• Nie Znaleziono Wyników

n g 1 n=0 : For odd n the sign of x n depends on the hoi e of the sign of a

N/A
N/A
Protected

Academic year: 2021

Share "n g 1 n=0 : For odd n the sign of x n depends on the hoi e of the sign of a"

Copied!
8
0
0

Pełen tekst

(1)

LXXXII.4(1997)

Prime divisors of Lu as sequen es

by

Pieter Moree (Bonn)and Peter Stevenhagen (Amsterdam)

1. Introdu tion. Letd>1beasquarefreeintegerandK=Q(

p

d)the

orrespondingrealquadrati eld. Wewrite"=a+b p

dforafundamental

unitintheringofintegersofK,and"forits onjugate. TheLu assequen e

asso iatedwithK istheinteger sequen e

X

K

=fTr

K =Q ("

n

)g 1

n=0

=f"

n

+"

n

g 1

n=0 :

For odd n the sign of x

n

depends on the hoi e of the sign of a. This is

irrelevant forthe divisibilityproperties we will be on erned with, but for

uniquenesssake we takex

1

=2a>0.

The Lu as sequen e X

K

satis es these ond orderlinear re urren e

x

n+2

=2ax

n+1 N

K =Q (")x

n

forn0. If we take for K the eld Q( p

5) generated bythe golden ratio,

we obtainthe very lassi alexample of the Lu as sequen e de ned by the

\Fibona i re ursion" x

n+2

= x

n+1 +x

n

with initial values x

0

= 2 and

x

1

=1.

In thisnote, we show that thesetof primenumbers pthat dividesome

term of the sequen e X

K

has a natural density Æ

K

and determine it for

ea hK. Morepre isely,we omputethedensityÆ +

K

oftheprimesthatsplit

ompletely in K and divide some term of X

K

and the density Æ

K

of the

primes that are inert in K and dividesome term of X

K

. The arguments

for both kindsof primesare somewhat di erent,and soare the asso iated

densities. It turns out that the determination of Æ

K

is the more diÆ ult

part, unless we are in the \easy ase" in whi h the norm N

K =Q

(") equals

1,when itistriviallydetermined. Clearly,one hasÆ

K

=Æ +

K +Æ

K .

The methodinthisnoteextendsto sequen esfTr

K =Q (

n

)g 1

n=0

=f n

+

n

g 1

n=0

, where isany algebrai integer ina quadrati eldK. Although

itisabit umbersometo expressthedensityasanexpli itrationalnumber

1991 Mathemati sSubje tClassi ation: Primary11R45;Se ondary11B39.

Keywordsandphrases: Lu assequen e,Chebotarevdensitytheorem.

(2)

intermsof ,thisyieldsaproofofwhatis alleda\main onje ture"in[5,

p.362℄. Formore details,we referto thetreatment of generalse ond order

\torsion sequen es"in[6℄.

Theorem. Let K =Q( p

d) and a= 1

2 Tr

K =Q

(")>0 be as above. Then

the natural densities Æ +

K and Æ

K

for the sets of prime divisors of the Lu as

sequen e asso iated with K exist. For N

K =Q

(") = 1 the densities are as

follows.

d=2 d>2

Æ +

K

11=24 5=12

Æ

K

1=4 1=4

Æ

K

17=24 2=3

For N

K =Q

(")=1the densitiesdependinthe following wayon whethera+1

and a 1 arerational squares or not.

a 1= a+1= a16=

Æ +

K

5=24 5=24 1=6

Æ

K

1=8 5=24 1=6

Æ

K

1=3 5=12 1=3

ThemainingredientoftheproofistheChebotarevdensitytheorem,and

the basi idea of the method goes ba k to Hasse [2℄. Lagarias [3℄ was the

rst to usethisideaina quadrati setting,forthe lassi alLu as sequen e

mentionedabove, whi h fallsin the ategory N

K =Q

(")= 1. A generaliza-

tiontootherinstan esofunitsofnorm 1isgivenin[4℄. Fortheeasierand

well-studied ase of redu ible se ond order re urren es fr n

+s n

g 1

n=0 with

r;s2Z,orforgeneralizationstohigherorder linearre urren es,thereader

an onsult[1℄.

2. Proof of the Theorem. Let K =Q( p

d) and "= a+b p

d be as

before,andwriteOfortheringofintegersofK. Ifpisaprimethatisunram-

i edinK =Q, thenthekernelofthenormmap

p

=ker[N :(O=pO)



!F



p

isa y li groupof order p d

p



. We set

(2:1) q=q

K

="="=



"

2

ifN

K =Q

(")= 1,

"

2

ifN

K =Q

(")=1.

Letp-2dbea primenumber. Lookingat theexpli itform of thenth term

x

n

= "

n

+"

n

of X

K

, we nd that p divides x

n

if and only if we have

q n

= 1 2 (O=pO)



. As q lies in the y li subgroup 

p

 (O=pO)



and 1 is the unique element of order 2 in that group, we nd the basi

hara terization

pdividessome term ofX ,theorder of q2(O=pO)



iseven.

(3)

The key idea in determining the densities Æ +

K and Æ

K

is that one an

des ribe the parity of the order of q 2 (O=pO)



in terms of the splitting

behavior of p in some in nite algebrai extension of Q. We start with the

easier aseof therationalprimesthatsplit ompletelyinK.

Split ase. Let S +

be the set of odd primes p that split ompletely in

K,and D +

S +

theset ofprimesinS +

that dividesometerm ofX

K .

For k 2 Z

1

, we let S +

k

 S +

be the set of primes p 2 S +

for whi h

p 1 has exa tly k = ord

2

(p 1) fa tors 2. The set S +

k

onsists of the

primes that split ompletely in the eld K(

2

k) obtained by adjoining to

K aprimitive2 k

th root ofunity, butnotinthe eld K(

2

k +1) obtainedby

adjoiningtoK aprimitive2 k+1

throotofunity. BytheChebotarevdensity

theorem, the set S +

k

has a natural density inside the set of all primes. It

equalsÆ(S +

k

)=[K(

2 k):Q℄

1

[K(

2

k +1):Q℄ 1

. Clearly,thesumofthese

densities forallk 1 is[K :Q℄ 1

=1=2=Æ(S +

).

Forp2S +

k

,thegroup(O=pO)



isaprodu toftwo y li groupsoforder

p 1, and an element has odd order in (O=pO)



if and onlyif it is a 2 k

th

powerin (O=pO)



. As q 2(O=pO)



is a 2 k

th power ifand onlyif p splits

ompletely inthe eldK(

2 k;

2 k p

q),we on ludethat a prime p2S +

k does

not divideatermofX

K

ifandonlyifitsplits ompletelyinK(

2 k;

2 k p

q),but

notinK(

2 k +1;

2 k p

q). BytheChebotarevdensitytheorem,thesubsetofsu h

primesinS +

k

hasnaturaldensity[K(

2 k;

2 k p

q):Q℄ 1

[K(

2 k +1;

2 k p

q):Q℄ 1

.

The omplement D +

k

= D +

\S +

k

of this set in S +

k

has a density as well,

and we nd that both D +

= S

k1 D

+

k

and its omplement S +

nD +

=

S

k1 (S

+

k nD

+

k )inS

+

are ountabledisjointunionsofsets ofprimeshaving

a natural density. It follows that D +

has lower density P

k1 Æ(D

+

k ), and

that S +

nD +

has lower density P

k1 Æ(S

+

k nD

+

k

). These lower densities

add up to Æ(S +

), sothey areinfa t densities. We on lude thatD +

hasa

naturaldensityÆ +

K

whi hsatis es

(2:2)

1

2 Æ

+

K

= X

k1



1

[K(

2 k;

2 k p

q):Q℄

1

[K(

2 k +1;

2 k p

q):Q℄



:

Equation (2.2) redu es the omputation of Æ +

K

to a omputation of eld

degrees in the in nite extension K(

2 1

; 2

1 p

q) of Q. To ease notation, we

write

F

k

=K(

2 k +1;

2 k p

q):

Then thekth termof the right handsideof (2.2) equals [F

k :Q℄

1

if

2 k +1

generates a quadrati extensionof K(

2 k;

2 k p

q),and 0 otherwise.

Suppose rst that we have N

K =Q

(") = 1, and onsequently q = "

2

in (2.1). Then q is a square in K(

4

), and also in the eld M = K(

2 1

)

(4)

powerinM,sin eM is abelianoverQ and M( 4

q)=M( ")hasa quarti

sub eldK(

p

")thatisnotnormaloverQ. ByKummertheory,itfollowsthat

2 k p

q generates a y li extension of degree 2 k 1

of K(

2

k) forevery k  2.

Our normalityargument shows that this extensionis linearlydisjoint over

K(

2

k) from K(

2 k +1).

Fork =1, we have a quadrati extension K(

p

q) =K(

4

), whi h oin-

ides with the extension generated by 

2

k +1 = 

4

. This shows that in the

ase ofnorm 1,thetermfork =1 in(2.2) vanishes.

If K is not the real quadrati sub eld Q( p

2) of Q( 

2 1

), then 

2 k +1

generates a quadrati extension ofK(

2

k) forall k 2, and F

k

has degree

22 k

2 k 1

= 4 k

for these k. We nd1=2 Æ +

K

= P

k2 4

k

= 1=12 and

Æ +

K

=5=12.

For K = Q(

p

2 ) the degree of F

k

is only 2 k

2 k 1

= 2 2k 1

for k  3.

Moreover, the term for k = 2 in (2.2) vanishes sin e K(

4

) = Q(

8 ) now

ontains 

2

k +1 = 

8

. We nd 1=2 Æ +

K

= P

k3 2

1 2k

= 1=24 and Æ +

K

=

11=24.

The diagrams below indi atethe eld degrees in the two situations for

k 2and k 3,respe tively.

F

k

K(

2

k +1) K(

2 k;

2 k p

q)

K(

2 k)

K(

4 )=K(

p

q)

K6=Q(

p

2) 2 G

G

G

G

G

G

G

C

C

C

C

C

C z

z z

z z

z

2 k 1

x x

x x

x x

x

2 k 2

2

F

k

K(

2

k +1) K(

2 k;

2 k p

q)

K(

2 k)

K(

8 )=K(

p

q)

K=Q(

p

2 ) 2 G

G

G

G

G

G

G

C

C

C

C

C

C z

z z

z z

z

2 k 1

x x

x x

x x

x

2 k 3

2

Suppose next that we have N

K =Q

(") = 1, and so in parti ular K 6=

Q( p

2). Theanalysisissimilartotheprevious ase,butwenowhaveq="

2

,

soq is asquare inK. Asthe eldK(

4 p

" )isnon-normal ofdegree 8,wesee

thatq ="

2

isa square inM =K(

2 1),

butnotan eighth power. We have

two ases.

Suppose q is not a fourth power in M. Then 2

k p

q generates a y li

extension of degree 2 k 1

of K(

2

k) for every k  1, and this extension is

linearly disjoint from the extension of K(

2

k) generated by 

2

k +1. This is

p

(5)

now also have a non-zero term for k = 1 in (2.2). We nd 1=2 Æ +

K

=

P

k1 4

k

=1=3 and Æ +

K

=1=6.

Supposethatq isafourthpowerinM. ThenK(

p

") isasub eldofM.

BesidesK,thequadrati sub eldsofK(

p

")arethetwo eldsQ( p

"1=

p

"),

andone of thosetwo is ontainedinQ(

2 1

). FromN

K =Q

(")=1wededu e

(2:3) (

p

"1=

p

" ) 2

=Tr

K =Q

(")2=2(a1);

so this \ex eptional ase" o urs exa tly when one of the elements a1

is a rational square. The eldsK(

4

; 4 p

q) =K(

4

; p

") and K(

8

) oin ide

here, and 2

k p

q generates, forall k 3,a y li extension of degree 2 k 2

of

K(

2

k) that is linearlydisjoint over K(

2

k) from K(

2

k +1). As inthe ase

K =Q( p

2)above,thedegreeofF

k

isonly2 k

2 k 1

=2 2k 1

fork 3. The

term fork =2 vanishes, butfor k =1 we do have a ontribution 1=4. We

nd1=2 Æ +

K

=1=4+ P

k3 2

1 2k

=7=24 andÆ +

K

=5=24 ifeither a+1 or

a 1is asquare. This shows thatthevaluesof Æ +

K

areasasserted.

Inert ase. Letpbea primethatisinertinK =Q. ThenO=pO isa eld

of p 2

elements, and the norm map N : O=pO ! F

p

raises all elements to

thepowerp+1.

Suppose rst that we are in the ase N

K =Q

(") = 1. Then we have

q = "

2

in (2.1) and "

p+1

= 1 2 (O=pO)



. For p  1mod4 we obtain

q (p+1)=2

= "

p+1

= 1 2 (O=pO)



, whi h shows that the order of q in

(O=pO)



is odd. For p  3mod4 we obtain q (p+1)=2

= "

p+1

= 1 2

(O=pO)



,whi hshowsthattheorder ofqin(O=pO)



iseven. We ndthat

Æ

K

is the density of the primesp 3mod4 that are inertin K =Q, hen e

Æ

K

=1=4.

From nowon we supposeN

K =Q

(")=1. Inparti ular, thisimpliesK 6=

Q( p

2). We have q ="

2

,and onsequently q (p+1)=2

="

p+1

=1 2(O=pO)



forallinertoddprimesp. Thisshowsthatforall inertprimesp1mod4,

the order of q is again odd and p does not dividea term of X

K

. For the

inertprimes p3mod4 we use an approa h thatis similarto thatin the

split ase.

Let S bethesetofoddprimespthatareinertinK =Q, andD S

the set of primes in S that divide some term of X

K

. For k 2 Z

2 , we

let S

k

 S be the set of primes p 2 S for whi h p+1 has exa tly

k =ord

2

(p+1)fa tors2. Thisis asetwitha naturaldensity,and we want

to ompute thedensityof thesubset D

k

=D \S

k

by hara terizing the

primes p 2 D

k

in terms of splitting onditions on p in some niteGalois

extensionF

k

=Q.

AprimepisinS

k

ifandonlyifitsFrobeniussubstitutionintheabelian

groupGal (K( k +1)=Q) istheuniqueelement'thatisnon-trivialonKand

(6)

a ts on the 2 k+1

th roots of unity as '(

2

k +1) =  1+2

2 k +1

. As K(

2

k +1) has

degree 2 k+1

over Q, this shows that S

k

has natural density 2 k 1

for all

k. Welet B

k

K(

2

k +1)bethesub eld orrespondingto thesubgrouph'i

of Gal(K(

2 k +1

)=Q). Note that K(

2 k +1

)= B

k

(") is a quadrati extension

of B

k .

IfpisinS

k

,theorderp 2

1=(p 1)(p+1)ofthe y li group(O=pO)



hasexa tlyk+13fa tors 2,andq ="

2

2(O=pO)



hasodd orderifand

onlyif"

2

isa2 k+1

thpowerin(O=pO)



. As 1isa2 k

thpowerin(O=pO)



,

we on lude that p 2 S

k

does not divideany term of X

K

if and only if "

is a2 k

th power in(O=pO)



. Thisleadsto a hara terization of theprimes

p2S

k

outsideD intermsof theirsplittingbehavior inthe eld

F

k

=K(

2 k +1;

2 k p

")=B

k (

2 k p

");

theyaretheprimespthatsplit ompletelyinB

k

andhaveextensionsinB

k

that are inert in B

k (")=B

k

and split ompletely in F

k

=B

k

("). This means

thattheFrobeniussymbolofpinthenon-abeliangroupGal(F

k

=Q),whi his

onlydeterminedupto onjuga y,isanelementoforder2inthenormalsub-

groupGal(F

k

=B

k

)thatdoesnotlieinthenormalsubgroupGal(F

k

=B

k (")).

If n

k

denotes the number of su h elements in Gal(F

k

=Q), the Chebotarev

density theoremyieldsan inertanalogueof (2.2):

(2:4)

1

2 Æ

K

= 1

4 +

X

k2 n

k

[F

k :Q℄

= 1

4 +

X

k2 2

k n

k

[F

k :B

k

℄ :

Thistimewehavetodomorethanadegree omputation,sin ewealsoneed

to know thestru tureof thegroupGal(F

k

=B

k ).

Suppose rstthatneithera 1nora+1isasquare. Thentheextensions

K(

p

")andK(

2 1)

arelinearlydisjointoverK,andF

k

isa y li extension

of degree 2 k

of B

k

(") = K(

2

k +1) generated by 2

k p

". We an extend the

generator ' of Gal(B

k (")=B

k

) to an element '



2 Gal(F

k

=B

k

) of order 2

bysetting '



( 2

k p

")=1=

2 k p

". As'



a tsbyinversiononbothh"iandh

2 ki,

theGaloisequivarian eof theKummerpairing

Gal(F

k

=B

k (

2

k +1))h"i!h

2 ki

shows that'



ommutes withall elementsinGal(F

k

=B

k

(")). We nd

Gal(F

k

=B

k )



= Gal(F

k

=B

k

("))h'



i



= Z=2

k

ZZ=2Z:

As there are exa tly two elements of order 2 in Gal(F

k

=B

k

) of the form

(;'



), this yields n

k

= 2 in (2.4) for all k  2. We nd 1=2 Æ

K

=

1=4+ P

2 k

22 k 1

=1=3 andÆ =1=6 .

(7)

B

k (

2 k p

")=F

k

B

k (

p

")

B

k (

2 k p

"+1=

2 k p

")

K(

2 k +1

)=B

k (")

B

k (

p

"

1

p

"

) B

k (

p

"+ 1

p

"

)

B

k u

u u

u u

u u

u

h'



i K

K

K

K

K

K

K

K

~

~

~

~

~

~

2 H

H

H

H

H

H

H 2

k 1

s s

s s

s s

s s

h'i A

A

A

A

A

A

2

u u

u u

u u

u u

Suppose nally thatweareintheex eptional asewhereeithera+1 or

a 1 isa square. ThentheextensionF

k

=B

k

inthediagramabove ollapses

to anextension ofdegree 2 k

forall k2. Fork3,we have p

22B

k and

(2.3) showsthatB

k

ontains p

"+1=

p

"ifa+1 isasquareand p

" 1=

p

"

ifa 1is asquare. In the rst asewehave an isomorphism

Gal(F

k

=B

k )



= Gal(B

k (

p

")=B

k )h'



i



= Z=2

k 1

ZZ=2Z

and n

k

= 2 as before. In the other ase, F

k

=B

k

is a y li extension of

degree 2 k

with quadrati subextensionB

k

(") =B

k (

p

"). Any extension of

'2Gal(B

k (")=B

k ) to F

k

is then a generator of Gal(F

k

=B

k

), and we have

n

k

=0.

Fork =2,anyoftheelements p

2and p

"1=

p

"generatesthequadrati

extension B

2 (

p

" )=B

2 (

p

2) of B

2

. The extension B

2

B

2 (

4 p

" )=F

2 is of

degree4andhasaquadrati subextensiongeneratedby p

"= p

(a+1)=2+

p

(a 1)=2. Ifa+1isasquare,then p

"hasnorm 1inB

k andF

2

=B

2 isa

y li extension. If a 1isa square,then p

"hasnorm 1inB

k andF

2

=B

2

isa V

4

-extension. The orrespondingvaluesofn

2 aren

2

=0 and n

2

=2.

Fora+1asquarewe nd1=2 Æ

K

=1=4+0+ P

k3 2

k

22 k

=7=24

andÆ

K

=5=24 . Fora 1asquarewe nda nitesum1=2 Æ

K

=1=4+1=8

and Æ

K

=1=8. This nishes theproof ofthe theorem.

Referen es

[1℄ C.Ballot,Densityofprimedivisorsoflinearre urren es,Mem.Amer.Math.So .

551(1995).

[2℄ H.Hasse,



UberdieDi htederPrimzahlenp,f urdieeinevorgegebene ganzrationale

Zahla6=0vongeraderbzw.ungerader Ordnungmodpist,Math.Ann.166(1966),

19{23.

[3℄ J. C. Lagarias, The set of primes dividing the Lu as numbers has density 2=3,

Pa i J.Math.118(1985),449{461;Errata:ibid.162(1994),393{397.

[4℄ P.Moree,On theprime density ofLu assequen es, J.Theor.NombresBordeaux

(8)

[5℄ P.Ribenboim,TheNewBookofPrimeNumberRe ords,Springer,NewYork,1995.

[6℄ P.Stevenhagen,Primedensitiesforse ondordertorsion sequen es,preprint.

Max-Plan k-InstitutfurMathematik Fa ulteitWINS

Gottfried-Claren-Str.26 UniversiteitvanAmsterdam

53225Bonn,Germany PlantageMuidergra ht24

E-mail:moreempim.bonn.mpg.de 1018TVAmsterdam,TheNetherlands

E-mail:pshwins.uva.nl

Re eivedon7.4.1997

andinrevisedformon24.7.1997 (3165)

Cytaty

Powiązane dokumenty

[r]

1991 Mathemati s Subje t Classi ation: Primary 11F20, 11F11; Se ondary 11B68.. Key words and phrases: period polynomial, usp form, modular form,

tipli ative re urrent sequen es shrinks S to the lassi al system. Then, similar to the proof of

By the reasoning in the proofs of Theo- rems 5 and 6, the other sets in the theorem are finite unions of contractions of T.. By reasoning similar to that in Theorem 3, the sets can

Dla tego produktu obowiązkowe jest zawarcie umowy ubezpieczenia AC oraz Bezpieczny Kredyt lub GAP a także zawarcie umowy odkupu przez dealera.. Przedstawione parametry nie

Warto przy tym wskazać, że OECD rekomenduje, aby w nowych umowach o unikaniu podwójnego opodatkowania zawieranych po 2005 roku państwa strony uregulowały kwestię

W tym kontekście należy dążyć do zapewnienia ochrony interesów konsumenta, z jednoczesnym eliminowaniem powstających zagrożeń, czego wyrazem jest dyrektywa

Ceny mogą ulec zmianom bez uprzedniego zawiadomienia w przypadku zmian cen przez producenta, zmian podatkowych, przepisów celnych lub innych przyczyn.. Wyposażenie seryjne i