• Nie Znaleziono Wyników

Bergman Kernel in the Annulus

N/A
N/A
Protected

Academic year: 2021

Share "Bergman Kernel in the Annulus"

Copied!
14
0
0

Pełen tekst

(1)

Bergman Kernel in the Annulus

Zbigniew Błocki

(Jagiellonian University, Kraków, Poland) http://gamma.im.uj.edu.pl/ eblocki

Tambara Workshop

on the Bergman Kernel and Related Topics

October 24-28, 2011

(2)

Formulas for the Bergman kernel in P = {r < |z| < 1}

I. Since (z j ) j∈Z is an orthogonal system in P , we have K P (z, w) = h(λ)

πλ , where λ = z ¯ w and

h(λ) = 1

2 log(1/r) + X

j∈Z

j 1 − r 2j . Zeros of K

P

: If r < e −4 then h has a zero in S := {|λ| = r} ∪ {λ ∈ R : r 2 < |λ| < 1}

(Skwarczyński, 1969).

Proof: h(λ) ∈ R for λ ∈ S, h > 0 in S ∩ R + and

h < 0 in S ∩ R − near −1.

(3)

II. Weierstrass elliptic function P:

ω 1 = − log r, ω 2 = πi, Λ := {2jω 1 +2kω 2 : (j, k) ∈ Z 2 } P(z) := 1

z 2 + X

ω∈Λ

 1

(z − ω) 2 − 1 ω 2

 .

h(λ) = P(log λ) + η 1 ω 1

, (Zarankiewicz, 1934) where η 1 = ζ(ω 1 ) and the Weierstrass elliptic function ζ is determined by

ζ 0 = −P, ζ(z) = 1

z + O(|z|).

Zeros of K

P

: h has two zeros in {r 2 < |λ| < 1} (for every r) (Rosenthal, 1969).

Proof: P attains every value of ¯ C twice in

{2tω 1 + 2sω 2 : s, t ∈ [0, 1)}.

(4)

III. For any bounded Ω ⊂ C K = 2

π

2 G

∂z∂ ¯ w , (Schiffer), where G Ω (·, w) is the (negative) Green function.

If p : ∆ → Ω is a covering then for any λ 0 ∈ p −1 (w) G (z, w) = X

µ∈p

−1

(z)

G 0 , µ) (Myrberg, 1933).

If U is a neighb. of w and V j are s.th. p −1 (U ) = S V j and p| V

j

→ U are biholomorphic, then for ϕ j := (p| V

j

) −1

G Ω (z, w) = X

j

log

ϕ j (z) − ϕ 0 (w) 1 − ϕ j (z)ϕ 0 (w)

.

K Ω (z, w) = π X

j

ϕ 0 j (z)ϕ 0 0 (w)

(1 − ϕ j (z)ϕ 0 (w)) 2 .

(5)

For Ω = P

p(ζ) = exp  log r πi Log

 i 1 + ζ

1 − ζ



,

ϕ j (z) = e πi(Log z+2jπi)/ log r − i

e πi(Log z+2jπi)/ log r + i , j ∈ Z.

Therefore

h(λ) = − π 2 log 2 r

X

j∈Z

f j (λ) (1 − f j (λ)) 2 , where

f j (z) = exp πi(Log z + 2jπi)

log r .

(6)

We will get

h(−r) = π 2 log 2 r

X

j∈Z

q 2j+1

(1 + q 2j+1 ) 2 > 0, h(−r 2 ) = h(−1) = − π 2

log 2 r X

j∈Z

q 2j+1

(1 − q 2j+1 ) 2 < 0 where q = e π

2

/ log r < 1.

Theorem. h has exactly two zeros in {r 2 < |λ| < 1}: one

on the interval (−1, −r) and one on (−r, −r 2 ).

(7)

Suita Conjecture (1972): For Ω ⊂⊂ C we have e 2ψ(z) ≤ πK (z, z),

where ψ(w) := lim

z→w (G (z, w) − log |z − w|) (Robin f.) Another formulation: since

K (z, z) = 1

π ψ z ¯ z (Suita, 1972), we have

Suita Conjecture ⇔ e ≤ ψ z ¯ z ⇔ K e

ψ

|dz| ≤ −1.

Slightly more general statement would be:

K e

ψ

|dz| satisfies the maximum principle.

Ohsawa, 1995: e ≤ 750ψ z ¯ z B., 2007: e ≤ 2ψ z ¯ z

Guan-Zhou-Zhu, 2011: e ≤ 1.954 . . . ψ z ¯ z

(8)

Suita, 1972: e < ψ z ¯ z for Ω = P Sketch of proof:

One can show that ψ(z) = γ(t), where t = −2 log |z|, γ(t) = c

2 t 2 + t

2 − log σ(t),

c = η 1 /ω 1 , and the Weierstrass elliptic function σ is determined by σ 0 /σ = ζ, σ(z) = z + O(|z| 2 ). Then

ψ z ¯ z (z) = e t γ 00 (t) = e t (P(t) + c).

Set

F := log(−K e

ψ

|dz| ) = log ψ z ¯ z e

= log(P + c) + 2 log σ − ct 2 .

Have to show that F > 0 on (0, 2ω 1 ).

(9)

F = log(P + c) + 2 log σ − ct 2 .

We have F (2ω 1 − t) = F (t), F (0) = F 0 (0) = F 01 ) = 0 and F (ω 1 ) > 0. Key: differential equation for P

(P 0 ) 2 = 4P 3 − g 2 P − g 3 , where

g 2 = 60 X

ω∈Λ

1

ω 4 , g 3 = 140 X

ω∈Λ

1 ω 6 . Therefore

F 00 = b(P + c) − a (P + c) 2 , where

a = −4c 3 + cg 2 − g 3 > 0, b = g 2

2 − 6c 2 > 0,

and F 00 vanishes exactly once in (0, ω 1 ) and thus F > 0.

(10)

2 4 6 8 10

-7 -6 -5 -4 -3 -2 -1

K e

ψ

|dz| for r = e −5

(11)

Curvature of the “Bergman” metric K

P

(z, z)|dz|

2

R 1 = 2K ψ

z ¯z

|dz|

2

= − (log ψ z ¯ z ) z ¯ z

ψ z ¯ z

= − Q ◦ P (P + c) 3 , where

Q(x) = 2(x + c) 3 + b(x + c) − a.

Therefore

R 0 1 = 2b(P + c) − 3a (P + c) 4 P 0 .

5 10 15 20

-3.5 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5

r = e −10

(12)

Curvature of the Bergman metric (log K

P

(z, z))

z ¯z

|dz|

2

R 2 := 2 K (log ψ

z ¯z

)

z ¯z

|dz|

2

= − (log(log ψ z ¯ z ) z ¯ z ) z ¯ z (log ψ z ¯ z ) z ¯ z Since ψ z ¯ z = (P + c)e t , we can compute that

R 2 = 2 − (P + c) 3 S ◦ P (Q ◦ P) 3 , where

S(y − c) = 24y 6 + 60by 4 − 96(a + bc)y 3 + 6(36ac − b 2 )y 2 + 24aby − 12a 2 + b 3 + 12abc.

Then

R 0 2 = (P + c) 3 W ◦ P

(Q ◦ P) 4 P 0 ,

where W is a polynomial of degree 7.

(13)

W (y − c) = − 36a 3 + 3ab 3 + 36a 2 bc + 96a 2 by − 54ab 2 y 2 + 1080a 2 cy 2 − 720a 2 y 3 + 24b 3 y 3 − 864abcy 3 + 948aby 4 + 288b 2 cy 4 − 288b 2 y 5 + 1728acy 5

− 360ay 6 − 576bcy 6 + 96by 7 Proposition. W (P(ω 1 )) > 0

Conjecture. W (P(ω 1 /2)) < 0

(14)

R 0 2 = (P + c) 3 W ◦ P (Q ◦ P) 4 P 0 ,

1 2 3 4 5

-6 -5 -4 -3 -2 -1

r = e −2.5

Cytaty

Powiązane dokumenty

A lower bound of the Bergman kernel in terms of the volume of the sublevel sets of the Green function follows from an estimate of Herbort (Proposition 3.6 in [10].. with f

The novelty of our approach might be that the considered objects (especially the multiplicative structure of the algebra A n ) are obtained in a natural way, starting from a

We will use the kernel for the weighted complex Laplacian and the main tool will be a bound for this kernel in terms of the Green function due to Berndtsson [B1].. Our method

Bergman kernel, Bergman metric, pluricomplex Green function, hyperconvex domains.. Partially supported by KBN Grant #2

Theorem (Guan-Zhou, 2013) For any Riemann surface M which is not biholomorphic to a disc with a polar subset removed and which admits the Green function one has strict inequality in

Proof 2 (Lempert) By Berndtsson’s result on log-(pluri)subharmonicity of the Bergman kernel for sections of a pseudoconvex domain it follows that log K {G w &lt;t} (w ) is convex for

Chen (2011) proved that the Ohsawa-Takegoshi theorem (without optimal constant) follows form H¨

Chen (2011) proved that the Ohsawa-Takegoshi theorem (without optimal constant) follows form H¨