARZYSTWA MATE MATYCZNEGOF. Séria I: PRACE MATEMATYCZNE

it is homeomorphic to the intersection of a decreasing sequence of compact absolute retracts... Thus W is relatively compact in

Let ME denote the family of all nonempty and bounded subsets of E and NE the family of all nonempty and relatively compact sets in E.. D e f in it io

S ch affer, Linear differential equations and functional analysis, Ann.. MICKIEWICZ UNIVERSITY,

We consider a natural generalization of differential equations (which have the properties of ordinary differential equations) for maps of one Banach space into

T heorem 3.. On the other hand Hille, Yosida and Kato in these situations have proved directly the convergence of corresponding sequences Un{t 1 s), obtaining in this