• Nie Znaleziono Wyników

Particles and Fields in Superfluids

N/A
N/A
Protected

Academic year: 2021

Share "Particles and Fields in Superfluids"

Copied!
2
0
0

Pełen tekst

(1)

15THEUROPEANTURBULENCECONFERENCE, 25-28 AUGUST, 2015, DELFT, THENETHERLANDS

PARTICLES AND FIELDS IN SUPERFLUIDS: INSIGHTS FROM THE TWO-DIMENSIONAL

GROSS-PITAEVSKII EQUATION

Rahul Pandit

1

, Vishwanath Shukla

1

& Marc Brachet

2

1

Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore, India

2

Laboratoire de Physique Statistique de l’Ecole Normale Supérieure, Paris, France

Abstract We study the dynamics of active particles in two-dimensional superfluids at temperatureT = 0, for a variety of initial config-urations, by carrying out extensive direct-numerical-simulations of the two-dimensional, Galerkin-truncated Gross-Pitaevskii equation. Our study elucidates the interplay of particles and fields, in both simple and turbulent flows. We show that particle collisions can be inelastic, if the repulsive interactions between particles is weak, and elastic otherwise. We show that assemblies of many particles and vortices yield turbulent spatiotemporal evolutions.

INTRODUCTION

We initiate a study of particles in superfluids by developing a new algorithm for particle motion in a superfluid, which is described by the Gross-Pitaevskii (GP) equation [1, 2, 3, 4]. The particles we use are active, i.e., they are not only advected by the flow, but they also act back on it; furthermore, they interact with each other, not only by virtue of superfluid-mediated, effective interactions, but also by repulsive interactions that rise rapidly as the particles approach each other.

RESULTS

Our study elucidates the interplay of particles and fields in superfluids, in both simple and turbulent flows, and yields several new results, which we summarize below: At the one-particle level we explore, for light, neutral, and heavy particles, the nature of their dynamics in the superfluid, when a constant external force acts on them; in particular, we explore how the particle motion can become chaotic. We show that the interaction of the particle(s) with vortices leads to dynamics that depends sensitively on the particle characteristics. We extend these studies to the case of two particles, where we show the existence of an effective, superfluid-mediated, attractive interaction between the particles. Moreover, we introduce a short-range repulsive interaction between particles and show how collisions of heavy, neutral, and light particles are different. Here, we find that, at low values of the range of the repulsive force, the collisions are completely inelastic (Fig. 1(a)), with coefficient of restitution equal to zero; as we increase the range of the repulsive force the coefficient of restitution becomes finite at a critical point, and finally attains values close to unity, i.e., the collisions become elastic (Figs. 1(b) and 1(c)). Furthermore, we find that many-particle collision dynamics also depends on the range of the repulsive force. At large values of the range of the repulsive force, we obtain chaotic, many-particle collision dynamics. Our studies of assemblies of particles and vortices demonstrates that their dynamics show rich, turbulent spatiotemporal evolution (Figs. 2(a)-(f)).

0 10 20 30 40 1.5 2 2.5 3 3.5 4 4.5 5 t qo,x r SR=1.5ξ r SR=6.5ξ (a) 0 10 20 30 40 0 1 2 3 4 5 6 t qo,x r SR=7.0ξ r SR=8.0ξ (b) 2 3 4 5 6 7 8 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 rSR/ξ e (c)

Figure 1. Head-on collisions between two neutral particles: (a) particle trajectories shown via plots of the x-component of the particle position vectorqo,xversus time andrSR= 1.5ξ (purple curve) and rSR= 6.5ξ (green curve); (b) particle trajectories shown via plots

of the x-component of the particle position vectorqo,xversus time andrSR= 7.0ξ (sky-blue curve) and rSR= 8.0ξ (brown curve). (c)

Plot of the coefficient of restitutione versus rSR/ξ, for a head-on collision between two neutral particles in our 2D, Gross-Piteavskii

superfluid.rSRis the range of the short-range, repulsive force between two particles andξ is the healing length, which can be associated

(2)

0 1 2 3 4 5 6 x 0 1 2 3 4 5 6 y t=0.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

(a)

0 1 2 3 4 5 6 x 0 1 2 3 4 5 6 y t=37.8 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

(b)

0 1 2 3 4 5 6 x 0 1 2 3 4 5 6 y t=42.4 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

(c)

0 1 2 3 4 5 6 x 0 1 2 3 4 5 6 y t=46.2 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

(d)

0 1 2 3 4 5 6 x 0 1 2 3 4 5 6 y t=150.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

(e)

0 1 2 3 4 5 6 0 1 2 3 4 5 6 x y

(f)

Figure 2. (a)-(e) Spatiotemporal evolution of the field|ψ(x, t)|2

shown via pseudocolor plots, for four neutral particles (large blue patches), initially placed at the centers of the counter-rotating vortex clusters, at the coordinates(3π/2, π/2), (π/2, π/2), (π/2, 3π/2), and(3π/2, 3π/2), respectively, at t = 0. ψ(x, t) is the complex field describing the superfluid in the GP theory. (f) Trajectories of the four neutral particles in the presence of counter-rotating vortex clusters, shown by purple, green, blue, and brown curves.

Acknowledgements: We thank CSIR, UGC, DST (India) and the Indo-French Centre for Applied Mathematics (IFCAM) for financial support, and SERC (IISc) for computational resources. VS and RP thank ENS, Paris for hospitality and MB thanks IISc, Bangalore for hospitality.

References

[1] T. Frisch, Y. Pomeau, and S. Rica. Transition to dissipation in a model of superflow. Phys. Rev. Lett., 69(11):1644, 1992. [2] T. Winiecki and C. S. Adams. Motion of an object through a quantum fluid. Europhys. Lett., 52(3):257, 2000.

[3] T. Winiecki, B. Jackson, J. F. McCann, and C. S. Adams. Vortex shedding and drag in dilute Bose-Einstein condensates. J. Phys. B: At. Mol. and Opt. Phys., 33(19):4069, 2000.

[4] V. Shukla. Particles and Fields in Superfluid Turbulence: Numerical and Theoretical Studies. PhD thesis, Indian Institute of Science, Bangalore, 2014. Unpublished.

Cytaty

Powiązane dokumenty

In order to fulfill these objectives, an experimental study was performed in a turbulent open channel flow using particles image velocimetry (PIV) to measure the fluid velocity

Skoro zatem na podstawie tych argumentów należy uznać nadzór ochronny za wolnościowy (tj. wykonywany bez pozbawienia wolności) środek zabezpieczający, mimo że i on

Dotyczy ona co prawda badania szczelności w systemach transportujących wodę, jednak ze względu na to, że maksymalne ciśnienie wodociągu z polietylenu może wynosić 16 bar, a

W badaniu tym w zależności od czasu kontaktu cieczy, zarówno przemywającej, jak i cieczy buforowej, możliwe jest określenie skuteczności usuwania osadu z przestrze-

Głównym źródłem badań są stenogramy z pierwszego czyta- nia projektu ustawy z 38 posiedzenia Sejmu dnia 19 marca 2009 r. oraz biuletyny z posiedzeń Komisji.

Figure 6 shows the trajectories of dense particles released from within a steadily moving Rankine vortex in the vortex frame of reference.. As the vortex moves with speed U ω to

the University Medical School in Szeged, we have studied and compared the superoxide disoutase activities, other enzymes.. of the oxidative metabolism and the

Тією чи тією мірою ідеї про особливості реалізації мовною особистістю на кожному з рів- нів знайшли розвиток і поглиблення в низці