• Nie Znaleziono Wyników

Facies and sedimentation of Coniacian deposits of the Kraków Swell in the Wielkanoc area (southern Poland)

N/A
N/A
Protected

Academic year: 2022

Share "Facies and sedimentation of Coniacian deposits of the Kraków Swell in the Wielkanoc area (southern Poland)"

Copied!
15
0
0

Pełen tekst

(1)

Fa cies and sed i men ta tion of Coniacian de pos its of the Kraków Swell in the Wielkanoc area (south ern Po land)

Danuta OLSZEWSKA-NEJBERT1,

*

and Ewa ŚWIERCZEWSKA-GŁADYSZ2

1 Fac ulty of Ge ol ogy, Uni ver sity of War saw, Żwirki i Wigury 93, 02-089 Warszawa, Po land

2 In sti tute of Earth Sci ence, Uni ver sity of Lodz, Narutowicza 88, 90-139 Łódź, Po land

Olszewska-Nejbert D. and Świerczewska-Gładysz E. (2013) Fa cies and sed i men ta tion of Coniacian de pos its of the Kraków Swell in the Wielkanoc area (south ern Po land). Geological Quarterly, 57 (1): 1–16, doi: 10.7306/gq.1062

Coniacian de pos its, ca. 1.5 m thick, crop ping out in the Wielkanoc Quarry, north of Kraków in south ern Po land, con sist of firm, nod u lar and, less com monly, marly lime stones with ho ri zons of in situ, slightly phosphatized hexactinellid sponges and thick-shelled inoceramid bi valves. The suc ces sion is com posed of foraminiferal-inoceramid packstones with com mon sand-sized quartz and glauconite grains at the base, pass ing up wards into foraminiferal or foraminiferal-inoceramid wackestones with or with out rare glauconite. A microfacies anal y sis shows that plank tonic foraminifers are the dom i nant forms, while ben thic forms are rare. The fa cies in di cates that sed i men ta tion in the Wielkanoc area on the Kraków Swell, which sep a rated the deeper Mid-Pol ish Trough Zone to the north-east and the Opole Trough Zone to the south-west, was gen er ally calm (doc u mented by abun dant wackestones) and slow (in di cated by the dom i nant sed i men tary “coccolith sys tem”

and pres ence of glauconite) dur ing the Coniacian. Rare ep i sodes of non-de po si tion are re corded by ep i sodes of phosphatization and mi nor intra-Coniacian dis con ti nu ity sur faces. The pres ence of hexactinellid sponges in the sec tion stud - ied are con sis tent with a calm en vi ron ment, be low the storm-wave base, with low rates of sed i men ta tion. Subhercynian (lat - est Turonian–Coniacian Ilsede Phase) lo cal tec tonic move ments had an im por tant in flu ence on the evo lu tion of the re gion.

They pre sum ably led to sub si dence of the Wielkanoc Block dur ing the Early Coniacian. These move ments were prob a bly as - so ci ated with ac tiv ity on the Kraków–Myszków Fault Zone.

Key words: Up per Cre ta ceous, Coniacian, synsedimentary tec ton ics, Kraków Swell, microfacies, sponges.

INTRODUCTION

Stratigraphically well-doc u mented Coniacian de pos its are known from nu mer ous out crops in ex tra-Carpathian Po land: in the Sudetes and the Opole area (e.g., Tarkowski, 1991;

Walaszczyk, 1992; Olszewska-Nejbert, 2007; Leszczyński, 2010), in the Nida Trough, and on the south west ern and north - east ern mar gin of the Holy Cross Moun tains (e.g., Walaszczyk, 1992; Walaszczyk and Wood, 1998; Walaszczyk et al., 2010).

Ex tra-Carpathian Coniacian de pos its have also been rec og - nized in nu mer ous bore holes (Jaskowiak- Schoeneichowa and Krassowska, 1988; Leszczyński, 2012). How ever, ow ing to poor palaeontological doc u men ta tion, the strati graphic Turo - nian-Coniacian and Coniacian-Santonian bound aries have only been ap prox i mated (Leszczyński, 2002). The Coniacian con sists of marly-cal car e ous, cal car e ous, si li ceous- cal car e ous, marly or si li ceous-marly fa cies in most ar eas of Po land (Jasko - wiak-Schoeneichowa and Krassowska, 1988; Wala szczyk, 1992; Leszczyński, 1997, 2012), sim i lar to that in most of ex - tra-Al pine Eu rope (Fig. 1).

The Up per Cre ta ceous de pos its, es pe cially the Turonian de pos its of the Pol ish Jura Chain, have been stud ied by nu mer - ous sci en tists (e.g., Zaręczny, 1878; Sujkowski, 1926, 1934;

Alexandrowicz, 1954; Marcinowski, 1974; Walaszczyk, 1992;

Krajewski et al., 2000; Olszewska-Nejbert, 2005). Coniacian de pos its, how ever, have been doc u mented doubt fully.

Zaręczny (1878) noted his Inoceramus Brogniarti (sic) near Giebułtów (ca. 10 km NW of Kraków). The taxon Cremno - ceramus brongniarti is char ac ter is tic of Lower Coniacian de - pos its (e.g., Walaszczyk, 1992). Un for tu nately, Zaręczny (1878) did not il lus trate his Inoceramus Brogniarti and his de - scrip tion of these spec i mens cor re sponds more to the di ag no - sis of Inoceramus lamarcki, the in dex taxon of the up per most Mid dle Turonian. More over, Zaręczny (1878) re garded his Ino - ceramus Brogniartias as syn onym of I. lamarckii (sic).

Smoleński (1906) noted the oc cur rence of Inoceramus haen - leini, Inoceramus involutus and ?I. crassus in the Bonarka sec - tion (south of Kraków), which in di cates a Coniacian age of this part of the de pos its. How ever, that au thor also did not il lus trate the spe cies men tioned and their poor de scrip tions did not per - mit any ver i fi ca tion by us. More over, Panow (1934) con tested the pres ence of these spe cies in the Bonarka sec tion and showed that the Turonian de pos its are over lain di rectly by marls with cri noid plates of Marsupites testudinarius – the in dex taxon of the up per most Santonian. Sujkowski (1926) noted from the en vi rons of Wolbrom sandy-glauconitic lime stone with inoce -

* Corresponding author: don@uw.edu.pl

Received: March 8, 2012; accepted: July 21, 2012; first published online: December 6, 2012

(2)

ramids and echinoids of Turonian to Santonian age. How ever, this dat ing was not con firmed by in ves ti ga tors in the fol low ing de cades and nu mer ous au thors sug gested a strati gra phic gap cov er ing the lat est Turonian through Mid dle San tonian in the south ern seg ment of the Kraków Swell (e.g., Panow, 1934;

Różycki, 1938; Alexandrowicz, 1954; Barczyk, 1956;

Marcinowski, 1974). Walaszczyk (1992) found and il lus trated the inoceramid in dex taxa for the Cremnoceramus crassus crassus/deformis deformis Zone (up per part of the Lower Coniacian) in loose blocks of sandy-glauconitic lime stone near the north ern wall of Wielkanoc Quarry. How ever, he did not study the suc ces sion di rectly at ex po sure and he pointed out that the lo ca tion of the Coniacian de pos its within the sec tion is un clear. More re cently, the inoceramid fauna re vised by Walaszczyk (1992) from out crops sit u ated north wards from Wielkanoc showed the Coniacian age of de pos its un der ly ing the Santonian marls (Przychody, Solca), or Campanian si li - ceous chalk (Zalesice). Olszewska-Nejbert (2004) de scribed a hardground at the Turonian/Coniacian bound ary in the south - ern wall of Wielkanoc Quarry. Olszewska-Nejbert and Świer - czewska-Gładysz (2009) and Świerczewska-Gładysz (2010) de scribed the Coniacian/Santonian bound ary in the north ern

wall of the quarry dur ing a study of sponges from Up per Santonian de pos its, but the Coniacian strata have not yet been in ves ti gated in de tail.

The aim of this pa per is, there fore, a re con struc tion of the en vi ron ment of Coniacian sed i men ta tion on the Kraków Swell in the Wielkanoc area (Figs. 1 and 2), based on microfacies anal y - sis, and a palaeontological and palaeo eco logi cal anal y sis of sponges from the de pos its. Ad di tion ally, the petrographic and sedimentological data are in te grated here with the ge ol ogy and the tec tonic de vel op ment of the Kraków Swell area.

GEOLOGICAL SETTING

The Wielkanoc Quarry in the Pol ish Jura Chain ex poses one of the most com plete lower Up per Cre ta ceous suc ces sions in the area. The Turonian lime stone se quence di rectly over lies Oxfordian (Up per Ju ras sic) mas sive lime stones (e.g., Marci - nowski, 1974; Marcinowski and Radwański, 1983). The Turo nian de pos its are as signed to the Inoceramus lamarcki–Ino ceramus perplexus (= Inoceramus costellatus) zones (up per Mid dle–lower Up per Turonian) (Walaszczyk, 1992; with ad di tional com ments Fig. 1A – Turonian–Santonian palaeo ge ogra phy with sim pli fied dis tri bu tion of fa cies in the North Eu ro pean

Prov ince (af ter Naidin, 1959; Kauffman, 1973; Ziegler, 1990; mod i fied); B – in ferred palaeo ge ogra phy of Kraków Swell in Coniacian and Santonian times based on tec tonic re gional sub di vi sion (ac cord ing to Żaba, 1996; Buła et al., 2008) of the Up per Silesian Block and Małopolska Block be low the sub-Perm ian and Me so - zoic de pos its

1 – land ar eas; 2 – deltaic, coastal and shal low-ma rine clastic fa cies (sands and con glom er ates, sands and shales);

3 – shal low-ma rine fa cies (sands, marls, car bon ate marls, marly car bon ates, car bon ates); 4 – mainly shal low-car - bon ate ma rine fa cies (marly car bon ates, car bon ates, chalk, white chalk, car bon ate shales); 5 – ap prox i mate area of Med i ter ra nean Prov ince (with out in di ca tion of fa cies); 6 – deeper ma rine shale fa cies (rift area); 7 – po si tion of the fu - ture Al pine de for ma tion front; W – Wielkanoc Quarry (south ern Po land); APB – re cent po si tion of An glo–Paris Ba sin;

BCB – re cent po si tion of Bo he mian Cre ta ceous Ba sin; SHCB – re cent po si tion of Subhercynian Cre ta ceous Ba sin;

8 – main tec tonic zones dis tin guished in the base ment (ac cord ing to Żaba, 1996, 1999; Buła et al., 2008); 9 – in ferred po si tion of Up per Silesian Block (USB); 10 – in ferred po si tion of Małopolska Block (MB); 11 – in ferred po si tion of Kraków Swell dur ing the Turonian, Coniacian and Santonian; KL – Kraków–Lubliniec Fault Zone, KM – Kraków–Myszków Fault Zone, P – Przychody, S – Solca, W – Wielkanoc Quarry, Z – Zalesice

(3)

about inoceramid zonation by Walaszczyk and Wood, 1998;

Walaszczyk and Wood in Niebuhr et al., 1999) are ex posed in the south ern wall of the quarry. The 10 m thick Turonian suc ces - sion is capped by a com pos ite hard ground with trace of phosphatization, 0.6 m thick Coniacian sandy- glauconitic lime - stone and Qua ter nary loess (Olszewska- Nejbert, 2004). That com pos ite hardground was rec og nized also in the north ern wall of quarry. The Coniacian de pos its pre served here ex ceed 1.5 m in thick ness and are cov ered by marly- glauconitic lime stone of

Late Santonian age (Walaszczyk, 1992) with nu mer ous re de - pos ited phosphatized sponges at the base (Olszewska-Nej bert and Świerczewska- Gładysz, 2009).

The Turonian de pos its oc cur ring in other parts of the Pol ish Jura Chain, are more sig nif i cantly re duced in thick ness or/and strongly con densed than these in the Wielkanoc sec tion (Zaręczny, 1878; Sujkowski, 1926, 1934; Alexandrowicz, 1954;

Marcinowski, 1974; Walaszczyk, 1992; Jasionowski, 1995;

Kudrewicz and Olszewska-Nejbert, 1997; Krajewski et al., Fig. 2A – geo log i cal sketch-map of the Pol ish Jura Chain and Nida (Miechów) Trough with lo ca tion

of Wielkanoc Quarry (ac cord ing to Kaziuk et al., 1978, sim pli fied and mod i fied); B – ex po sure of the Coniacian de pos its in the north ern wall of Wielkanoc Quarry (bar 20 cm)

(4)

2000; Olszewska-Nejbert, 2005; Kołodziej et al., 2010). In turn, Coniacian de pos its are pre served only in a few places on the Kraków Swell (Walaszczyk, 1992; Kołodziej et al., 2010). Af ter a long strati graphic gap, Up per Santonian de pos its cov ered a large area of the Kraków Swell (e.g., Alexandrowicz, 1969), while in some lo ca tions, Campanian de pos its rest di rectly on Turonian or Coniacian lime stones (Walaszczyk, 1992; Zapa- łowicz-Bilan et al., 2009; Kołodziej et al., 2010).

The elon ga tion of the Pol ish Jura Chain, in a NW-SE/NNW-SSE di rec tion, is con sis tent with the ex ten sion of the Kraków–Myszków Tec tonic Zone that sep a rates the Mało - polska Block from the Up per Silesia Block in the study area (Fig. 1). This zone is a part of the ma jor Kra ków–Lubliniec Fault Zone (Żaba, 1999; Buła et al., 2008) and also con sti tutes a south east ern frag ment of the Kraków–Szcze cin Tec tonic Zone (Żaba, 1996). Strike-slip tec tonic ac tiv ity along the Kra - ków–Myszków Tec tonic Zone dur ing the Pa leo zoic was re - spon si ble for the or i gin of a sat u rated net of faults (Buła, 1994;

Żaba, 1999). This zone was re ju ve nated in sub se quent pe ri - ods, e.g., in the Tri as sic (Żaba, 1999), Ju ras sic (Matyszkiewicz et al., 2006) and Ce no zoic (Jurewicz et al., 2007). On Jan u ary 6, 2012, a se ries of brief seis mic earth quakes was noted in Żerków (near Kalisz), in the Kra ków–Szczecin Tec tonic Zone (http://www.pgi.gov.pl/pl/archiwum-aktualnosci-instytutu/4032- trzesienie-ziemi-w-zerko- wie). This means that this tec tonic zone re mains ac tive.

Palaeogeographically, the study area was sit u ated in the Holy Cross Unit seg ment of the Mid-Pol ish Trough dur ing the Coniacian (Dadlez, 1997; Hakenberg and Świdrowska, 1998;

Świdrowska and Hakenberg, 1999). The pres ent Pol ish Jura was a pos i tive el e ment as a sub ma rine swell (the Kraków Swell) in the Cenomanian through to the Santonian and its south ern unit (seg ment) was up lifted to a high level (Marcino wski, 1974).

The swell sep a rated the Holy Cross seg ment of the Mid-Pol ish (Dan ish–Pol ish) Trough and the Opole Trough (Marcinowski, 1974; Walaszczyk, 1992; Olszewska-Nejbert, 2004). Sub - hercynian move ments dur ing the Turonian were re spon si ble for the break down or ac ti va tion of pre-ex ist ing blocks (Marcino - wski, 1974). Synsedimentary block move ments (Marcinowski, 1974; Walaszczyk, 1992; Olszewska- Nejbert, 2004; Marcino - wski and Radwański, 2009; Kołodziej et al., 2010) caused de - vel op ment of the many strati graphic gaps and dis con ti nu ity sur - faces (abra sive sur faces, omis sion sur faces, hardgrounds), which are ob served in many re gions of the Kraków Swell. One of such places was the pres ent Wielkanoc area, called here the Wielkanoc Block.

MATERIAL AND METHODS OF STUDY

Dur ing the field work, a de tailed lithological sec tion of the Coniacian was mea sured and sam pled for thin sec tions. Sam - pling was car ried out in the lithostratigraphic units rec og nized (see Fig. 3). Fos sils were col lected bed-by-bed and la belled.

The ma te rial in fill ing the spongocoel and interspicular space of the col lected sponges was ex am ined. Petrographic in ves ti ga - tions were car ried out at the Scan ning Elec tron Mi cro scope and Microanalysis Lab o ra tory of the Uni ver sity of War saw, us ing a Nikon ECLIPSE E600W POL op ti cal mi cro scope and a JEOL JSM-6380LA scan ning elec tron mi cro scope.

LITHOLOGY, MICROFACIES AND STRATIGRAPHY

The Coniacian de pos its crop out at the north ern wall of the Wielkanoc Quarry. The de pos its di rectly over lie a hardground de vel oped on the Up per Turonian pelitic lime stone (fora mini - feral-calcisphere wackestone, lo cally tran si tional to wacke - stone/packstone tex ture; see Fig. 4A; cf. Olszewska- Nejbert, 2004). The 10 m thick Turonian de posit in Wielkanoc rep re - sents the un di vided up per Mid dle (Inoceramus lamarcki Zone) and lower Up per Turonian (Inoceramus costellatus Zone = Inoceramus perplexus Zone) (ac cord ing to Wala szczyk, 1992;

and sup ple men tary data by Walaszczyk and Wood, 1998;

Walaszczyk and Wood in Niebuhr et al., 1999). The Up per Santonian de pos its (Walaszczyk, 1992), rich in re de pos ited phosphatized sponges at its base, over lie the Coniacian de - pos its (Olszewska-Nejbert and Świerczewska- Gładysz, 2009). The Coniacian de pos its ex ceed ca. 1.5 m in thick ness and were di vided into six units (a–f) as fol lows from the base to the top (Fig. 3):

a – 0.2 m thick, fairly solid sandy-glauconitic lime stone (cf.

Olszewska-Nejbert, 2004) with a large ad mix ture of quartz at the base is rep re sented by a foraminiferal-inoceramid pack - stone with a large ad mix ture of quartz (ca. 20%) and glauconite (ca. 10%) (Fig. 4B, C). This fa cies also rep re sents the sandy- glauconitic infill of the bur rows and bor ings of the Turonian hardground. The con tent of sand-sized quartz and glauconite de creases to wards the top of the unit.

b – 0.65 m thick, nod u lar lime stone with rare quartz (ca. 5%) and glauconite (ca. 5%), mainly in the lower part of the unit (Fig. 4D), rep re sented by foraminiferal wackestone, tran si tional to wackestone/packstone tex ture, with rare cal car e ous dino - flagellate cysts (c-dinocysts), large frag ments of ino ceramids and fine frag ments of echinoderm. The up per part of the unit has lit tle or no glauconite (<2%) and quartz (<2%); well-pre served plank - tonic foraminifers pre dom i nate (Fig. 4E, F). Planispiral and trochospiral forms with glob u lar cham bers are nu mer ous, while small se rial plank tonic foraminifers are very rare. Keeled forms also oc cur. Coccoliths are the dom i nant com po nent of the cal car - e ous ma trix, as in the fol low ing units.

c – 0.15 m thick, glauconite-bear ing, solid lime stone is strongly ferruginous. It is a foraminiferal wackestone, tran si - tional to wackestone/packstone tex ture, with c-dinocysts, ino - ceramid de bris and frag ments of echinoids (Fig. 5A). The microfacies is sim i lar to the microfacies of unit b. In the up per part of the unit, an intra-Coniacian dis con ti nu ity sur face oc curs in the foraminiferal wackestone, which is cov ered by phospha - tized microstromatolites (Fig. 5B). The amount of glauconite var ies be tween <1 and ca. 10%, es pe cially close to phospha - tized zones. In unit c, rare weakly phosphatized sponges (Fig. 3) from the or ders Hexactinosida and Lychnisco sida and thick- walled inoceramid bi valves and inoceramid de bris, as well as ir reg u lar echinoids (Micraster and Echino corys), oc cur.

Weakly vis i ble bur rows pen e trat ing as far as 8 cm down oc cur at the top of the unit.

d – 0.25 m thick, solid lime stone, with a low glauconite con - tent (ca. 1–2%), is rep re sented by a foraminiferal/fora miniferal- inoceramid wackestone, tran si tional to wacke stone/packstone tex ture, with rare c-dinocysts and frag ments of echinoids (Fig.

5C). Plank tonic foraminifers (mainly planis piral and trochospiral forms with glob u lar cham bers) dom i nate, but are not so well- pre served as in units b–c; they are lo cally bro ken. The con tent

(5)

of inoceramid de bris in creases lo cally, re sult ing in the for ma tion of foraminiferal-inoceramid packstone.

e – 0.12 m thick, marly lime stone, with a low glauconite con - tent (ca. 1–2%), is rep re sented by a foraminiferal-inoce - ramid/foraminiferal wackestone, tran si tional to wacke stone/pa - ckstone tex ture, with rare c-dinocysts and frag ments of echino -

ids (Fig. 5D). Plank tonic foraminifers, sim i lar to those in unit d, dom i nate. Small phosphatized clasts of foraminiferal wacke - stone and bur rows oc cur. Weakly phosphatized sponges from the or der Hexactinosida and Lychniscosida (Figs. 6 and 7) oc - cur com monly in one ho ri zon in this unit (Fig. 3). Cocco liths are the dom i nant com po nent of the cal car e ous ma trix and also infill the spongocoel of the sponges (Fig. 7D).

f – 0.15 m thick solid lime stone with rare glauconite (ca.

2–5%) is rep re sented by a foraminiferal wackestone with rare c-dinocysts and frag ments of echinoids (Fig. 5E). Plank tonic foraminifers are dom i nant and are better pre served than in units d and e. Planispiral and trochospiral forms with glob u lar cham - bers are nu mer ous but also keeled forms are pres ent while small se rial plank tonic foraminifers are exremely rare. Bur rows pen e trat ing as far as ca. 10 cm down oc cur at the top of unit.

The Up per Santonian de pos its over lie the Coniacian strata erosionally. They con sist of marly-glauconitic lime stones in the lower part (the amount of glauconite ex ceeds 15%) and are rep - re sented by an inoceramid packstone (Fig. 5F). Nu mer ous phosphatized sponges and intraclasts of phosphatized fora - miniferal wackestone are pres ent here (Olszewska-Nejbert and Świerczewska-Gładysz, 2009).

In the de pos its stud ied, Walaszczyk (1992) de scribed the fol low ing inoceramids: Cremnoceramus crassus (Petras - check), C. ernsti (Heinz), C. cf. deformis (Meek), Inoceramus cf.

madagascariensis Heinz, I. lusatiae Andert. This dates the in - ter val as the up per Lower Coniacian Cremnoceramus cra ssus crassus/deformis deformis Zone ac cord ing to the zonation of Walaszczyk and Wood (1998, 1999). The ap pear ance of the echinoids Micraster cortestudinarium (Goldfuss) and Echino - corys ex gr. scutata Leske sup ports this age.

SPONGES IN THE CONIACIAN SECTION

Sponges in the Coniacian de pos its oc cur at two ho ri zons, one ho ri zon in unit c and the sec ond in unit e (Fig. 3). They are less abun dant than in the re de pos ited or lag de pos its at the base of the Santonian (Olszewska-Nejbert and Świerczewska- Gładysz, 2009).

All sponges rep re sent the class Hexactinellida and are char ac ter ized by a rigid si li ceous skel e ton, com posed of hexactin spicules. The si li ceous skel e tons of all spec i mens are com pletely dis solved and voids only af ter spicules are pre - served (Figs. 6A, D, E and 7A). The empty voids af ter dis solved spicules are in places filled with cal cite. Among the col lec tion stud ied, two spe cies of the or der Hexactinosida have been re - cog nised: Periphragella plicata Schrammen, 1902 and Polyo - pesia angustata Schrammen, 1902, as well as six spe cies of the or der Lychniscosida: Plocoscyphia communis Moret, 1926;

Etheridgia mirabilis Tate, 1864; Leiostracosia angus tata (Roe - mer, 1841); Rhizopoterion cribrosum (Phillips, 1829); Spora - doscinia venosa Schrammen, 1912 and Astro pegma stellata (Roemer, 1841).

Two groups of sponges were dis tin guished mac ro scop i cally in the col lec tion: white and beige sponges. All sponges are slightly phosphatized (Fig. 7); the white sponges are only weakly phosphatized while the beige ones un der went stron ger phosphatization (Olszewska-Nejbert and Świerczewska- Gładysz, 2009). Both, sponge wall and in fill ing of the spongo - coel are usu ally phosphatizated. It is also pos si ble that only the sponge wall has been slightly phosphatized (Fig. 7A–C), whereas the spongocoel was infilled by cal car e ous sed i ment, Fig. 3. Geo log i cal log of Coniacian de pos its in the north ern wall

of Wielkanoc Quarry (stra tig ra phy af ter Walaszczyk, 1992, with ad di tional com ments by Walaszczyk, 2000; Walaszczyk and Wood, 1998, Walaszczyk, Wood in Niebuhr et al., 1999)

(6)

Fig. 4. Microfacies of top most part of Turonian and upper part of Lower Coniacian de pos its at Wielkanoc

A – foraminiferal-calcisphere wackestone, tran si tional to wackestone/packstone tex ture, Turonian just be low the hardground; B – hardground bound ary be tween the foraminiferal-calcisphere wackestone (fw) of Turonian and foraminiferal-inoceramid packstone with a large ad mix ture of quartz and glauconite (fip) at the base of the Lower Coniacian; C – foraminiferal-inoceramid packstone with ad mix ture of quartz and glauconite, base of unit a; D – foraminiferal-inoceramid packstone with ad mix ture of quartz and glauconite, bound ary be - tween the top of unit a and base of unit b; E – foraminiferal wackestone with dom i nant plank tonic foraminifers, tran si tional to wackestone/packstone tex ture, mid dle part of unit b; F – foraminiferal wackestone, tran si tional to packstone with dom i nant plank tonic foraminifers, up per part of unit b; sam ple sites see Fig ure 3

(7)

with out traces of phosphatization (Fig. 7D, E). Epibionts with a cal car e ous, non-phosphatized skel e ton, such as oys ters, are at tached to some sponges (Fig. 6F).

The sponges are poorly ce mented, rather soft, not re sis tant to de struc tion due to the lack of si li ceous skel e tons and the weak phosphatization. There fore, the outer sur faces of the sponges

are poorly pre served (Fig. 6). The spec i mens broke eas ily dur ing ex trac tion from the rock. In con trast to the crushed and rounded dark sponges from the base of the Santonian (Olszewska- Nejbert and Świerczewska-Gładysz, 2009), the Coniacian spon - ges have not been me chan i cally de stroyed.

Fig. 5. Microfacies of up per part of Lower Coniacian and base of Santonian de pos its at Wielkanoc

A – foraminiferal wackestone, tran si tional to wackestone/packstone tex ture, dom i nant plank tonic foraminifers (unit c); B – intra- Coniacian dis con ti nu ity sur face in the foraminiferal wackestone cov ered by phosphatized microstromatolite (unit c); C – fora - miniferal/fora miniferal-inoceramid wacke stone, tran si tional to wackestone/packstone tex ture (unit d); D – foraminiferal-inoceramid/fora - miniferal wackestone, tran si tional to wacke stone/packstone tex ture, unit e; E – foraminiferal wackestone with rare glauconite, unit f; F – inoceramid packstone with fre quent glauconite, base of Up per Santonian; sam ple sites see Fig ure 3

(8)

Fig. 6. Hexactinosid and lychniscosid sponges from the Coniacian de pos its

A–D – white sponges: A– Rhizopoterion cribrosum (Phillips, 1829), lat eral view and voids af ter dictyonal skel e ton vis i ble in transverse sec tion of the wall; B – Sporadoscinia venosa Schrammen, 1912, lat eral view; C – Astropegma stellata (Roemer, 1841), lat eral view; D – Plocoscyphia communis (Moret, 1926), lat eral view and voids af ter dictyonal skel e ton on der mal sur face; E, F – beige sponges; E – Polyopesia angustata Schrammen, 1902, lat eral view and frag ment of der - mal sur face with ca nal open ings and voids af ter dictyonal skel e ton; F – Leiostracosia angustata (Roemer, 1841), lat eral view

(9)

REMARKS ABOUT THE ECOLOGY AND PALAEOCOLOGY OF SPONGES

The hexactinosids and lychniscosids in the Coniacian de - pos its of Wielkanoc be long to the class Hexactinellida, com - monly called the glass sponges. There are ca. 500 re cent spe - cies of Hexactinellida and all are re stricted to the ma rine en vi - ron ment (Reiswig, 2002). The con sti tu tion of the sponges and their vi tal func tions are adapted to deep sea en vi ron ments

where slow sed i men ta tion dom i nates, and there are low en - ergy, cold wa ter and oligotrophic con di tions (Tabachnick, 1991;

Krautter, 1997). There fore, most hexactinellids live in the bathyal zone, al though some of them oc cur also in the abys sal zone, which is a rare phe nom e non among the ben thic fauna (e.g., Janussen and Tendal, 2007). For ex am ple, sponges of the ge nus Periphragella live at a depth of 256–1919 m (Reiswig and Wheeler, 2002).

A few hexactinellids, among which rep re sen ta tives of the Hexactinosida and Lychniscosida, are ex tremely rare, oc cur in Fig. 7. SEM im ages show ing pe trog ra phy of the in fill ings of the spongocoel and interspicular spaces

of the lychniscosid sponge wall

A – wall of lychniscosid sponge with empty voids af ter dictyonal skel e ton and slightly phosphatized ma te rial in fill ing interspicular spaces; some voids are filled by late cal cite; B – interspicular spaces infilled by weakly phosphatized coccolith micrite and ag gre - gates of euhedral francolite; C – ag gre gates of euhedral francolite; D – cal car e ous coccolith micrite in spongocoel; E – cal car e ous coccolith micrite with clay min er als in spongocoel

(10)

the deeper zone of the shelf, be low 100–120 m (van Soest and van Stentoft, 1988; Finks and Rigby, 2004). The only known con tem po rary sponge reef is lo cated at a depth of about 120–240 m in Brit ish Co lum bia (e.g., Leys et al., 2004). The de - vel op ment of that reef at such rel a tively shal low depths is as so - ci ated with the cir cu la tion of sea cur rents, such that the con di - tions in the shelf zone are sim i lar to an oce anic en vi ron ment (Leys et al., 2004; Whit ney et al., 2005). The sponge as sem - blage of the mod ern sponge reef is tax o nom i cally very poor, con sist ing of only three spe cies of Hexactinosida. Sev eral other spe cies of Hexactinosida and Lychniscosida have been found at depths of 82–113 m in the In do ne sia seas (Ijima, 1927). The sin gle spe cies Aphrocallistes vastus ap pears in the fjords of Brit ish Co lum bia (Leys et al., 2004). The rep re sen ta tives of that spe cies are usu ally con cen trated in the deeper parts of the fjords but a few spec i mens have been noted at a depth of 20–30 m. The pres ence of hexactinellids in the fjords, as in the case of the reef zone, is as so ci ated with spe cific en vi ron men tal con di tions, in clud ing low wa ter tem per a ture and lim ited light.

Now a days, the fjords of Brit ish Co lum bia are the only place with a well- doc u mented oc cur rence of hexactinosids at shal low depths. There is also no re cord of re cent lychniscosids liv ing in wa ter shal lower than 80 m (Finks and Rigby, 2004). Shal low ma rine en vi ron ments are in hab ited by sponges from the class Demospongea, among which forms with out a rigid skel e ton pre dom i nate (Finks and Rigby, 2004).

Due to the pref er ence of glassy sponges for deep wa ter, their in ten sive de vel op ment co in cided with pe ri ods in Earth his - tory when global sea level was par tic u larly high (Pisera, 1999).

The last great bloom of hexactinellids took place dur ing the Late Cre ta ceous; later, many hexactinellids grad u ally be came ex - tinct (Pisera, 1999). Of the eight gen era rec og nized in the Coniacian suc ces sion, only one ge nus (Periphragella) is rep re - sented in the mod ern fauna (Reiswig and Wheeler, 2002).

All spe cies of sponges rec og nized in the Coniacian de pos - its of Wielkanoc are known from the epicontinental Up per Cre - ta ceous de pos its of Eu rope (e.g., Świerczewska-Gladysz, 2006; Olszewska-Nejbert and Świerczewska-Gładysz, 2009).

The max i mum depth of the Late Cre ta ceous seas in Eu rope is es ti mated to have been at least 100 m, based on the pres ence of sponge as sem blages con tain ing Hexactinosida and Lychnis - cosida (e.g., Defretin-Lefranc, 1960; Nes tler, 1961; Wag ner, 1963; Reid, 1968; Świerczewska-Gładysz, 2006; Schnei der et al., 2011). The Lithistida (an in for mal polyphyletic group of Demospongea) and cal car e ous sponges, known from Up per Cre ta ceous shal low-wa ter de pos its (e.g., Defretin-Lefranc, 1960; Ulbrich, 1974), have not been rec og nized in the suc ces - sion stud ied.

Mod ern hexactinellids mainly in habit hard sub strates (e.g., Krautter et al., 2006; Hogg et al., 2010), whilst nu mer ous Late Cre ta ceous spe cies had well-evolved rhi zoids (long pro cesses) which sta bi lized them on the soft bot tom (e.g., Świerczewska- Gładysz, 2006; Olszewska-Nejbert and Świerczewska- Gla - dysz, 2011). The as sem blage in ves ti gated con sists of rhizo idal forms adapted to live on soft bot toms (cf. Reid, 1962). Only one spe cies (Plocoscyphia communis) had a basal plate at tached to hard el e ments. These hard el e ments may be bio clasts rest - ing on the muddy (soft) bot tom, in clud ing the skel e tons of other dead sponges. Other epibionts oc cur also on the fos sil sponges, be cause in the en vi ron ment of slow sed i men ta tion pre ferred by the sponges (e.g., Krautter, 1997), their skel e tons re mained ex posed on the bot tom for a lon ger time (Mehl and Niebuhr, 1995; Žitt et al., 2006).

DISCUSSION

Af ter a sig nif i cant ep i sode of global sea level drop dur ing the early Late Turonian, global sea level rose in the lat est Turonian and was rel a tively sta ble dur ing the en tire Coniacian stage;

how ever, small am pli tude fluc tu a tions in sea level are marked (Haq et al., 1988). A sig nif i cant sea level drop was again noted in the Late Santonian (Haq et al., 1988).

The ini ti a tion of the for ma tion of the lat est Turonian–Early Coniacian (post-Inoceramus perplexus Zone, pre-Cermno - ceramus crassus crassus/deformis deformis Zone) com pos ite hardground in the Wielkanoc area (Olszewska-Nejbert, 2004;

Olszewska-Nejbert and Świerczewska-Gładysz, 2009) cor re - sponds well to the Late Turonian sea level drop (e.g., Han cock and Kauffman, 1979; Haq et al., 1988; Han cock, 1990). Ini ti a - tion of for ma tion of this hardground cor re sponds quite well with a ma jor mid–Late Turonian un con formity de scribed as Se - quence Bound ary Tu 4 at the base of the Seugast Mem ber Roding For ma tion in the Bodenwöhrer Senke (NE Ba varia), close to the south west ern mar gin of the Bo he mian Mas sif (Niebuhr et al., 2011) and at the ero sional base of the Soest Greensand Mem ber of the Salder For ma tion rec og nized in the Werl bore hole in the south ern Münsterland Cre ta ceous Ba sin (Richardt and Wilmsen, 2012). The un con formity Tu 4 in Ger - many was con nected with eustatic shallowing of the sea (Niebuhr et al., 2011; Richardt and Wilmsen, 2012). How ever, at these places in Ger many above the un con formity sur face Late Turonian sed i men ta tion con tin ued. In some places on the Kraków Swell, car bon ate sed i men ta tion re sumed in the late Early Coniacian, es pe cially on sub sid ing blocks such as the Wielkanoc Block (Olsze wska-Nejbert, 2004; Olszewska- Nejbert and Świerczewska- Gła dysz, 2009). The Coniacian de - pos its at Wielkanoc in clude a rel a tively large ad mix ture of glauconite and de tri tal quartz at their base, but in the ma trix coccolith plates clearly pre vail over c-dinocysts. The de tri tal quartz quickly dis ap pears and plank tonic foraminifera and coccoliths be came the main com po nents of the de pos its. The prev a lence amount of coccoliths sug gests gen er ally oligo - trophic con di tions of the sea, with the sed i men ta tion area far away from the source of nu tri ents, mean ing that it was far from land on the one side, and from the upwelling zone from of the open sea on the other. Such a style of sed i men ta tion, known as the “blue wa ter” coccolith sys tem, was de scribed from the Cenomanian de pos its of Ger many (Wilmsen, 2003). The sed i - men ta tion in the Wielkanoc area rep re sents the more dis tal po - si tion, sit u ated far away from any emer gent mas sifs, be cause prox im ity of any land area should lead to de vel op ment the

“green wa ter” c-dinocysts sys tem (cf. Wilmsen, 2003; Wiese et al., 2004)

The pres ence of sponges of the or ders Lychniscosida and Hexactinosida in di cates a calm en vi ron ment be low storm- wave base (cf. Schnei der et al., 2011). Sim i lar con di tions in that area are in di cated by the dom i nant foraminiferal wacke stone microfacies and the abun dance of plank tonic foramini fers.

Among them, planispiral and trochospiral forms with glob u lar cham bers pre vail. These forms are re garded as deeper- dwell - ers than the small se rial foraminifers (Leckie, 1987; Dubicka and Peryt, 2012a, b with ref er ences), which are very rare in the suc ces sion stud ied. Keeled forms, re garded to be the deep - est-dwell ing foraminifers (Dubicka and Peryt, 2012a, b with ref - er ences), are also pres ent, but they are not so com mon. More com mon inoceramid de bris oc curs only at the base of unit a, at the top of unit c and at the base of unit d. It may in di cate that

(11)

these de pos its were formed near storm wave base, but surely be low fair-weather wave base (cf. Wiese, 2009).

Slow sed i men ta tion, and even ep i sodic breaks in sed i men - ta tion, are in di cated by: the oc cur rence of sponges the pres - ence of epibionts on the sponges; the pres ence of glauconite;

the weak ep i sodes of phosphatiztion, and the pres ence of intra-Coniacian dis con ti nu ity sur faces. Ad di tion ally, the dom i - nant coccolith sed i men tary sys tem rec og nized in the Coniacian

suc ces sion is re garded as one of low CaCO3 ac cu mu la tion rates (Wilmsen, 2003; Wiese et al., 2004).

De pos its of late Early Coniacian age in the Pol ish Jura Chain known from out crops lo cated NW of Wielkanoc (Fig. 1B), are re - duced in thick ness: ca. 0.8 m at Przychody (ca. 20 km), 0.5 m at Solca (ca. 30 km) and ca. 0.3 m at Zalesice (ca. 60 km) (Walaszczyk, 1992). In a neigh bour ing area (Fig. 8), in the Opole re gion, ca. 140 km west of Wielkanoc, Coniacian de pos its are

Fig. 8A – car toon show ing a sim pli fied model of the Kraków Swell dur ing the Coniacian with dif fer ent kinds of sed i men ta - tion on the Kraków Swell and ad ja cent ar eas; the model does not in clude nu mer ous lo cal faults trans verse to the main strike-slip di rec tion and does not in clude lo cal sub-bas ins on the Kraków Swell; B – sim pli fied Coniacian chronostratigraphic scheme of fa cies dis tri bu tion in the Opole Trough (af ter Walaszczyk, 1992; Olszewska-Nejbert, 2007) through the Wielkanoc (Pol ish Jura Chain) to the NE out skirts of the Miechów Trough (af ter Walaszczyk, 1992)

(12)

rep re sented by an al most com plete Coniacian suc ces sion, over 150 m thick (Radwańska, 1969; Walaszczyk, 1992). Sim i larly, in a north-east erly di rec tion, to wards the Miechów Trough, close to the mar gin of the Holy Cross Moun tains, Coniacian de pos its thicken again, ex ceed ing ca. 100 m (Fig. 8; Walaszczyk, 1992).

We sug gest that the re duced thick ness of Coniacian de pos its on the Wielkanoc Block may re sult from at least three fac tors. The first fac tor is the lack of sed i men ta tion dur ing the de vel op ment of the hardground near the Turo nian–Coniacian bound ary (Olsze - wska-Nejbert, 2004). The sec ond is a low rate of sed i men ta tion con nected with the dom i nant sed i men tary coccolith sys tem (cf.

Wilmsen, 2003) dur ing the late Early Coniacian. The third fac tor is the ero sion of an un known thick ness of strata dur ing the late Early Coniacian to Late Santonian in ter val (Olsze wska-Nejbert and Świercze wska-Gładysz, 2009).

The hi a tus, rep re sent ing the lat est Turonian and ear li est Coniacian de vel op ment of the com pos ite hardground (Fig. 8), was con nected with the up lift of the Kraków Swell (Wala szczyk, 1992; Olszewska-Nejbert, 2004; Olszewska-Nejbert and Świer - cze wska-Gładysz, 2009). That phe nom e non cor re sponds well with the early Ilsede tec tonic pulse (Olsze wska-Nejbert, 2004), for which there is ev i dence in the An glo–Paris Ba sin and in north - ern Ger many (Mortimore and Pomerol, 1997; Mortimore et al., 1998; Mortimore, 2011). The sec ond hi a tus (see Fig. 8) in the in - ter val Mid dle Coniacian through Mid dle Santonian in the Wielkanoc area cor re sponds well with the Main Ilsede tec tonic pulse as re corded in the An glo–Paris Ba sin and in north ern Ger - many, where in sev eral sec tions the hiati en close the en tire, or a sig nif i cant part of, the Coniacian (Wood et al., 1984; Mortimore and Pomerol, 1997; Niebuhr and Prokoph, 1997; Mortimore et al., 1998; Voigt et al., 2004, 2006).

The tec tonic ac tiv ity in the Kraków–Myszków Zone (where the Wielkanoc Block was sit u ated), re flected on the Kraków Swell in the Turonian, Coniacian and Santonian, was rec og - nized as a re sult of Subhercynian move ments (Marci nowski, 1974; Walaszczyk, 1992; Olszewska-Nejbert, 2004; Olsze - wska- Nejbert and Świerczewska-Gładysz, 2009), lead ing to the de vel op ment of lo cal deeper sub-bas ins within the gen er ally up lifted Kraków Swell (Fig. 8). Coniacian de pos its are very scarce on the Pol ish Jura Chain, and these de pos its have been pre served prob a bly only on the sub sid ing blocks. The Wielka - noc Block was prob a bly the best ex am ple of such a place, where a thin suc ces sion of Coniacian de pos its (up per Lower Coniacian Cremnoceramus crassus crassus/deformis deformis Zone or part of this zone) was pre served.

Sim i lar tec tonic phe nom ena are de scribed from north ern Ger many and the An glo–Paris Ba sin, where strike-slip tectonism along ma jor base ment zones con trolled sed i men ta tion in the lat - est Turonian and Coniacian (Ilsede Phase) and led to the for ma - tion of nu mer ous an gu lar discordances, sed i men tary hiati, fa cies changes, slumps, sub ma rine slides, turbidites, hardgrounds and other dis con ti nu ity sur faces (Mortimore et al., 1998; Mortimore, 2011). Tröger (1995) showed that in the rel a tively large Sub - hercynian Cre ta ceous Ba sin, sed i men ta tion was con trolled by tec tonic ac tiv ity in the Pa leo zoic base ment. A sim i lar phe nom e - non was de scribed by Uličný et al. (2003) in the Bo he mian Cre ta - ceous Ba sin. Mortimore et al. (1998) pro posed that the Sub -

hercynian strike-slip tectonism along the lin ea ments in the Variscan base ment of north ern Ger many and the An glo–Paris bas ins, dur ing the lat est Turonian–Coniacian, con trolled sed i - men ta tion to a larger de gree then did the eustatic changes. Voigt et al. (2006) showed that the Subhercynian Cre ta ceous Ba sin de vel oped dur ing fron tal thrust ing of a base ment block of Harz and does not sup port the strike-slip model. More over, the ob - served changes in fa cies are ex plained by an in ter ac tion of eustasy and tec ton ics in that re gion (Voigt et al., 2006).

In the case of the Wielkanoc Block, we sug gest that tec tonic strike-slip ac tiv ity has con trolled sed i men ta tion to a larger de - gree then did eustatic changes dur ing the evo lu tion of the Kraków Swell area in south ern Po land.

FINAL REMARK AND CONCLUSIONS

1. The thick est suc ces sion of Coniacian age (ca. 1.5 m), rec og nized in the Pol ish Jura Chain, is pre served in the Wielkanoc Quarry. These de pos its rep re sent only the up per Lower Conia cian Cremnoceramus crassus crassus/deformis deformis Zone.

2. On the Kraków Swell, which sep a rated the Mid-Pol ish and Opole Troughs, at least lo cally (such as the Wielkanoc Block) calm and slow (mainly foraminiferal wackestone, coccolith sed i men tary sys tem, pres ence of dictyid sponges, glauconite) sed i men ta tion oc curred, in ter rupted by ep i sodes of non-de po si tion (sur faces with bur rows, ep i sodes of phospha - tization, intra-Coniacian dis con ti nu ity sur faces).

3. The large amount of planispiral and trochospiral planktonic foraminifers with glob u lar cham bers and the oc cur - rence of si li ceous sponges (Hexactinosida and Lychniscosida) in the Coniacian suc ces sion of Wielkanoc in di cate wa ter depths be low storm base in the late Early Coniacian.

4. Tec tonic ac tiv ity of the Kraków Swell dur ing the Turonian and Coniacian cor re spond well to the Ilsede Phase of Subhercynian tec tonic move ments. These tec tonic move ments were also re spon si ble for strike-slip tec tonic ac tiv ity of the Kraków–Myszków Zone. As a re sult, sed i men ta tion on the Kraków Swell was con trolled by ac tiv ity of the pre-Perm ian base ment dur ing the Turonian and Coniacian. The Wielkanoc area had a ten dency to sub side and cre ated a lo cal sub-ba sin through this time span.

Ac knowl edge ments. The au thors are greatly in debted to A. Świerczewska and K. Nejbert for help with the field work, to M. Bąbel and K. Nejbert for valu able com ments, to B. Kołodziej, M. Wilmsen and an anon y mous re viewer for crit i cal valu able re - marks, to T. Peryt for ed i to rial screen ing, to P. Czubla for help in mak ing pho to graphs of the sponge spec i mens, to M. Wróbel for help with SEM im ages and to R. Mac don ald for lin guis tic cor rec - tion. The stat u tory fund of the In sti tute of Ge ol ogy, Uni ver sity of War saw (BSt 163702) and stat u tory fund of the Lab o ra tory of Ge ol ogy, Uni ver sity of Lodz (pro ject 560/844), have sup ported this re search.

(13)

REFERENCES

Alexandrowicz S. (1954) Turonian of the south ern part of the Cra - cow Up land (in Pol ish with Eng lish sum mary). Acta Geologica Polonica, 4 (3): 361–390.

Alexandrowicz S. (1969) Les dépots transgressifs du Santonien aux en vi rons de Cracovie (in Pol ish with French sum mary).

Zeszyty Naukowe AGH, Geologia, 11: 45–59.

Barczyk W. (1956) On the Up per Chalk De pos its on Bonarka near Cra cow (in Pol ish with Eng lish sum mary). Studia Societatis Scientiarum Toruniensis, 3 (2): 23–48.

Buła Z. (1994) Problemy stratygrafii i wykształcenia osadów star - szego paleozoiku północno-wschodniego obrzeżenia Górno - śląskiego Zagłębia Węglowego. Prace Naukowe Uni wersytetu Śląskiego, 1431: 31–57.

Buła Z., Żaba J., Habryn R. (2008) Tec tonic sub di vi sion of Po land:

south ern Po land (Up per Silesian Block and Małopolska Block) (in Pol ish with Eng lish sum mary). Przegląd Geologiczny, 56 (10): 912–920.

Dadlez R. (1997) Gen eral tec tonic frame work of the Mid-Pol ish Trough (in Pol ish with Eng lish sum mary). Prace Państwowego Instytutu Geologicznego, 153: 410–414.

Defretin-Lefranc S. (1960) Con tri bu tion ´ l’étude des spongiaires siliceux du Crétacé supérieur du Nord de la France. ThÀses a la Faculte des Sci ences de Lille, (1958): 1–178.

Dubicka Z., Peryt D. (2012a) Foraminifers and sta ble iso tope re - cord of the Dubivtsi chalk (up per Turonian, West ern Ukraine):

palaeoenvironmental im pli ca tions. Geological Quarterly, 56 (1):

199–214.

Dubicka Z., Peryt D. (2012b) Lat est Campanian and Maastrichtian palaeoenvironmental changes: im pli ca tions from an epicon - tinental sea (SE Po land and west ern Ukraine). Cre ta ceous Re - search, 37: 272–284.

Finks R.M., Rigby J.K. (2004) Geo graphic and strati graphic dis tri - bu tion. In: Trea tise on In ver te brate Pa le on tol ogy, Part E (Re - vised), Porifera 3. (ed. R. Kaesler): 275–296. The Geo log i cal So ci ety of Amer ica and Uni ver sity of Kan sas.

Hakenberg M., Świdrowska J. (1998) Evo lu tion of the Holy Cross seg ment of the Mid-Pol ish Trough dur ing the Cre ta ceous. Geo - log i cal Quarterly, 42 (3): 239–262.

Han cock J.M. (1990) Sea-level changes in the Brit ish re gion dur ing the Late Cre ta ceous. Pro ceed ings of the Ge ol o gists’ As so ci a - tion, 100 (4): 565–594.

Han cock J.M., Kauffman E.G. (1979) The great trans gres sions of the Late Cre ta ceous. Jour nal of the Geo log i cal So ci ety of Lon - don, 136: 175–186.

Haq B.W., Hardenbol J., Vail P.R. (1988) Me so zoic and Ce no zoic chronostratigraphy and cy cles of sea-level changes. SEPM Spe cial Pub li ca tion, 42: 71–108.

Har ding T.P. (1985) Seis mic char ac ter is tic and iden ti fi ca tion of neg - a tive flower struc tures, pos i tive flower struc tures, and pos i tive struc tural in ver sion. AAPG Bul le tin, 69 (4): 582–600.

Hogg M.M., Tendal O.S., Conway K.W., Pomponi S.A., Van Soest R.W.M., Gutt J., Krautter M., Rob erts J.M. (2010) Deep-sea sponge grounds: res er voirs of biodiversity. UNEP-WCMC Bio - diversity, Se ries, 32: 1–84.

Ijima I. (1927) The Hexactinellida of the Siboga Ex pe di tion.

Siboga- Expeditie, 6: 1–383.

Janussen D., Tendal O.S. (2007) Di ver sity and dis tri bu tion of Porifera in the bathyal and abys sal Weddell Sea and ad ja cent ar eas. Deep-Sea Re search, part II, 54 (16–17): 1864–1875.

Jasionowski M. (1995) A Cre ta ceous non-depositional sur face in the Kraków Up land (Mydlniki, Zabierzów), bur rows, bor ings, stromatolites (in Pol ish with Eng lish sum mary). Annales Socie - tatis Geologorum Poloniae, 65 (1–4): 63–77.

Jaskowiak–Schoeneichowa M., Krassowska A. (1988) Paleo - thickness, lithofacies and paleotectonics of the epicontinental Up per Cre ta ceous in Po land (in Pol ish with Eng lish sum mary).

Kwartalnik Geologiczny, 32 (1): 177–198.

Jurewicz E., Hercman H., Nejbert K. (2007) Flowstone-like cal cite in the an de site of Jarmuta Mt. – dat ing the Ho lo cene tec tonic ac - tiv ity in the vi cin ity of Szczawnica (Magura Nappe, Outher Carpa thians, Po land). Geologica Polonica, 57 (2): 187–204.

Kauffman E.G. (1973) Cre ta ceous Bivalvia. In: At las of Palaeo - biogeography (ed. A.H. Hal lam): 353–386. Elsevier, Am ster - dam-Lon don-New York.

Kaziuk H. (1978) Mapa geologiczna Polski 1:200000, ark. Kraków, B Mapa bez utworów czwartorzędowych. Wydawnictwa Geolo - giczne, Warszawa.

Kołodziej B., Szulc J., Machaniec E., Kędzierski M., Duda M.

(2010) In jec tion dykes as ev i dence of Campanian syn - sedimentary tec ton ics on the Kraków Swell, south ern Po land.

Annales Societatis Geologorum Poloniae, 80 (3): 285–301.

Krajewski K.P., Leśniak P.M., Łącka B., Zawidzki P. (2000) Or i gin of phos phatic stromatolites in the Up per Cre ta ceous con densed se quence of the Pol ish Jura Chain. Sed i men tary Ge ol ogy, 136 (1): 89–112.

Krautter M. (1997) Aspekte zur Paläökologie postpaläozoischer Kieselschwämme. Profil, 11: 199–324.

Krautter M., Conway K.W., Barrie J.V. (2006) Re cent hexa - ctinosidian sponge reefs (sil i cate mounds) off Brit ish Co lum bia, Can ada: Frame-build ing pro cesses. Jour nal of Pa le on tol ogy, 80: 38–48.

Kudrewicz R., Olszewska-Nejbert D. (1997) Up per Cre ta ceous

“Echinoidlagerstätten” in the Kraków area. Annales Societatis Geologorum Poloniae, 67 (1): 1–12.

Leckie R.M. (1987) Paleoecology of mid-Cre ta ceous plank tonic foraminifera: a com par i son of open ocean and epicontinental sea as sem blages. Micropaleontology, 33: 164–176.

Leszczyński K. (1997) The Up per Cre ta ceous car bon ate-dom i - nated se quences of the Pol ish Low lands. Geological Quarterly, 41 (4): 521–532.

Leszczyński K. (2002) The Cre ta ceous evo lu tion of the Ponę - tów–Wartkowice Zone (in Pol ish with Eng lish sum mary). Prace Państwowego Instytutu Geologicznego, 176: 1–96.

Leszczyński K. (2012) The in ter nal ge om e try and lithofacies pat - tern of the Up per Cre ta ceous–Danian se quence in the Pol ish Low lands. Geological Quarterly, 56 (2): 363–386.

Leszczyński S. (2010) Coniacian–?Santonian paralic sed i men ta - tion in the Rakowice Małe area of the North Sudetic Ba sin, SW Po land: sed i men tary fa cies, ichnological re cord and palaeo geo - graphi cal re con struc tion of an evolv ing ma rine embayment.

Annales Societatis Geologorum Poloniae, 80 (1): 1–24.

Leys S.P., Wil son K., Holeton C., Reiswig H.M., Aus tin W.C., Tunniclif V. (2004) Pat terns of glass sponge (Porifera, Hexa - ctinellida) dis tri bu tion in coastal wa ters of Brit ish Co lum bia, Can ada. Ma rine Ecol ogy Prog ress Se ries, 283: 133–149.

Marcinowski R. (1974) The transgressive Cre ta ceous (Up per Albian through Turonian) de pos its on the Pol ish Jura Chain.

Acta Geologica Polonica, 24 (1): 117–217.

Marcinowski R., Radwański A. (1983) The Mid-Cre ta ceous trans - gres sion onto the Cen tral Pol ish Up lands (mar ginal part of the Cen tral Eu ro pean Ba sin). Zitteliana, 10: 65–95.

Marcinowski R., Radwański A. (2009) A unique hab i tat of endo - lithic biota: Seism-in cluded lime stone rub ble in Albian sand - mass of the Cra cow Up land, south ern Po land. Acta Geologica Polonica, 59 (4), 505–521.

Matyszkiewicz J., Krajewski M., Żaba J. (2006) Struc tural con trol on the dis tri bu tion of Up per Ju ras sic car bon ate build ups in the Kraków–Wieluń Up land (south Po land). Neues Jahrbuch für Geologie und Paläontologie Monatshefte, 2006 (3): 182–192.

Mehl D., Niebuhr B. (1995) Diversität und Wachstumsformen bei Coeloptychium (Hexactinellida, Lychniskosa) der Meiner Mulde (Untercampan, N-Deutsch land) und die Palökologie der Coeloptychidae. Ber liner Geowissenschaftliche Abhandlungen, E16: 91–107.

(14)

Mortimore R.N. (2011) A chalk rev o lu tion: what have we done to the Chalk of Eng land? Pro ceed ings of the Ge ol o gists’ As so ci a tion, 122 (2): 232–297.

Mortimore R., Pomerol B. (1997) Up per Cre ta ceous tec tonic phases and end Cre ta ceous in ver sion in the Chalk of the An - glo–Paris Ba sin. Pro ceed ings of the Ge ol o gists’ As so ci a tion, 108: 231–255.

Mortimore R., Wood C., Pomerol B., Ernst G. (1998) Dat ing the phases of the Subhercynian tec tonic ep och: Late Cre ta ceous tec ton ics and eustatics in the Cre ta ceous bas ins of north ern Ger many com pared with the An glo-Paris Ba sin. Zentralblatt für Geologie und Paläontologie, Teil 1, 1996, (11/12): 1349–1401.

Naidin D.P. (1959) On the paleogeography of Rus sian Plat form dur - ing the Up per Cre ta ceous ep och. Stock holm Con tri bu tions in Ge ol ogy, 3: 127–138.

Nes tler H. (1961) Spongien aus der weissen Schreibkreide (unt.

Maastricht) der Insel Rügen (Ostsee). Paläontologische Abhandlungen, 1: 1–70.

Niebuhr B. and Prokoph A. (1997) Pe ri odic-cy clic and cha otic suc - ces sions of Up per Cre ta ceous (Cenomanian to Campanian) pe - lagic sed i ments in the North Ger man Ba sin. Cre ta ceous Re - search, 18 (5): 731–750.

Niebuhr B., Baldschuhn R., Ernst G., Walaszczyk I., Weiss W., Wood C.J. (1999) The Up per Cre ta ceous suc ces sion (Cenomanian–Santonian) of the Staffhorst Shaft, Lower Sax - ony, north ern Ger many: intergrated biostratigraphic, lithostratigraphic and downhole geo phys i cal log data. Acta Geologica Polonica, 49 (3): 175–213.

Niebuhr B., Wilmsen M., Chellouche P., Richardt N., Pürner T.

(2011) Stra tig ra phy and fa cies of the Turonian (Up per Cre ta - ceous) Roding For ma tion at the south west ern mar gin of the Bo - he mian Mas sif (south ern Ger many, Ba varia). Zeitschrift der Deutschen Gesellschaft für Geowissenschaften, 62 (3):

295–316.

Olszewska-Nejbert D. (2004) De vel op ment of the Turo - nian/Coniacian hardground bound ary in the Cra cow Swell area (Wielkanoc quarry, South ern Po land). Geological Quarterly, 48 (2): 159–168.

Olszewska-Nejbert D. (2005) De vel op ment of the Turonian Conulus Lagerstätte in the Wielkanoc Quarry (South Po land).

Annales Societatis Geologorum Poloniae, 75 (3): 199–210.

Olszewska-Nejbert D. (2007) Late Cre ta ceous (Turonian–Conia - cian) ir reg u lar echinoids of west ern Kazakhstan (Mangyshlak) and south ern Po land (Opole). Acta Geologica Polonica, 57 (1):

1–87.

Olszewska-Nejbert D., Œwierczewska-G³adysz E. (2009) The phosphatized sponges from the Santonian (Up per Cre ta ceous) of the Wielkanoc Quarry south ern Po land) as a tool in strati - graphi cal and en vi ron men tal stud ies. Acta Geologica Polonica, 59 (4): 483–504.

Olszewska-Nejbert D., Œwierczewska-G³adysz E. (2011) Campanian (Late Cre ta ceous) hexactinellid sponges from the white chalk of Mielnik (East ern Po land). Acta Geologica Polonica, 61 (4): 383–417.

Panow E. (1934) – Sur la stratigraphie du crétacé des en vi rons de Cracovie note préliminaire (in Pol ish with French sum mary).

Annales Societatis Geologorum Poloniae, 10: 577–585.

Pisera A. (1999) Postpaleozoic his tory of the si li ceous sponges with rigid skel e ton. Mem oirs of the Queensland Mu seum, 44:

463–472.

Radwañska Z. (1969) Kreda w otworze Sady IG 1. Kwartalnik Geologiczny, 13 (3): 709–710.

Reid R.E.H. (1962) Re la tion ships of fauna and sub stra tum in the paleoecology of the Chalk and Chalk Rock. Na ture, 194: (4825):

276–277.

Reid R.E.H. (1968) Hexactinellid fau nas in the Chalk of Eng land and Ire land. Geo log i cal Mag a zine, 105 (1): 15–22.

Reiswig H.M. (2002) Or der Lychniscosida Schrammen, 1903. In:

Systema Porifera: a Guide to the Clas si fi ca tion of Sponges (eds. J.N.A. Hooper and van R.W.M. Soest): 1377–1385.

Kluwer Ac a demic/Ple num, Am ster dam.

Reiswig H.M., Wheeler B. (2002) Fam ily Euretidae Zittel, 1877. In:

Systema Porifera: a Guide to the Clas si fi ca tion of Sponges (eds.

J.N.A. Hooper and van R.W.M. Soest): 1301–1331. Kluwer Ac a - demic/Ple num, Am ster dam.

Richardt N., Wilmsen M. (2012) Lower Up per Cre ta ceous stan dard sec tion of the south ern Münsterland (NW-Ger many): car bon sta ble iso topes and se quence stra tig ra phy. News let ters on Stra - tig ra phy, 45: 1–24.

Ró¿ycki S.Z. (1938) Stratigraphie und Tektonik der Kreideablagerungen der umgebung von Lelów (Südöstlisch von Czêstochowa) (in Pol ish with Ger man sum mary). Sprawozdania Pañstwowego Instytutu Geologicznego, 9 (2): 127–176.

Schnei der S., Niebuhr B., Wilmsen M., Vodrážka R. (2011) Be - tween the Alb and the Alps – the fauna of the Up per Cre ta ceous Sandbach For ma tion (Passau re gion, south east Ger many). Bul - le tin of Geosciences, 86 (4): 785–816.

Smoleñski J. (1906) Lower Senonian at Bonarka; 1. Cepha lo pods and Inoceramids (in Pol ish). Rozprawy Wydzia³u Matematyczno- Przyrodniczego Akademii Umiejêtnoœci, Kraków, Seria B, 46: 1–34.

Sujkowski Z. (1926) Sur le Jurassique, le Crétacé et le Quaternaire des en vi rons de Wolbrom (in Pol ish with French sum mary).

Sprawozdania Pañstwowego Instytutu Geologicznego, 3 (3–4):

382–434.

Sujkowski Z. (1934) Roches crétacées en tre les villes Pilica et Szczekociny (in Pol ish with French sum mary). Sprawozdania Pañstwowego Instytutu Geologicznego, 8 (1): 39–75.

Œwidrowska J., Hakenberg M. (1999) Sub si dence and the prob lem of in cip i ent in ver sion in the Mid-Pol ish Trough based on thick - ness maps and Cre ta ceous lithofacies anal y sis (in Pol ish with Eng lish sum mary). Przegl¹d Geologiczny, 47 (1): 61–68.

Œwierczewska-G³adysz E. (2006) Late Cre ta ceous si li ceous sponges from the Mid dle Vistula River Val ley (Cen tral Po land) and their palaeo eco logi cal sig nif i cance. Annales Societatis Geologorum Poloniae, 76 (3): 227–296.

Œwierczewska-G³adysz E. (2010) Late Hexactinellid sponges from the Santonian de pos its of the Kraków area (south ern Po land).

Annales Societatis Geologorum Poloniae, 80 (3): 253–284.

Tabachnick K.R. (1991) Ad ap ta tion of the Hexactinellid sponges to deep-sea. In: Fos sil and Re cent Sponges (eds J. Reitner and H.

Keupp): 378–386. Springer Verlag, Berlin.

Tarkowski R. (1991) Stra tig ra phy, macrofossils and palaeo ge ogra - phy of the Up per Cre ta ceous from the Opole Trough (in Pol ish with Eng lish sum mary). Zeszyty Naukowe AGH, Geologia, 51:

1–156.

Tröger K.A. (1995) Die Subhercyne Oberkreide – Beziehungenzum Variscischen Grundgebirge und Stellung innerhalb Europas.

Nova Acta Leopoldina, NF 71, 291: 217–231.

Ulbrich H. (1974) Die Spongien der Ilsenburg-Entwicklung (Oberes Unter–Campan) der Subherzynen Kreidemulde. Freiberger Forschungshefte, C291: 1–121.

Ulièný D., Èech S., Grygar R. (2003) Tec ton ics and depositional sys tems of a shal low-ma rine, intra-con ti nen tal strike-slip ba sin:

ex po sures of the Èeský Ráj Re gion, Bo he mian Cre ta ceous Ba - sin. GeoLines, 16: 133–148.

Van Soest R.W.M., van Stentoft N. (1988) Bar ba dos Deep-Wa ter Sponges. In: Stud ies on the Fauna of Curaçao and other Ca rib - bean Is lands (eds. P.W. Hummelinck and van der L.J. Steen), Utrecht, Foun da tion for Sci en tific Re search in Su ri nam and the Neth er lands Antiles, 70 (215): 1–175.

Voigt T., von Eynatten H., Franzke H.J. (2004) Late Cre ta ceous un con formi ties in the Subhercynian Cre ta ceous Ba sin (Ger - many). Acta Geologica Polonica, 54 (4): 673–694.

Voigt T., Wiese F., von Eynatten H., Franzke H.-J., Gaupp R.

(2006) Fa cies evo lu tion of syntectonic Up per Cre ta ceous de - pos its in the Subhercynian Cre ta ceous Ba sin and ad join ing ar - eas (Ger many). Zeitschrift der Deutschen Gesellschaft für Geowissenschaften, 157 (2): 203–244.

Wag ner W. (1963) Die Schwammfauna der Oberkreide von Neuburg (Donau). Palaeontographica, Abteilung A, 122:

166–250.

(15)

Wag ner W. (1963) Die Schwammfauna der Oberkreide von Neuburg (Donau). Palaeontographica, Abteilung A, 122:

166–250.

Walaszczyk I. (1992) Turonian through Santonian de pos its of the Cen tral Pol ish Up lands; their fa cies de vel op ment, inoceramid pa le on tol ogy and stra tig ra phy. Acta Geologica Polonica, 42 (1–2): 1–122.

Walaszczyk I. (2000) Inoceramid bi valves at the Turonian/Conia - cian bound ary: biostratigraphy, events, and di ver sity trends.

Acta Geologica Polonica, 50 (4): 421–430.

Walaszczyk I., Wood C.J. (1998) Inoceramid and biostratigraphy at the Turonian/Coniacian bound ary; based on the Salzgitter- Salder Quarry, Lower Sax ony, Ger many, and the Słupia Nadbrzeżna sec tion, Cen tral Po land. Acta Geologica Polonica, 48 (4): 395–434.

Walaszczyk I., Wood C.J., Lees J.A., Peryt D., Voigt S., Wiese F.

(2010) The Salzgitter-Salder Quarry (Lower Sax ony, Ger many) and Słupia Nadbrzeżna river cliff sec tion (cen tral Po land): a pro - posed can di date com pos ite Global Bound ary Stratotype Sec - tion and Point for the Coniacian Stage (Up per Cre ta ceous). Acta Geologica Polonica, 60 (4): 445–477.

Whit ney F., Conway K.W., Thomson R.E., Barrie J.V., Krautter M., Mungov G. (2005) Ocean o graphic hab i tat of sponge reefs on the West ern Ca na dian Con ti nen tal Shelf. Con ti nen tal Shelf Re search, 25: 211–226.

Wiese F. (2009) The Söhlde For ma tion (Cenomanian, Turonian) of NW Ger many: Shal low ma rine pe lagic red beds. SEPM Spe cial Pub li ca tion, 91: 153–170.

Wiese F., Čech S., Ekrt B., Košťák M., Mazuch M., Voigt S. (2004) The Up per Turonian of the Bo he mian Cre ta ceous Ba sin (Czech Re pub lic) ex em pli fied by the Úpohlavy work ing quarry: in te -

grated stra tig ra phy and palaeoceanography of a gate way to the Tethys. Cre ta ceous Re search, 25: 329–352.

Wilmsen M. (2003) Se quence stra tig ra phy and palaeoceanography of the Cenomanian Stage in north ern Ger many. Cre ta ceous Re - search, 24 (5): 525–568.

Wood C.J., Ernst G., Rasemann G. (1984) The Turonian–Conia - cian stage bound ary in Lower Sax ony (Ger many) and ad ja cent ar eas: the Salzgitter-Salder Quarry as a pro posed in ter na tional stan dard sec tion. Bul le tin of the Geo log i cal So ci ety of Den mark, 33 (1–2): 225–238.

Zapałowicz-Bilan B., Pilarz M., Machaniec E. (2009) Micropalaeontology biostratigraphy of the Up per Cre ta ceous and Mio cene de pos its in “Bibice” bore hole (Kraków area) (in Pol ish with Eng lish sum mary). Geologia (Kwartalnik AGH), 35 (2/1): 95–103.

Zaręczny S. (1878) O średnich warstwach kredowych w Krako - wskim okręgu. Sprawozdania Komisji Fizjograficznej Akademii Umiejętności, 12: 176–246.

Ziegler P.A. (1990) Geo log i cal At las of West ern and Cen tral Eu rope (2nd ed.). Shell Internationale Pe tro leum Maatschappij B.V.;

Mijdrecht, The Hague, Am ster dam.

Żaba J. (1996) Late Car bon if er ous strike slip ac tiv ity at the bound - ary zone of Up per Silesia and Małopolska Blocks (in Pol ish with Eng lish sum mary). Przegląd Geologiczny, 44 (2): 173–180.

Żaba J. (1999) The struc tural evo lu tion of Lower Palaeozoic suc ces - sion in the Up per Silesia Block and Małopolska Block bor der zone (south ern Po land) (in Pol ish with Eng lish sum mary). Prace Państwowego Instytutu Geologicznego, 166: 1–162.

Žitt J., Vodražka R., Hradecka L., Svobodova M., Zagoršek K.

(2006) Late Cre ta ceous en vi ron ments and com mu ni ties re - corded at Chrtniky (Bo he mian Cre ta ceous Ba sin, Czech Re pub - lic). Bul le tin of Geosciences, 81 (1): 43–79.

Cytaty

Powiązane dokumenty

The lower part of the succeeding Stylolitic Limestone Unit, up to the interval with relatively frequent fauna (TeXt-fig. 2) represents the Middle Turonian

The purpose of this report is to present the inoceramid stratigraphy of the Turonian and Lower Coniacian deposits exposed in the environs of Opole, Southern

A – palaeogeographic re con struc tion dur ing the Late Perm ian (af ter Scotese, 2002), show ing the lo ca tion of the South ern Perm ian Ba sin of Eu rope; B – palaeo ge ogra phy

When those genera perfectly or moderately represented by the analysis are plotted versus the first four factor axes (Fig. 2), a few more or less distinct foraminiferal

?phosphatization (the darker grey); F — development of polygonal micro- bial mats on the surface of the 2-generation hardground, rather high stromatolite domes above outlets of

Still farthcr south (KrosnolSanok-Baligrbd) geophysicnf evidcnce suggests it lics at about 17-20 km depth. Key words: Carpathian Foreland, Tam6w-PmmySl are&amp;

Deposition of gypsum crystal debris facies and grass-like gypsum subfacies with clay intercalations during shallowing and emersion of giant gypsum intergrowths: A

History of sedimentation of the Nida Gypsum deposits (Middle Miocene, Carpathian Foredeep, southern Poland)..