• Nie Znaleziono Wyników

BUZ101

N/A
N/A
Protected

Academic year: 2022

Share "BUZ101"

Copied!
8
0
0

Pełen tekst

(1)

n ____t____

o ir iv iv jo ^ r o w e r i r a n s is io r n ■ I "7 -4 f t A

D U i IU I

Dc aI

I- I Cl ***** I M O * ■ ! *

... .. y

a h I /-»U-» /-» ►-» ►-» /-»I

w I M O l I C l l I I I d

• Enhancement mode

A \/o ln n r» h n n v a i a i iui i^-r o t o r l

i a ic u

dv/dt

rated

• I n\I__U » » a/ n n - r o c i c t a n p oU l 1 I V \ J I U I U I I W

• 175 °C operating temperature

Type Vds 7d ^D S (o n ) Package Ordering Code

BUZ 101 50 V 29 A 0.06

a

TO-220 AB C67078-S1350-A2

Parameter Symbol Value Unit

Continuous drain current,

T

q = 3 i °C

b

29 A

1 J l ■ 1 r>

s~l

i ■

v-v-v-t~\

/ _ _ OC OC'

ru io cu uicuii v^ui 11 cn 11,

i

(j — puis 4HC 1 1 U VA“V Avalanche current limited hv 71™™

... ■ ■ ■ ■ ~ J ... . J JI 1 1 CIA ■ r-vi i

J

AD 29 A Avalanche energy, single pulse, /□ = 29 A,

L/™ = 95 \/ r UU * , * 'UO = 95 O

T

= 1 iH T= = 95 °Ch" ’> * j w

Ea s 70 mJ

Gate-source voltage KgS

oCM+i V

r'k - _i: ±: n r

r\r~

o/-\

ru w e r uissipauori,

i c

= ^o ~o Aot ■4 A AIUU 1 A #

vv

Operating temperature range 7 j - 5 5 ... + 175 ° c

Storage temperature range Tstn - 5 5 ... + 175 ° c

Thermal resistance chip - case R \ h J C

- 4 P S I . 3

I X A A / r \ / v v

Thermal resistance chip - air R \ b J A < 75 K/W

DIN humidity category, DIN 40 040 E

i i— / - v _ i : --- * --- --- r uM i m a d a ic u ui i m a u u u c u e y u i y , u \ \ \ il u d o - i

r - r - i - < - ^ r - i r - a D O / l / O / O O

Semiconductor Group 08.94

(2)

C I C M C M C

J ltlT I LI1J BUZ 101

Eiectricai Characteristics

at 7] = 25 °C S unless otherwise specified.

Parameter Symbol 'value Unit

min t\/nr*- may

Static Characteristics

urain-source breakdown voitage

Vn>B

= n V

Tr>

= n P.5 mA

T = — AO °C.

UO w w J *

LJ

■ ■ ■' *J ' J ■ w '

^(BR)DSS 50 - - V

Gate threshold voitage I = T / r / „ = 1 mA r UC5 r UC5I ««««/»

^GSrth) 2.1 3.0 4 .0 V

Zero gate voltage drain current

tr Ub — / _— cn \ / i/_ _ — n \ / v > K US — ^ v , / j ----t: — /in op

7dss - 1 100 nA

7 am nata vnltana drain currant

T

ncc 0.1 1.0 uA

t7 _ irn \ / t7 _ n \ / nr _ orr or»

KDS = 3U V, KGS = u V, Jj = o

7arn nata vnltana drain currant 10 100 11A

Kds

= 50

V, Kqs = 0 V, 7] = 150 °C

* uoo r-" 1

T

---- 1 n 1 n n nA

\-A

UIV^ OUUI louixuyo LsUII^IIL Kgs = 20 V, KDS = 0 V

n is s l

\J

I

\J\J

1 1/ \

^ ... __ , D n no/2 n

nc

l/i dii i-^ulii oc ui i-i coioidi icc KGS = 1 0 V ,7d = 21 A

^D S (on) u.uuu 0 . 0 0 14

(3)

Eiectricai Characteristics (cont’ci) at 7] = 25 °C S unless otherwise specified.

Parameter Symbol 'value Unit

m i n t\/n m a y

Dynamic Characteristics Forward transconductance

1’ L/O —/no > 9 — * x

Tr\ LJ

* vL/O^UI 1x /?r\o /—\

}

IIICIAJ *

Tr\ \-J

= 91 A— 1 * *

<?fs 7 13.5

-

S

input capacitance

Ir UC5 = n \/ T/™ = v V J r UC> O R

\/ f=

V>J 1 MWv1 lv" ^

Kiss - 680 900 pF

Output capacitance

tr Ub — ^ v > /~ _ n \ / i/__

v

L)S — _ on w /*- 4 ftfiu-7 V ,

j —

i IVI1 iz_

Ooss - 240 360 PF

Reverse transfer nananitanne

t/■ _ n \

f xr

_ n rr \ / .r _ hi\ /■ i i —

v

GS =

v

v, ^DS = ^ v , j = i ivinz:

(7roo— 1 oo - 90 135 PF

Turn-on de!av time

KDD = 30 V, Kgs = 10 V, / D = 3 A,

RGS

= 50 Q

f

-1 /---\

•/u(uii; - 15 23 ns

Pico tirno 1 IIO& III 1 1 w

Kdd = 30 V, Kgs = 10 V,

ID

= 3 A,

RGS

= 50 Q

-

RR

Qc; n o 1 1 o

i u i i i-uii uciciy ui lie

Kdd = 30 V, Kgs = 10 V, / D = 3 A,

RGS = 5 0Q

;4—'4—oi? - ^ no 1 uu H OC 1 OxJ ns

Faii time

Kdd = 30 V,

VGS

= 10 V,

ID

= 3 A,

RGS

= 50 Q

-

~7r\ /u

n reo ns

Reverse Diode

Continuous reverse drain current r_ - - nn A

Pulsed reverse drain current ^OIVIT o h A - - 116 A

Reverse diode forward on-voitage

= n \ / T r - = RR A r v v , wu # x

Fsd - 1.2 2.0 V

Reverse recovery time

i/_ r |-{ — - \on \ / j\j v , 1r_ — r_ 1- — i ^, u t|- / ur — - i1 ww /“\/ [ nn a /. .0jo

trr - 60 - ns

Reverse re m v e rv nharne . . . . - - j ■ - u

t/ _ o n \ / r _ t 4.* / ~i ^ n n a/.

V f { - OU V, I f - 1S, U^F / UJ = IUU

o rr

X l l - 0,12 - uC

Semiconductor Group

(4)

C I C M C M C

J ltlT I LI1J BUZ 101

h'acKage uum ne

T A o o n A D i w t t u n D

" 1

i n

Q Q*/•*»

a m

, r

I t 7

T

.

N f l

T T

1 L _ k S I V I / -

Jl f

t r i

J T i f )

r

i i

11 2

1 ^ -

1 1

JU I I

j L J ' L J L

r t J l Jc --- CO---

I I u./o- 2.54

05 2.54

0 +

A A

1.3

f

I

CO

V.

« I 41

V)4

_ ! _

'inro _1

7

U.3 2.4

GPT0S1SS 1) punch direction, burr max. 0.04

21 din tinnina

4 4 r L.

o) max. 14.3 ay aip Tinning press aurr max. u.uo

Weight approx. 2.0 a Dimensions in mm

Sorts of Packing

Package outlines for tubes travs etc, are contained in our Data Book "Package information".

(5)

t— n

unaracierisiics ai / j =

do

~o, umess omerwise specmea.

oiai power dissipation P.., = f ( T „ \

* LOL J \ • W

P

m 110

W qn

D U L I V I

bU 50 40 30

N

\ \

>

\ \

>k

\\

k XI k\

\ ’s N

N

on in n io n i i n °n

OU IUU l^u IW V/

urain current

f r\ = f (Tr~.\

J \ • W

parameter: Kgs > 10 V

/n 30

A 26 24 22 20

4 O

I O 16 14 12 10 o

a

6 4 2

0

D U L I U I J I L U J U / £.

N |

k

L

k Mk

r v

\ \ J

V\

\ .

\

\%\ V\

\

\1 1

__1—11 U ZU 4U bU HU IUU 1ZU 14U

T,

10U

Safe operating area

r r/ t r \

iv = j\ v

ds;

parameter:

D

= 0.01, 7c = 25 °C m3i w

1

. .

‘ D A

102

101 5

10°

10° 5 101 V 102

BUZ 101 SIL03873

+ - 11 1

k

A i

■ B ■

It -

\ r .

rji.£ /xs , 9

"H1 ■widfJS-

*\ 1 . > i

-VO' r 11 k f

\ y ''iii i ~k T ur\_UfJ, 5

W'y \ iy IN.i i \ ^1 spllISH

i m

V k 1

kJlrr UU-IS -M-I I —1- -I

v % I

V dio ms

•p p- k k> !L _ ir—i '

i k Dck 100ms

r r r 1i __ T_

— » - t

Transient thermal impedance

2 t h j c

= f ( t P)

parameter:

D = tp

/

T

Semiconductor Group

(6)

Cl CI A CMC

J ltlT I LI1J BUZ 101

r— I-,

o n a ra c ie ris u c s ai /j = ~u, umess omerwise specmea.

yp. ouipui cnaracierisiics /l—V = ./ \ ’ UCV

f

d i 17 t n <

DUL IUI

t---- 1---- r*

/*«=100 w \

45 40 35 30

n cZ3

L V9n 15 10 5 Gr.

U

/ I / / / / / T

x r m r r

5T-0.3V1

im / s w iw / y s i

j .

« r a =

I ' 5 V

f s p f

-4 .5 V -4 V —

I

.u i .u z.u J.U .u y 3.ia w c ,

ryp. arain-source on-resisiance Pr,o,._, = /' { fr~\\

j

vu/

parameter: |/qs

0 .20 DUL IUI JILUJOf U

R n c f ^ yi / ^ w n y » i n

— I— I— I— I— I— I— I— I— I— I— I—

l/L-=4. RV RV R RV RV fi RV 7V 7 RV RV_

■us • - --- --- • — ... - •

0.00 1U m ou 4U 3U A

/n 03

Tvp. transfer characteristics

In

= / ( Kqs) parameter:

tp =

80 ps,

Kd s > 2 X Id X /?DS(on) max

BUZ 101 SIL03877

A 55 50 45

■w

jn

35 30 25 20 15 iniu

5

/ iJr

# / / / /r // // /// /M 1

/ IT / // /

Tv d•a ■ . forward transconductance ^fC = U " j J

f(In)

X L-r/

parameter:

tp =

80 ps,

Kd s > 2 X Id X /?DS(on) max

. . BUZ 101 SIL03878

Jfsa .

>

/J

*- / I/ r fI / / f / 1I II1

(7)

t— n

unaracierisiics ai / j =

do

~o, umess omerwise specmea.

u r a i n - s o u r c e o n - r e s i s i a n c e

= f ( T \

“ uc^un; j \ ^ j /

u a t e m r e s n o i a v o i i a g e

= f ( T \ ' j \ ^ j /

D U L I W l JIUUiAJUU

parameter:

l

□ = 60 A, |/qs = 10 V, (spread) parameter: |/qs = ^ds. 7d = 1 mA, (spread)

5.0

4.U

7 r

0.0

Qfl V

h m

h - j O

Z To

• » « * r s J

**■ ^

^ ■ w9 « 2 .4 2.0

1.6 1.2 0.8

0 .4

r\ a

U.U_cn_in_on n on in cn an i n n i o n i i n — M M — f M — i . M V i.V t w UU UV IV U ILW l * t U V / IUUion

Tvp. capacitances

/ n /* / t /■ \

= /t> / Ds;

Forward characteristics of reverse diode

t /* / T 7 \

=

j k vsd;

parameter: 7], rp = 80 ps, (spread)

t n Z BUZ 101 SIL03882

w j j j j j j j j j j j i j j j

T ! 7 /

1 f ■r> 1

V

/ / i/j

/ / J 114

/ y ic-i

r

T._ rICO

n

i.

# j L J

\ j

1 Jf[J

T j = 1 7 5 ° C typ

;r.~

/j L vi v y j u / o y

r ta&v\

■ 7j= 175 °C (98% ) / 7 T T

l

W T

r

r

I f

n n

n _i r II L M _

Semiconductor Group

(8)

C I C M C M C

J ltlT I LI1J BUZ 101

m /-\ r~ n

im araciensiics ai /j = d o ~u, umess omerwise specmea.

Maximum avalanche energy £as = /(? ]) Typ. gate charge

n a r a m e t e r 1 7r-> = . . u OQ A I/’ u1-.u1-. = O R \ /v I

oca

j

vv^uaie/

parameter: /"□ DU|S = 44 A 16

v

12

10 8 6

4

2

DUL IVI JILUJUU*)

r _/iX X

*

/ I X >

M

i/rDSnnax n v

* X J r *x

/ x 1/

'DS nax —n r w tTV T

a /

X

X V X

Xr

/

i / / r / / /

1

on A n cn on m n io n i A n ° r 1 on

A .\J t \ J U V U V I V V I i.\ J I * t V V i u v

Drain-source breakdown voltage

T 7 / rr<\ i . . t7 /r\r~ n /-\ \

v (BR)DSS u p = o X K(BR)DSS

BUZ 101 SILJ03885

1.18

1 1 cM U

1.14

d d r t

I.IZ 1.10 1.08 i.Q6 1.04

1 no

i . \ J i .

1.00

aa n

U.ZJO

0.96 0.94 0.92

/ X - J X

x

J

x

J X

x

> r .

X r

/ j *

X r

y X j X

Cytaty

Powiązane dokumenty

1, we give an example of how Principal Components Analysis (the first two dimensions) can be used to visualize texts in different ways, e.g. with and without feature loadings.

3) increase in the exchange rates. During the twenty days prior to the departure date stipulated, the price stated in the contract shall not be increased. The customer may

Specification of loading Model Tree /(DC)Steps Generate new step called Step-1 and specify mechanical load – (SC)Pressure applied in this step (it is positive when it is

However, the rear aerodynamic package is a three- element wing, hence, for better cooperation between airfoils arnd for guiding a part of the flow to the diffuser, the 5° angle

In the classic-to-classic approach the best MDS procedure is selected by choosing an optimal combination of normalization methods, distance measures and scaling models

A sequence diagram is a form of interaction diagram which shows objects as lifelines running down the page and with their interactions over time represented as messages drawn

These features are additional scaling methods for simple and canonical CA, missing data, and graphical representations such as regression plots, Benz´ ecri plots, transformation

Figure 8 provides numerical results of deflection and maximum temperature versus voltage for the range from 0 to 45 V, for both the U-beam and V-beam thermal actuation