• Nie Znaleziono Wyników

The Grunsky Coefficients of Meromorphic Starlike and Convex Functions

N/A
N/A
Protected

Academic year: 2021

Share "The Grunsky Coefficients of Meromorphic Starlike and Convex Functions"

Copied!
4
0
0

Pełen tekst

(1)

ANNALES

UNIVEESIT ATIS MAEIAE CURIE-S K Ł OD O WSK A LUBLIN-POLONIA

VOL. XXXI, 7 SECTIO A 1977

Queen Elizabeth College, London W8 7AH, Great Britain

DAVID A. BRANNAN

The Grunsky Coefficients of Meromorphic Starlike and Convex Functions

Współczynniki Grunsky’ego funkcji meromorficznycłi gwiaździstych i wypukłych Коэффициенты Грунского мероморфных, звёздных и выпуклых функций

1. Introduction

Let 27* be the class of functions /(«)=»+J1

n= 0

analytic and starlike in |z| > 1, and 27* the subset of 27* corresponding to the particular case a0 = 0. Let 27* be the class of functions of the form (1) analytic and convex in |«| > 1 ; thus / e 27* if and only if zf e 27* [2 ; p. 47].

The Grunsky coefficients am>n of meromorphic univalent functions f are defined by the relation

iQg - _ ■ = -

2

s m,n=l

—я»Л—», the Grunsky inequalities [2; Chap. 3] show at once that

(2) l«m,»l < (ł»n)~ł.

A well-known result of Clunie [2;p. 48, Theorem 2.10] shows that, if f e 27*, then

(3)

l«»l =l«i,„lr<

2(71 + 1)-*.

Numerical computations by Miss H. Bokemeier and C. Pommerenke [3]

led to their conjecture that (4) K,»l<2(w + «)-1(/e27*).

For m= n, (2) and (4) are the same; and, for the function f(z) — z + z~1, an,n — n~l for n-

(2)

46 David A. Brannan In §§ 2-3 we prove a special case of (4).

Theorem: Let f e L* be of the form (1). Then

(5) |a2i3|<2/5, and

(6) |o1(J<2/6.

Our methods do not seem to give (4) either for a, 3 for £* or for other am n for L*.

In § 4 we give some examples which show that the inequality l«m.nl^2l(m + n)(m + n-l) (m =£n,f eZk).

somewhat analogous to (4), is not true in general; it seems difficult to see what the sharp upper bounds for am n might be in this case.

2. Proof of (5) Let Po denote the class of functions

2>(s) =1+ j>]pnz~n

n-2

analytic and of positive real part in |«| > 1. Since here/e P*,

(7) */'(«)//(*) =P(*)

for some p eP„. From (7) it follows that —2ax = p2, —3a2 = p3, — 4a8

= Pi~iPl, “Ps-fPaPa and -6as = p6 — ip2p4 — Jpj + ip’- Then (3) gives

(8) IPs“IPaPsI < 2-

Now, since p eP0, so does

l/p(z) =l-piz~i-piz-3 + (-pi+pt2)g-* + (-ps + 2p2pt)g-s+ ...

and hence

(9) lp5-2p8p8| < 2.

Then, since, a23 ~ai-i-a1a2 [2;p. 58],

l°2,jl = ih l6(p5-|?2P3)+15(p5-2p2p3)| <2/5

using (8) and (9). It is easy to verify that equality holds in (5) only for functions of the form

f(z) = 2(1 + 62 5)J'5, |e| = 1.

(3)

The Orunslcy Coefficients... 47

3. Proof of (6)

From (7) and the identity a2,4 = as + fflias +la2[2; P-581 we find that

-6a2>4 =p6-lp2p4+ipl-lP3 (p(z)eP„).

We now follow the ingenious method of Nehari and Netanyahu [1;

especially p. 20] in their proof that |as| < 1/3. This means that we have to find functions

H(z) = 1 + ^cnz~n, h(z) = 1+ 2’^""

n=»l n — 1

analytic and of positive real part in |z| > 1 that satisfy the following system of relations :

7l°2C4 = 3, /2C2 —

(10) yic23 = I, c6 = 2

Vi — l(l+i/?i)> ?2 = {(l+^i +i&i) Now (10) is satisfied by the following choices:

h(z) = 1 + «'1 (and so =!,/?„= 0, = £, y2 = I) and H(z) = A 1+ar1

1-z-1 + (1-1) 1-z-1 l + z~l

with A = |+/2/9 (so that e2 = c4 = c6 = 2, cs = 1^32/9). It follows from [1; equations (11) and (16b), with n = 6] that | —6a2 4| < 2.

Note. A similar argument establishes (5), but we have preferred a simpler method here.

4. Grunsky coefficients for functions in Pk.

Note that f e Pk if and only if

(11) l + s/'W'W =P(*)

where p eP0 (as defined in § 2). From (11) we can check that 20a2>3 =p5 + |p2p3,

30a2>4 =P6+ip2P4+nP»-iPi.

42a2lS =P7+^P2Ps-g2’2P3» and 42aM = Pi + iiPtPs+iiPsPt-aP'iP»- (12)

(4)

48 David A. Brannan Example A. Take

2(cos0 + cos20)p(2)

(13) = cos0 Г1 + С02 l + CO^l „ri + ft)3» l + CO3«!

--- 1---+ cos 2 0---1---, Ll—-coz 1 — coz ] l_l — <u32 1 —oj3zJ

where 0 = гг/б, со = e2i9. Then pl=pi = 0, р2 = р3 = 2(cos20 —cos0), ps — 2; and so 20a2i3 > 2.

Example B. Take p(z) = (1 + «’)/(! — z3) so that 30a2 4 = 7/3 > 2.

Example C. Take p(z) as in (13), but with 0 = n/7, co — e2l°. Then Pi = 0 (by construction of p(z), p2 = ps 0, p2 =p^< 0; hence for

this f(z), 42a25 > 2 and 42a33> 2.

REFERENCES

[1 ] Nell ar i, Z. and Netanyahu,E. On the coefficients of meromorphic schlicht functions, Proc. Amer. Math. Soc. 8 (1957), 15-23; MR 18, 648.

[2] Pommerenke, C. Univalent functions, Vandonhoeck and Ruprecht, Göttingen 1975.

[3] Pommerenke, C., private communication.

STRESZCZENIE

W związku z hipotezą Pommerenke i Bókemeier, że wyrazy macierzy Grunsky’ego (amn) dla funkcji gwiaździstych spełniają nierówność

|aOTB|<2(i» + «)-1

autor wykazuje tę nierówność w dwóch przypadkach specjalnych: m = 2, n = 3; m = 2, n = 4.

РЕЗЮМЕ

В связи с гипотезой Поммеренке и Бекемеер о том, что выражения матрицы Грунского (атн) для звёздной функции исполняют неравен­

ство

И,пп1 < 2(т + п)~1

автор доказывает это неравенство в двух специальных случаях:

т, = 2, п = 3; т = 2, п = 4.

Cytaty

Powiązane dokumenty

We investigate, in this paper, the family J2a(A, J?J in terms of its coefficients, and then determine extreme points, radii of univalence, starlikeness, and convexity, and order

It would not be meaningful, however, to distinguish the class of Lu Qi-Keng domains without giving an example of bounded domain which does not belong to this class.. To this aim

We shall give the geometrical interpretation of functions of this family and prove a theorem connected with the circular symmetrization of strongly starlike domains..

W., On Ike domaina of valnee of certain ajeteme of fnnctionala in Ike daaaee of anivalenl fnndione (Russian), Vestnik Leningrad.!)nivAlatb. 16 (1960) no

Section 3 is devoted to obtain distortion properties and radius of meromorphic convexity of order i (0 &lt; 6 &lt; 1) for functions in EJ^(a).. In Section 4 we

By fixing the exponents in our previous classes, we may vary the orders of starlikeness and convexity to obtain results analogous to the previous theorems. 8 —

Współczynniki funkcji odwrotnych do funkcji regularnych gwiaździstych Коэффициенты функций обратных к регулярным звездным функциям.. Except for rotations the

Hence, in many extremal problems it is sufficient to consider such problems within the subclass G which consistsof all univalent Grunsky’s functions.. In what follows we will