• Nie Znaleziono Wyników

Drgania relaksacyjne (pomiar pojemności)

N/A
N/A
Protected

Academic year: 2021

Share "Drgania relaksacyjne (pomiar pojemności)"

Copied!
11
0
0

Pełen tekst

(1)

Drgania relaksacyjne (pomiar pojemności)

I.

Cel ćwiczenia: zapoznanie z działaniem oraz własnościami najprostszej dwuelektrodowej lampy gazowej − neonówki

II.

Przyrządy:

płytka pomiarowa, kondensator dekadowy, multimetr cyfrowy, zasilacz prądu stałego, oscyloskop.

III.

Literatura:

[1] J. L. Kacperski, „I Pracownia fizyczna”;

[2] H. Hofmokl, A. Zawadzki, „ Laboratorium fizyczne”;

[3] J. L. Kacperski, „Opracowanie danych pomiarowych”;

[4] T. Rewaja (praca zbiorowa), Ćwiczenia laboratoryjne z fizyki na politechnice;

[5] H. Szydłowski, „Pracownia fizyczna”.

IV. Wstęp

W bańkę lampy wypełnionej gazem szlachetnym (np. neonem) lub ich mieszaninami, czasa- mi z dodatkiem par metali (np. rtęci) pod ciśnieniem 1÷300hPa wtopione są dwie elektrody. Jest to tzw. lampa gazowana dwuelektrodowa. W gazie znajdującym się w lampie jest zawsze pewna liczba jonów dodatnich i elektronów powstałych pod wpływem jonizacji wywołanej przez ciała promieniotwórcze (znajdujące się niewielkiej ilości w otoczeniu) oraz pod wpływem promienio- wania kosmicznego. Jednak liczba par jonów w lampie jest w przybliżeniu stała na skutek wystę- powania rekombinacji czyli oddziaływania elektronów z jonami i powstaniu w konsekwencji neu- tralnych atomów.

W przypadku przyłożenia do elektrod lampy napięcia, którego wartość nie przekracza pewnej wartości progowej gaz zachowuje się jak izolator. Prąd płynący na skutek ruchu jonów i elektro- nów do elektrod ma przy takim napięciu znikome natężenie. Po przyłożeniu do elektrod napięcia powyżej napięcia progowego, następuje jonizacja obojętnych atomów gazu podczas zderzania się z nimi elektronów przyspieszanych w polu elektrycznym miedzy elektrodami. Jony dodatnie i elektrony podążają w kierunku odpowiednio katody i anody z prędkościami zależnymi od natę- żenia pola elektrycznego oraz rodzaju i ciśnienia gazu wypełniającego lampę. Należy nadmienić, że prędkość jonów dodatnich jest znacznie mniejsza niż prędkość elektronów, a wynika to stąd, że jony dodatnie są cięższe i mniej ruchliwe od elektronów. Te własności jonów dodatnich powodu- ją, że wokół katody wytwarza się „chmura” jonów dodatnich, co powoduje duży spadek potencja- łu w pobliżu katody tzw. spadek katodowy między tą „chmurą” a katodą. W konsekwencji elek- trony otrzymują energie potrzebne do jonizacji już przy katodzie. Elektrony wybite podążają w kierunku anody z prędkościami, które pozwalają im także na wzbudzanie atomów gazu, co powo- duje zjawisko jarzenia się gazu. Natomiast dodatnie jony przyspieszane w polu elektrycznym po- dążają do katody i bombardują jej powierzchnię. W wyniku tego procesu powierzchnia katody emituje elektrony, co powoduje „lawinowy” wynoszący kilka rzędów wielkości wzrost natężenia prądu. Wybijanie przez jony dodatnie kolejnych elektronów zapoczątkowuje ciągle nowe procesy lawinowe co sprawia, że przepływ prądu o dużej gęstości (nazywany wyładowaniem) odbywa się nawet wtedy, gdy zostanie usunięte źródło jonizacji. Mówimy wówczas, że mamy do czynienia z wyładowaniem samoistnym. Wyładowanie samoistne można przerwać przez obniżenie napięcia na elektrodach lampy. Napięcie, przy którym wyładowanie niesamoistne przechodzi w wyłado- wanie samoistne nazywa się napięciem zapłonu, natomiast napięcie, przy którym następuje po- wrót do wyładowania niesamoistnego nazywa się napięciem gaśnięcia. Napięcie gaśnięcia w

(2)

przypadku lampy gazowej może być o 20 – 30V niższe od napięcia zapłonu. Przyczyną tego jest obecność wystarczającej liczby jonów powstałych w czasie wyładowania, nawet jeśli obniży się napięcie poniżej napięcia zapłonu. Przy napięciu gaśnięcia ustaje proces wyładowania oraz towa- rzyszące mu jarzenie gazu i lampa gazowa przestaje przewodzić prąd. Poniższy rysunek pokazuje charakterystykę takiej lampy

Rys.1 Charakterystyka prądowo – napięciowa lampy jarzeniowej

Od napięcia U = Up do napięcia zapłonu Uz rozciąga się obszar wyładowania ciemnego. Po- wyżej napięcia Uz następuje wyładowanie jarzeniowe. W tym obszarze spadek napięcia na lampie jarzeniowej jest prawie niezależny od natężenia przepływającego prądu, a wzrost natężenia prądu powoduje zwiększenie powierzchni katody objętej jarzeniem się gazu. Dalsze zwiększanie napię- cia powoduje wejście w obszar wyładowania łukowego, co grozi zniszczeniem lampy. Zmniejsza- jąc prąd płynący przez lampę do wartości Imin powodujemy obniżenie napięcia na elektrodach do wartości napięcia gaśnięcia Ug, niższego od napięcia zapłonu Uz. Różnica Uz – Ug maleje w miarę wzrostu częstości zapalania neonówki na skutek skończonej prędkości zachodzenia rekombinacji.

V. Drgania relaksacyjne

Relaksacja jest to powrót układu do stanu równowagi termodynamicznej. Co za tym idzie drganiami relaksacyjnymi nazywamy drgania (mechaniczne, cieplne, elektryczne) układu spowo- dowane przejściem od stanu początkowego do jakiegoś innego stanu, po czym następuje powrót do stanu pierwotnego. Wszystkie stany pośrednie pomiędzy stanem początkowym i stanem koń- cowym nie mogą samodzielnie spowodować powrotu do stanu początkowego. Jeśli temu układo- wi zostanie dostarczona energia z zewnątrz w sposób ciągły, to wówczas mamy periodyczne drgania relaksacyjne. Zmniejszenie dopływu energii spowoduje przerwanie drgań relaksacyjnych.

Właściwość samoistnego wyładowania jarzeniowego na skutek różnicy między napięciem zapłonu i napięciem gaśnięcia daje możliwość wytworzenia drgań relaksacyjnych w lampie jarze- niowej (neonowej) co będzie przedmiotem badań naszego doświadczenia.

VI. Układ pomiarowy

Lampka neonowa włączona jest w obwód elektryczny (rys.2a), w którym pojemność C połą- czona jest przez opór R z siłą elektromotoryczną Uo. Wraz ze wzrostem napięcia między okład- kami kondensatora wzrasta również napięcie między elektrodami lampy neonowej. Do czasu kie- dy napięcie jest mniejsze od napięcia zapłonu Uz, neonówka ma bardzo duży opór (nie będzie

Imax

Imin

Up Ug Uz U

Ia

(3)

praktycznie przez nią przepływał prąd), dlatego też nie bierze udziału w ładowaniu kondensatora C. W związku z tym możemy rozważyć uproszczony schemat pomijający neonówkę z rys.2b.

a) b) c)

Rys.2 a) Schemat włączenia lampy neonowej do obwodu, b) schemat uproszczony dla U < Uz

(ładowanie kondensatora przez opór R), c) schemat uproszczony dla U > Uz (rozładowanie kondensatora przez opór neonówki Rn).

Stosując dla tego przypadku (rys.2b) prawa Kirchoffa możemy napisać

R C

Q

dQ + = Udt o (1)

gdzie Q – ładunek zebrany na okładkach kondensatora.

Różniczkując relację Q = C U, otrzymamy dQ = C dU, a po wstawieniu do równania (1) do- stajemy równanie różniczkowe liniowe niejednorodne:

RC U

dU + =Udt o, (2)

które rozwiązuje się metodą uzmienniania stałej (patrz Uzupełnienie).

Wykorzystując warunek początkowy U = 0 dla t = 0, otrzymujemy następujące rozwiązanie:

U = Uo (1 − e – t/RC) (3)

(rozwiązanie równania zamieszczono w Uzupełnieniu ).

Iloczyn RC ma wymiar czasu i nazwany jest stałą czasową obwodu.

Kiedy napięcie U na okładkach kondensatora (a więc i na elektrodach neonówki) osiągnie wartość Uz, oporność wewnętrzna neonówki maleje bardzo szybko o kilka rzędów wielkości i jest Rn«R. Można więc przyjąć, że kondensator jest izolowany od źródła prądu i rozładowuje się przez nieduży opór Rn. Uproszczony schemat obwodu odpowiadający tej sytuacji pokazuje rys 2c. Dla tego schematu korzystając z praw Kirchoffa można napisać równanie

Rn

C Q

dQ + = 0 dt (4)

Rn C U

dU + = 0 dt (5)

Rozwiązanie równania (5) zamieszczone jest w Uzupełnieniu.

Wykorzystując warunek początkowy U = Uz dla t = 0, otrzymamy rozwiązanie

U = Uz⋅e – t/RC (6)

Prąd rozładowujący kondensator płynie do momentu, gdy na okładkach kondensatora i elek- trodach neonówki napięcie spadnie do napięcia gaśnięcia Ug. Opór R jest rzędu kilku MΩ, co po-

Uo

Rn

R

C

+ −−− Uo

R

+ −−− C C Rn

(4)

woduje, że prąd płynący przez niego jest za mały, aby podtrzymać jarzenie. Po osiągnięciu tego napięcia neonówka przestaje przewodzić, a kondensator podobnie jak na początku znów zaczyna się ładować i napięcie między jego okładkami wzrasta do Uz, po czym rozładowuje się jak po- przednio przez neonówkę do wartości Ug itd.

Rys.3 przedstawia wykres drgań relaksacyjnych. Wykres ten przypomina kształtem zęby piły, dlatego też często nazwa ta jest używana do scharakteryzowania drgań takiego typu.

W naszych rozważaniach pomijamy czas opadania impulsu tzn. czas rozładowania kondensa- tora, w którym napięcie na nim spadnie od wartości Uz do wartości Ug. Czas ten jest znacznie mniejszy od czasu ładowania, dlatego zostaje pominięty (bo Rn«R).

Czasy tz i tg odpowiadające zapłonowi i gaśnięciu neonówki otrzymujemy z warunków Ug = Uo (1 − etg/RC) ⇒ tg = − RC 

 

 −

o g

U 1 U

ln (7)

Uz = Uo (1 − etz/RC) ⇒ tz = − RC 

 

 −

o z

U 1 U

ln (8)

Uwzględniając wyżej wymienione rozważania mamy:

T = tz – tg = RC ln

z o

g o

U U

U U

− (9)

Przy ustalonych Uo , Ug, Uz okres T jest proporcjonalny do stałej czasowej RC. Wzór (9) otrzymano, zaniedbując skończony czas zachodzenia w gazie lampy neonowej takich procesów jak rozwój wyładowania samoistnego, rekombinacja itp.. Uwzględnienie tych efektów w przy- padku neonówki nie jest zresztą w ogóle możliwe, bowiem pole elektryczne jest w niej niejedno- rodne natomiast jego natężenie oraz dodatkowo skład i ciśnienie gazu nie są dokładnie znane.

Dlatego wprowadzimy najprostsze poprawki przyjmując, że napięcie gaśnięcia Ug = constans (dla danego egzemplarza neonówki), a napięcie zapłonu Uz zależne od szybkości zmian napięcia na elektrodach, może zmieniać się w pewnych granicach. Oznaczmy przez top czas. opóźnienia upły- wający pomiędzy osiągnięciem „statycznego” napięcia zapłonu Uz (napięcie zapłonu przy bardzo powolnym wzroście napięcia na anodzie), a momentem rozpoczęcia się wyładowania samoistne- go. Przy bardzo powolnym wzroście napięcia na anodzie jego wartość prawie się nie zmienia w

U Uo Uz

Ug

t T

tg tz

Rys.3 Przebieg napięcia w funkcji czasu na neonówce.

A

(5)

ciągu krótkiego czasu top (wartość najczęściej wynosi kilkadziesiąt µs), ale jeśli wzrost napięcia następuje szybko (przy małej stałej czasowej), wówczas napięcie na anodzie może w czasie top

przekroczyć znacznie statystyczne napięcie zapłonu osiągając wartość „dynamiczną” Uzd. Przez analogię do (8) możemy napisać

tzd = − RC 

 

 −

o d z

U 1 U

ln (10)

i w konsekwencji okres drgań wyniesie

T = RC 

 

zd o

g o

U U

U

ln U (11)

VII. Pomiary

a) Pomiar statycznego napięcia zapłonu Uz i napięcia gaśnięcia Ug.

Rys.4 Schemat układu do pomiaru napięcia zapłonu i gaśnięcia neonówki.

1. Zbudować układ według schematu z rys.4. Wykorzystać do tego celu elementy rozmieszczo- ne na płytce montażowej (rys.5). Opór zabezpieczający chroni neonówkę przed zniszczeniem w wyniku przepływu prądu o zbyt dużym natężeniu. Równolegle do neonówki włączyć wol-

+ Uo

R zabezpieczający

V

oscyloskop

10 nF

C

10 nF10 nF

C2x

C1x

R1x

R2x

3,9 MΩ 1,5 MΩ

2,2 MΩ

Uo

R zabezpieczacy 250kΩΩΩΩ



Rys.5 Płytka montażowa i schemat rozmieszczenia wykorzystywanych elementów elektrycznych.

Symbol  oznacza gniazdko radiowe, liniami ciągłymi oznaczono wewnętrzne połączenia elektryczne elementów.

(6)

tomierz cyfrowy w celu pomiaru napięcia zapłonu neonówki (napięcie zmieniamy odpowied- nimi pokrętłami zasilacza). Zwiększać stopniowo napięcie na wyjściu zasilacza aż do mo- mentu zapalenia się neonówki. Wartość napięcia zapłonu w samym momencie zapłonu wska- zuje woltomierz, po czym napięcie to momentalnie spada do wartości tzw. „napięcia pracy”

neonówki. Wartość wskazywana wówczas przez woltomierz jest zależna od spadku napięcia na oporniku zabezpieczającym oraz od oporu wewnętrznego neonówki Rn.

2. Po orientacyjnym określeniu wartości statycznego napięcia zapłonu Uz, obniżać napięcie za- silania aż do chwili zgaśnięcia neonówki i odczytać Ug z woltomierza.

3. Po tych wstępnych czynnościach ponownie zmierzyć kilka razy Uz i Ug. Tym razem wolno zmieniać napięcie zasilania przy zbliżaniu się do wyznaczonych wcześniej wartości. Zwrócić szczególną uwagę na pomiar napięcia gaśnięcia, ponieważ bezpośrednio przed zupełnym zgaśnięciem neonówka jarzy się prawie niezauważalnie.

b) Pomiar okresu drgań.

Rys.6 Schemat do badania drgań relaksacyjnych

Zbudować układ pomiarowy zgodnie ze schematem z rys.6. Potrzebne elementy znajdują się na płytce montażowej – (rys.5). Jako pojemności C można użyć kondensatora dekadowego i nie korzystać z umieszczonych na płytce kondensatorów o pojemności 10 nF (kondensatory te należałoby łączyć szeregowo lub równolegle, aby zwiększyć liczbę punktów pomiaro- wych). Wartość napięcia zasilającego lampkę neonową ustawić na Uo = 140V.

1. Dla danego oporu R i różnych wartości pojemności C (z przedziału 0 – 30 nF) zmierzyć oscy- loskopem okres T drgań relaksacyjnych (zaniedbując czas opadania impulsu. Wykonać trzy serie pomiarów okresów drgań dla trzech wartości oporów R.

Wyniki zapisać w Tabeli 1. C1x, C2x oznaczają dwie pojemności o nieznanej wartości (umieszczone na płytce montażowej), dla których również należy dokonać pomiarów okresu T; lx − długość pozioma impulsu w cm na ekranie oscyloskopu, sx − współczynnik odchylania poziomego oscyloskopu w ms/cm.

Tabela 1

R1 = 1,5MΩ R2 = 2,2 MΩ R3 = 3,9 MΩ

Okres T Okres T Okres T

Lp C

[nF] lx[cm] sx

cm

ms T = lx⋅sx [ms]

lx[cm] T = lx sx

[ms] sx



 cm

ms lx[cm] sx

cm

ms T = lx sx

[ms]

1 2 3 M

C1x

C2x

−−−− Uo

do oscyloskopu

R

++++ C

(7)

2. Dla ustalonej pojemności C i dla różnych wartości oporów R dokonać pomiarów okresu drgań T. Wykorzystać w tym celu załączone trzy znane opory oraz kombinacje ich połączeń szeregowych i równoległych. Dokonać pomiarów okresu również dla nieznanych wartości oporów R1x i R2x. Wyniki zapisać w Tabeli 3.

Tabela 2

C1 = 5nF C2 = 15nF C3 = 25nF

Okres T Okres T Okres T

L p

R

[MΩ] lx[cm] sx

cm

ms T = lx⋅sx

[ms]

lx[cm] T = lx sx

[ms] sx



 cm

ms lx[cm] sx

cm

ms T = lx sx

[ms]

1 2 3 M

R1x

R2x

c) Badanie zależności okresu drgań od napięcia zasilania.

Dla wybranej wartości oporu R i wybranej wartości pojemności C, zmieniając napięcie zasilania Uo od 100 do 200V skokiem co 10V zmierzyć na ekranie oscyloskopu okres T i am- plitudę A drgań.

Tabela 3

R = C =

Lp Napięcie Uo

[V]

Okres T [ms]

Amplituda A [V]

Uzd = Ug + A [V]

1 100

2 110

M M

VIII. Opracowanie wyników.

1. Obliczenie statycznego napięcia zapłonu Uz i napięcia gaśnięcia Ug.

1.1. Obliczyć średnią wartość statycznego napięcia zapłonu Uz i napięcia gaśnięcia Ug.

1.2 Obliczyć błąd ∆Uz oraz ∆Ug, wykorzystując wzór na średni błąd kwadratowy średniej aryt- metycznej

∆Uz = ±

( )

1) n(n

U U Zśrd 2

n

1 Z

, ∆Ug = ±

( )

1) n(n

U

U 2

gśrd n

1 g

gdzie n jest liczbą pomiarów wielkości mierzonej.

2. Zależność okresu drgań T od C i R

2.1 Wykorzystując dane z tabeli 1, przedstawić na jednym wykresie zależność okresu T drgań relaksacyjnych w funkcji pojemności C dla ustalonej wartości oporu R (dla trzech różnych wartości oporów R). Otrzymamy w ten sposób tzw. krzywe kalibracyjne.

2.2 Wykorzystując dane z tabeli 2 wykreślić zależność okresu T drgań relaksacyjnych w funkcji oporu R dla ustalonej wartości pojemności C (dla trzech różnych wartości pojemności C).

2.3 Mając wykresy T = f(C) oraz T = f(R), znaleźć nieznane wartości pojemności Cx i oporu Rx w oparciu o znajomość odpowiednich okresów drgań T (patrz rys.7).

(8)

Jeśli nieznaną pojemność Cx i nieznaną wartość oporu Rx wyznaczano z trzech krzywych kalibracyjnych, to należy obliczyć średnie wartości C i x R . x

Wzór (9) przewiduje, że krzywe kalibracyjne będą liniami prostymi, wzór (11) przewiduje krzywe wypukłe. Porównaj otrzymane zależności doświadczalne z tymi przewidywaniami.

Dla jednej krzywej kalibracyjnej T = f(C), najlepiej dla R = 3,9 MΩ zaznaczyć na wykresie niepewności pomiarowe ∆T i ∆C dla punktów doświadczalnych. Wykorzystać do tego celu informacje zawarte w punkcie IX instrukcji (Ocena dokładności).

Niepewność ∆Cx nieznanej pojemności wyznaczyć ze wzoru:

2 C Cx Cx x

'

''

=

gdzie C , 'x C pojemności wyznaczone z wykresu odpowiadające okresom T''x x − ∆T, Tx + ∆T.

W podobny sposób określić niepewność ∆Rx nieznanego oporu Rx przy wykorzystaniu krzy- wej kalibracyjnej T = f(R) dla C = 25nF.

3. Zależność okresu T od napięcia zasilania Uo.

Wzór (11) podzielmy stronami przez RC i wprowadźmy liniową skalę funkcyjną:

zd o

g o

U U

U ln U

x RC

y T

= −

= , .

Wykorzystując wyniki z Tabeli 3 sporządzić wykres zależności y = y(x). Zgodnie ze wzorem (11) punkty powinny ułożyć się wzdłuż linii prostej y = x

IX. Ocena dokładności ∆∆T, ∆ ∆ ∆ ∆C, ∆ ∆ ∆ ∆ ∆R, ∆ ∆ ∆ ∆A, ∆ ∆ ∆ ∆U

Na dokładność wyznaczenia okresu drgań T mają wpływ dwa czynniki:

− dokładność odczytu długości poziomego odcinka na ekranie oscyloskopu − jest ona rzędu

∆lx = ±2mm,

− dokładność skalowania oscyloskopu w postaci maksymalnej niepewności względnej współczynnika odchylania 003

s s

x x = ,

∆ ,

Zatem niepewność pomiaru okresu ∆T wynosi:

 

 



 



 

T [ms]

0 10 30

10

20 20

30 40

C [nF]

Tx Tx + ∆∆T Tx−−− ∆∆T

'

C x

Cx

' '

C x

Rys.7 Przypadek jednej krzywej kali- bracyjnej dla R = const. Wy- znaczanie nieznanej pojemno- ści Cx oraz niepewności ∆Cx z wykresu.

R = constans

(9)



 

 ∆

∆ +

±

=

x x

x x

s T s

T l

l .

Podobnie na dokładność wyznaczenia amplitudy A wpływają dwa czynniki:

− dokładność odczytu długości pionowego odcinka na ekranie oscyloskopu − jest ona rzędu

∆ly = ±2mm,

− dokładność skalowania oscyloskopu w postaci maksymalnej niepewności względnej współczynnika odchylania 003

s s

y y = ,

∆ ,

Niepewność pomiaru amplitudy ∆A wynosi zatem:





 ∆

∆ +

±

=

y y

y y

s A s

A l

l

Względną niepewność ∆C/C nastawienia pojemności na kondensatorze dekadowym przyjąć równą 0,05, czyli ∆C = 0,05C.

Względną niepewność ∆R/R określenia oporności przyjąć równą 0,05, czyli ∆R = 0,05R.

Niepewności pomiaru napięcia ∆Uz, ∆Ug, ∆Uo zależą od użytego typu woltomierza oraz od zakresu na jakim dokonywano pomiaru napięcia. Należy je obliczyć korzystając z informacji uzy- skanych od prowadzącego zajęcia.

Niepewność pomiaru dynamicznego napięcia zapłonu: ∆Uzd = ∆Ug + ∆A.

(10)

Uzupełnienie.

Znajdźmy rozwiązanie równania (2) ze strony 3 tej instrukcji:

RC U

dU + = Udt o (12)

Jest to równanie różniczkowe liniowe niejednorodne pierwszego rzędu. Aby znaleźć rozwiązanie tego równania, należy najpierw znaleźć rozwiązanie równania dla Uo = 0.

W przypadku, gdy Uo = 0 równanie nosi nazwę równania liniowego jednorodnego i ma po- stać

RC U

dU + = 0 dt (13)

Rozwiązujemy je metodą rozdzielenia zmiennych.

Równanie (13) po przekształceniach przyjmie postać RCdt

1 U

dU =−

Całkując stronami ostatnie równanie

dUU =RC1

dt

otrzymujemy

ln|U| = − RC

t + K gdzie K jest pewną stałą.

Korzystając z własności funkcji logarytmicznej możemy napisać

|U| = RC

t

K e

e ⋅ U = ± eKRC

t

e = B⋅ RC

t

e (14)

gdzie stała B = ±eK może przybierać dowolną wartość dodatnią lub ujemną.

Wyrażenie (14) jest całką ogólną czyli rozwiązaniem równania jednorodnego (13).

W przypadku równania (5) dla warunku początkowego t = 0, napięcie U = Uz. Wyznacza to jednoznacznie stałą B = Uz w wyrażeniu (14), dając całkę szczególną. Stąd wynika zależność da- na wzorem (6) czyli U = UzRC

t

e .

Całka ogólna (14) nie jest jednak rozwiązaniem równania (12). Następnym etapem poszuki- wania właściwej funkcji spełniającej to równanie jest zastąpienie stałej B funkcją zmiennej t, czyli B(t). Powyższa metoda znajdowania rozwiązania równania różniczkowego liniowego niejedno- rodnego nazywa się metodą uzmienniania stałej.

Napięcie U będzie wówczas funkcją

U = B(t) RC

t

e (15)

która jest całką równania (12).

Aby znaleźć postać funkcji B(t) różniczkujemy funkcję U(t) daną wzorem(15):

dt

dU = B′′′′ (t) RC

t

e + (−

RC e RC

t

) B(t) (16)

(11)

i podstawiamy wyrażenia na U z równania (15) oraz dt

dU z równania (16) do równania (12).

Otrzymamy

o RC RC t

t

RC t

U e

t B t RC B e e

t B

RC + ⋅ =









− +

′ ⋅

) ( ) ( )

(

Po przekształceniu

RC e U

t RCB t 1 RC B e e

t

B RC o

RC t t

RC t

=

 +





− +

′ ⋅

) ( )

( )

(

Po uproszczeniu mamy

B′′′′(t) RC

t

e = RC

Uo

B′′′′(t) = RC

Uo RC t

e Po scałkowaniu mamy

B(t) = RC

Uo

dt eRC

t

Wprowadźmy nową zmienną: u = RC

t . Wówczas mamy również du = RC

dt i otrzymamy

B(t) = Uo

eudu = Uo eRCt + K Po wstawieniu ostatniego wyrażenia do wzoru (15) dostaniemy

U = (Uo RC

t

e + K) RC

t

e

Jest to całka ogólna (rozwiązanie) równania (12) dla każdej wartości stałej K.

Wykorzystując warunek początkowy, że dla t = 0 napięcie U = 0 otrzymamy stałą K 0 = Uo + K ⇒ K = − Uo

Ostatecznie

U = (Uo RC

t

e − Uo) RC

t

e czyli

U = Uo (1 − RC

t

e ) Otrzymaliśmy zależność daną wzorem (3).

Cytaty

Powiązane dokumenty

mierników na wyniki pomiarów (jeśli oporności te wpływają na pomiar), a w przypadku indukcyjności takŜe wpływ oporności rzeczywistej (oporności dla prądu

Po naładowaniu się kondensatora, gdy różnica potencjałów (między okładkami) osiąga wartość U z , w lampie neonowej dochodzi do jonizacji zamkniętego w bańce gazu,

Kondensator powietrzny płaski naładowano, a następnie po odłączeniu od źródła prądu zwiększono dwukrotnie odległość między jego okładkami.. Jak zmienią się:

Pomiaru prądu dokonuje się za pomocą amperomierza, który włączany jest szeregowo do obwodu (lub jego jednej gałęzi), w którym chcemy zmierzyć prąd.. Amperomierz

Jeżeli do pomiaru użyje się woltomierza wskazówkowego, to najpierw należy dobrać zakres pomiarowy a następnie dla tego zakresu i określonej podziałki wyznaczyć stałą

Wierzę w Boga, Ojca wszechmogącego, Stworzyciela nieba i ziemi, i w Jezusa Chrystusa, Syna Jego jedynego, Pana naszego, który się począł z Ducha Świętego, narodził się z Maryi

Przez chwilę rozglądał się dokoła, po czym zbliżył się do cesarskiego podium i kołysząc ciało dziewczyny na wyciągniętych ramionach, podniósł oczy z wyrazem

a) Zakładając, że liczba wybijanych elektronów na jednostkę kąta bryłowego jest niezależna od kierunku, wyznacz zależność natężenia prądu płynącego między okładkami