• Nie Znaleziono Wyników

On the Eneström-Kakeya Theorem

N/A
N/A
Protected

Academic year: 2021

Share "On the Eneström-Kakeya Theorem"

Copied!
6
0
0

Pełen tekst

(1)

ANNALES

UNIVE RSI TATIS MAEIAE C U RI E- S K L OD O WS K A LUBLIN-POLONIA

VOL. XXVII, 2 SECTIO A 1973

Department of Mathematics, University of Montreal, Montreal, Canada Indian Institute of Technology, Now Delhi — 29, India

N.K. GOVIL AND V. K. JAIN On the Enestrom-Kakeya Theorem

0 twierdzeniu Enestroma— Kakeya О теореме Энестрёма-Какэия

The following result is well known in the theory of the distribution of zeros of polynomials.

»1

Theorem A. (Enestrom-Kakeya). If p(z) = V a*«* yt 0 is a polyno-

k=0

mial of degree n such that

(I) «» > «n-l > «n-2 > • • • > «1 > «0 > 0 ,

then p(z) does not vanish in |«| > 1.

There already exist in literature ([1], [2, Theorem 1, 2, 3, 4], [3, Theo­

rem 3], [4]) some extensions of Enestrom-Kakeya theorem. Govil and Rahman [2, Theorem 2] proved the following generalization of Ene­

strom-Kakeya theorem.

n

Theorem B. Let p(z) = £ akzk 0 be a polynomial of degree n with

k=Q

complex coefficients such that

|argafc — p\ < a<Tt/2, k = 0,1,...,»

for some real f}, and

(2) |a„l> •••> l«ol,

then p(z) has allitszeros on or inside the circle

(3)

. w—1 2sina \r

|a| = cosa+ sin «4---- -—— У |«fc|.

«„ —J I'or a — f} == o this reduces to Enestrom-Kakeyatheorem.

Herewe prove the followingrefinement of Theorem B.

(2)

14 N. K. Govil, V. K. Jain

Theorem 1. Let p(z) = £ a,.zk ^0 tie polynomial of degree n with k=0

complex coefficients such that

(4) larger—/3] < a< »/2, k = 0,1,...,»

for some real /3, and

(5) l®n-xl l«ol»

then p(z) has all its zeros in the ring shaped region given by

1 - < |«| < B

(6) 2JK|a,J

lfto! — (cos a + sin a)

(Î) It cos«+ sina + 2 sina I «»I

E

n—1 W-

fc=0

)

The example p(z) — l + z + z2 + ... +zn shows that the result is best possible.

We need the following lemma.

Lemma. If |argafc-/3| < a<ji/2; |afc| > , then

(8) |afc-a*_il< {(l«fcl — l«*_1l)cosaH-(|q*| + |afc_,|)sina}.

The abovelemmais due to Goviland Eahman [2, Inequality 6].

Proof of Theorem 1. We may plainly assume /3=0.

In view of Theorem B, it is sufficient to prove that p(z) =£ 0 if

(9) |«| <Rn

[2.R — (cosa + sina)|

L l«o! J

Consider

n

g(z) = (l-z)p(z) =a0+

If-1

= «0+/(«), say- Let

Jf(r) = max|/(z)|.

I»l-r (10)

(3)

On the Enestr6m-Kakeya theorem 15 Then M(R)^a0 where R is defined in (7).

Clearly

/.- 1 and K 1. Hence

»

M(R) = max|/(2)| < |«n|72"+1+

V

\ak-ak_1\Rk

W-R k=,i

<

n

< ki Rn+i

k=l

n n

+ (l«*l - l«A-il)cosa+J^(|a*| +la^Dsina],

*=l k=l

by the lemma

n—1

= |a„|En+1 + E"[|a„| (cos a + sin a) +2 \ |afc|sina— |a0|(cosa + sina)j

k=0

— |aJ.R"+1 +|an| 72'Tb—(cosa +sina)l

L |a»l J

(11) = |a„| Rn [222—(cosa+ sina)l.

L l«„l J

Since/(0) = 0, hence for |«| < Rwe have by Schwarz’s lemma,

(12) !/(«)! < M(R)

R

Combining (10), (11) and (12) we get for |z| < R,

|ff(z)| > |«ol —l»l-K"“1[2-K|»„! -|a„|(cosa +sina)] > 0 if

1

1*1**---r—kTi---

1

2Jn_1 272 — - (cos a + sin a) .

L

l«ol

J

From this the theorem follows.

(4)

16 N. K. Govil, V. K. Jain

We may apply Theorem 1 to znp -j to obtain the following n

Corollary 1. Let p(z) = £ akzk be a polynomial of degree n with complex coefficients such that

\»rgak-P\ < a^n/2, k = 0, 1, n for some real ft, and

!«ol > l«il > l«al > > l«»l thenp(z) has all its zeros in the ring

JR

—- |z| < 22J 1 f 27?j 1----(cosa+sina) j

Bi L Kl J

where is given by

(13) 7?i = cos a+ sin a 2 sina

A = 1

We shall briefly indicate how we can prove

n

Theorem 2.Let p(z) = £ak!? 4- 0 be a polynomial of degree n. If Rea*

k=0

= ak, Iin«fc = ftk for k — 0, 1, n and

aH >n-1 > a„-2 > • • • > «0 > 0, a„ > 0 then p(z) has all its zeros in the ring

(14) where

R'i №(2an + |ft,|) — (a0+ |0O| + |/3„|)] • < l»K 7?!

jfc=0

(15) 7?!=1+— V|^|.

a„ 4^

Proof of Theorem 2.

Consider

?(«) =(l-2)p(2) =a0 + ^'(a*-aft-i)«fc-an»“+1

= «0+/*(«), say-

*-i

(5)

On the Enestrôm-Kakeya theorem 17 Obviously 22X>1, hence on |s| = Bx,

n

l/*(«)| |a„|E"+1+

n

< \an\B^+i + R^ Y \ak~ak-i\

fc«l

n n

A=1 A- = l

n

< ( l«„l+\PM+1 + -«o+2 V|/?,| -|/J#| _ |/J„|

A= 0

= ^[2anB1+ |i8ft|221-(ao+ |^0|)-|^„|]

Therefore

(16) M(RX) = max)/*(»)|<22’1,[2a„E1 + (B1-l)|/?n|-(a0+^ol)].

Since /*(0) =0 hence by Schwarz’s lemma

(17) |/*(s)| < < 22"-1|z| [2anR, + (22x-1) |/?J - («„+ |/?0|)]

Ri

or |»| < 22x. Consequently for |«1 <Rx, lff(z)l> l«ol~l/*(*)l

> |«ol - Itf-'\*\ [2«,,^! + (R1 -1) \pn\ - («0 + IOL

by (17) if

(18) |3l <---___________________

' Er1[2a„^1+(2i1-1) |/?n| -(a0+|/?ol)]'

Combining(18) with[2, Theorem4] the conclusion follows immediately.

In particular, when the coefficients are non-negative, monotonic non-decreasing, we get

n

Theorem 3. Ifp(z) = ff aksf 0 is a polynomial of degree nsuchthat k=0

On ®/l—1 ®0

6 ,

thenp(z) has all its zeros in the ring-shaped region given by

«o (2a„—«„)

(19) < |«| < 1.

2 —Annales

(6)

18 N. К. Govil, V. К. Jain

This is clearly a refinement of Enestrom-Kakeya theorem.

The example p(z) £n+ zn_1 + ...+«+l shows that the above result is the best possible.

We are extremely grateful to Prof. Q.I. Rahman for his valuable suggestions.

REFERENCES

[1] Cargo, G. T.,and Shisha, O.,Zerosof PolynomialsandFractional Order Differences of their Coefficients,Journ. Math. Anal. Appl., 7 (1963), 176-182.

[2] Govil, N. K., and Rahman, Q. I., On the Enestrom-Kakeya Theorem, Tolioku Math. Jour., 20 (1968), 126-136.

[3] Joyal, A., Lahelle, G. and Rahman, Q. I., On the Location ofZeros of Poly­

nomials, Canad. Math. Bull., 10 (1967), 53-63.

[4] Krislinaiah, P.V., On Kakeya’s Theorem, Journ. London Math. Soc., 30(1965), 314-319.

STRESZCZENIE

Jeśli p(z) = a0+ a1z +...+anzn jest wielomianem o współczy- nikach rzeczywistych i dodatnich, tworzących ciąg rosnący, to jak wia­

domo, wszystkie zera p(z) leżą w kole jednostkowym. Ten klasyczny re­ zultatEnestróma iKakeyi został uogólniony przez autorów którzy wyzna­ czają pierścień zawierający wszystkie zera wielomianu p(z) ze współczyn­

nikami zespolonymi ak w następujących przypadkach: (i) moduły ak tworzą ciąg rosnący a ponadto

|argafc — /}\ < а я/2, к = 0,1,...,»,

(ii) części rzeczywiste współczynników ak tworzą ciąg rosnący.

РЕЗЮМЕ

Если p(z) = a0+ «i««"является полином с положительным и действительным коэффициентами, образующими возрастающую пос­

ледовательность, то как известно, все нули p(z) лежат в единичном круге. Это классическое утверждение Энестрёма-Кекэия было обоб­

щено авторами, которые дают кольцо, внутри которого лежат все нули полинома p(z) с комплексными коэффициентами ак в следующих случаях:

(i) модуля а является возрастающей последовательностью; кроме того

larg«*— /9| < а< я/2, к =0,1,...,»,

(ii) действительные части коэффициентов ак, образующие возраста­

ющую прогрессию.

Cytaty

Powiązane dokumenty

We inductively describe an embedding of a complete ternary tree T h of height h into a hypercube Q of dimension at most d(1.6)he + 1 with load 1, dilation 2, node congestion 2 and

1 Presburger’s work was carried out as an “exercise” in a seminar at the University of Warsaw run by Alfred Tarski. His proof applies the method of elimination of quantifiers to

the moduli of the coefficients to be monotonically increasing and then by assuming the real parts of the coefficients to be monotonically increasing, and obtained

In this paper, we generalize the Friendship Theorem to the case that in a group of at least three people, if every two friends have one or two common friends and every pair of

The proofs of both theorems are similar to the part of Cohen’s argument presented above as “Lemma 1 implies the Factorization Theorem”.. Indeed, Lemma

It is easy to see that the converse of Wilson’s Theorem also holds. Thus Wilson’s Theorem can be used to identify the primes. 21] and [12]) has conjectured that there are no

The author uses her strong Old Testament background (she is currently an Assistant Professor of OT at Ambrose University in Calgary, Canada) to build a conceptual network of kingship

Adaptation work on the Polish equivalent version is planned in three stages: (1) translation of the English version of MoCA 7.2 into Polish, (2) changes associated with the removal