• Nie Znaleziono Wyników

Sedimentary structures resulting from convection-like pattern of motion

N/A
N/A
Protected

Academic year: 2022

Share "Sedimentary structures resulting from convection-like pattern of motion"

Copied!
19
0
0

Pełen tekst

(1)

R O C Z N I K P O L S K I E G O T O W A R Z Y S T W A G E O L O G I C Z N E G O A N N A L E S D E L A i g O O l f i T S G E O L O G I Q U E D E P O L O G N E

T o m ( V o lu m e ) X X X V I — 1966 Z e s z y t ( F a s c i c u l e 1) K r a k ó w 1966

STAN ISŁAW DŻUŁYlŚriSKI

O STRUKTURACH SEDYMENTACYJNYCH ZWIĄZANYCH Z NIESTATECZNYM UWARSTWIENIEM GĘSTOŚCIOWYM

( 1 2 f i g . )

Sedimentary structures resulting from convection-like pattern of motion

,(12 Figs.) STRESZCZENIE

N iestateczne rozłożenie w arstw o różnej gęstości w płynach m a m iej­

sce wówczas, gdy w arstw a gęsta spoczywa n a m niej gęstej. Zakłócenie równow agi takiego uw arstw ienia prowadizi do przepływ ów w stępujących i zstępujących. Je śli różnice gęstości w yw ołane są różnicam i tem p eratu ­ ry, przepływ y takie nazyw am y konw ekcyjnym i. P rzepływ y konw ekcyj­

n e prow adzą do .rozdziału p ły n u na układy w irów kom órkow ych o p ra­

w idłowej wielobocznej ibudowie, często o zarysach sześciobocznych (B e- n a r d , 1911). Wzdłuż osi ow ych wielobocznyćh kom órek zachodzi ruch w stępujący albo zstępujący w zależności od teigo, czy lepkość nadległej i gęściejszej w arstw y jest większa, czy też m niejsza od lepkości w arstw y .podścielającej ( G r a h a m , 1934).

Jeżeli na tego rodzaju ru c h zostanie nałożony ruch poziomy, to za­

m iast w irów 'komórkowych pow staną w ydłużone ru rk i wirowe, przy czym dw ie sąsiadujące ru rk i będą się obracały w kierunkach przeciw ­ nych, a cząstki płynu będą zakreślały linie spiralne (prądy lu b przepły­

w y w tórne).

R uchy o om aw ianych wyżej w łasnościach w ystępują również w pły­

nach, układach rozproszonych i ośrodkach półpłynnych w w arunkach izoterm icznych, jeżeli w ośrodkach ty ch pow stało niestateczne uw arst­

w ienie gęstościowe ,z .powodów nie zw iązanych z różnicam i te m p eratu ry . Praw idłow y rozkład przepływ ów w tórnych, odpow iadający zupełnie ruchom konw ekcyjnym , pojaw ia się w prądach zawiesinowych o prze­

pływ ie uporządkow anym i s ł a b o rozwinliętej burzliw ości (przepływ y zbliżone do statecznych).

Z jaw iska tak ie m ożna badać w prostych doświadczeniach, w których rozcieńczona zawiesina ilasta zostaje wprowadzona do szklanego naczy­

nia w ypełnionego u dołu stężonym roztw orem solnym, n a którym spo­

czyw a w arstw a czystej wody. Zawiesina płynie wówczas w zdłuż pow ierz­

chni rozw arstw ienia i rozdziela się na podłużne sm ugi (fig. 5 A). G dy u sta je przepływ prądu zawiesinowego, owe sm ugi przeistaczają się w układy wielobocżne (fig. 5 B i C). Mogą one powstać ty lk o wówczas, gdy nad nim i znajduje się jeszcze nie rozdzielona .zawiesina. W om awia­

nym przypadku spełnione są w arunki niestatecznego uw arstw ienia, po­

(2)

nieważ zaw iesina ilasta je st nieco cięższa od roztw oru solnego i z wolna się weń zanurza. Owo zanurzanie połączone z ruchem poziomym wywo­

łuje przepływ w tórny w podłużnych rurkach, ten zaś układa zawiesinę w smugi rozdzielone pasam i stosunkowo czystego roztw oru. Poniew aż w danym przypadku w tórne p rąd y są słabe, cząstki iłu zgromadzone raz wzdłuż liniii prądów zstępujących nie podnoszą się z powrotem , pomi­

nąw szy najdrobniejszą zawiesinę, która może zataczać spiralę. Cząstki uszeregowane w sm ugi płyną razem prądem , a ruch ich zbliżony jest do ru ch u uw arstw ionego (laminarnego). Jeżeli w szystkie cząstki rozmiesz­

czone są w smugach, ich układ jest trw ały przy nie zm ienionych w aru n ­ kach przepływ u.

Bardzo podobny układ przepływ ów w tórnych m oże siię utw orzyć w prądach zawiesinowych płynących po dnie. Jeżeli zaś dno zaściela m iękki ił, to ta k i układ może zostać utrw alony pod postacią hieroglifów.

Istotnie, w śród ty c h ostatnich w ystępują odlew y grzbietów podłużnych lub ułożonych w sieci wieloboczne. Zostały one odtworzone doświadczal­

nie (fig. 10) i wiem y, iż owe grzbiety pow stają w m iejscu w stępujących prądów w tórnych. C harakter tych ostatnich, jak również daleko posu­

nięte podobieństw o w yw ołanych przez, n ie stru k tu r do stru k tu r konw ek­

cyjnych pozwala wnioskować, iż owe w tórne p rąd y spowodowane są i w tym przypadku niestatecznym uw arstw ieniem gęstościowym. Takie uw arstw ienie niestateczne pow staje w określonych w arunkach w w arst­

wie przydennej i u czoła prądu. Zachodzi to w następujący sposób:

1) W prądach o słabej ibuirzliwości ham ujące działanie tarcia o dno powo­

d u je w ydatny spadek prędkości w w arstw ie przydennej i w ypadanie z niej ziarn, k tó re powyżej, w obszarze szybszego przepływ u, pozostają w zawieszeniu. W 'ten sposób w pobliżu dna pow staje cienka w arstw a o zm niejszonej gęstości, nad k tó rą przepływ a cięższa zawiesina.. Opada­

n ie tej cięższej zawiesiny w dół połączone z. ruchem poziomym stw arza w arunki dla ruchu uporządkow anego w e w spom niane na wstępie rurki.

2) U w arstw ienie niestateczne tw orzy się również w następstw ie napływ u ciężkiej zawiesiny na dno zaścielone iłem o m ałej gęstości i lepkości.

3) Niestaltełczność w rozmieszczeniu gęstości pow staje w reszcie wzdłuż całej (powierzchni granicznej u czoła płynącego prądu zawiesinowego.

W ywołane niestatecznym uw arstw ieniem gęstościowym ruchy typu konw ekcyjnego d a ją początek niektórym stru k tu ro m na .powierzchni la- m inacji w ew nątrz ławic piaskowcowych. Należą tu podłużne i wielo- boczne grzbiety zw iązane z niektórym i piaskow cam i skorupow ym i oraz równoległe sm ugi w ysortow anego m ateriału o grubszym lub cięższym ziairnie. Do s tru k tu r w yw ołanych niestatecznym rozmieszczeniem gęstoś­

ci należą również ta k zw. hieroglify pierzaste, któ ry ch ścisły związek z om awianym i poprzedlnlio grzbietam i i w tórnym i przepływ am i w r u r ­ kach w irow ych o typie konw ekcyjnym został w ykazany dośw iadczalnie ( D ż u ł y ń s k i , W a l t o n , 1963, 1965).

Zjaw iska analogiczne do wyżej wym ienionych zachodzić mogą wśród złożonych, lecz jeszcze n ie stw ardniałych osadów. N iestateczne uw arst­

w ienie gęstośćiowe jest sam o w sobie zjaw iskiem T>owszechnym, chociaż nie zawsze prowadzi ono do ruchów o. typie konw ekcyjnym . R uchy takie w ystąpić mogą, gdy lepkość w arstw o niestatecznym rozmieszczeniu gęstości ulegnie zm niejszeniu np. pod wpływ em upłynnienia. Jednak praw idłow e ruchy o ty p ie konw ekcyjnym będą zachodżić tylko wówczas, gdy ław ice objęte ruchem nie w ykazyw ały przed upłynnieniem istotnych zm ian w miąższości.

(3)

Ruchy gęs teściowe d ają również początek talk zw anym glebom paso­

wym i wielobocznyim (poligonalnym). Zjawiislka te można odtw arzać do­

św iadczalnie (fig. 11 i 12), a śledząc ich przebieg stw ierdzam y jak n ajd a­

lej posuniętą analogię w sam ym charak terze w stępujących czy zstępu­

jących ruchów do poprzednio om awianych w tórnych przepływów. Jedy­

nie z .uwagi na diUżą lepkość, ru ch y są bardzo zwolnione.

Pracow n ia Geologiczno ^Straty graficzna P A N w K r a k o w ie

*

* *

A b s t r a c t This paper ideals w ith som e sedim entary phenom ena and structures resulting from in stab ility in de'nsity stratification. It has been found that convection-like patterns o f m otion exist under isotherm ic conditions in m ovin g suspensions and plastic sedilments. T hese m ovem ents are reflected by various sedim entary structures, know n under d ifferent nam es and .recorded from d ifferen t environm ents.

INTRODUCTION

%

D ensity gradient is an im portant factor in th e sta b ility of soft sedim ents. Consider e.ig. a sequence of tw o layers of d iffe re n t densities, one beneath th e .other. W ith denser layer a t th e bottom th a n a t th e top, th e density gradient is stable. If th e sequence is reversed, th e gradient or density stratification is unstable, since the heavier m aterial tends to tak e place of th e lighter. T he instability of th is kind is m anifested in a v ariety of stru ctu res ranging from m inor soft-sedim ent deform ations to large cru sta l displacem ents.

D ifferent as th ey m ay appear in size, environm ent and type of th e rocks involved, th e deform ations m entioned are based on th e same general principle, i.e. instability in density stratification.

The stability of a reversed (unstable) density stratificatio n depends upon, viscosity. It is e.g. possible for a layer of fluid to rem ain in equilibrium w ith higher density a t the top th a n a t th e bottom so long th e condition.:

d, — d0 652 fcv

di < 9 h 3

is fulfilled (Lord R a y l e i g h , 1916), w here: d1 — density of th e fluid a t th e top, d0 — density of th e fluid a t th e bottom , k — coefficient of m olecular diffusivity, v — kinem atic coefficient of viscosity, g — the acceleration of gravity, h — th e d ep th of the layer.

W ith declining viscosity in fluids th e in stab ility gives rise to a num ber of ascending and descending moveimemts w hich m ay follow a highly regu­

la r pattern. These movemente, striving to achieve th e stable equilibrium m ay continue until * a stable density stratification, is obtained. In the m ajority of geological processes, however, m ovem ent is stepped before th e stable density stratificatio n is achieved, because of lim ited fluidity or plasticity. Thus th e interfaces betw een layers differing in 1 density m ay take th e form of m ore or less contorted surfaces w hich reflect d ifferen t stages of m ovem ents tow ards increased stability. T he resulting

(4)

sedim entary stru ctu re s a re freq u en tly indicated by d ifferen t nam es and recorded1 from d ifferen t environm ents.

The -present paper does, not p u rp o rt to give a com prehensive account of various stru ctu res w hich are believed' to resu lt from tihe above m entioned instability. Instead it deals w ith selected problem s concerning th e regular convection-like p a tte rn of m otion reflected by some sedim en­

ta r y structures.

Before proceeding w ith th ese problem s it w ill be1 useful to review b riefly som e basic concepts of in stab ility as th ey a re illu strated in experim ents w ith fluids heated from below (convection currents). This question is closely related to th e subject discussed.

EXPERIM ENTS ON CONVECTION CURRENTS

Considerable am ount of experim ental and1 theoretical w ork has been dome on th e problem of tem p eratu re controlled density circulation in fluids ( B e n a r d , 1901; R a y l e i g h , 1916; L o w , 1929; J e f f r e y s ,

1 9 2S).

B e n a r d (1901) found th a t w hen a layer of standing liquid w ith a free top surface is uniform ly heated from below, th e in stab ility created by thie form ation of a lay er of less density at th e bottom , leads to a steady regim e of flow consisting of a n et of polygonal cell-vortices.

U nder uniform conditions the polygonal celi-vortices tend, to be hexagonal in shape and th e ir linear dim ensions are roughly proportional to th e thickness of th e heated layer.

In B e n a r d ’s experim ents w ith fluid's, the polygons had ascending centres, i.e. th e m ovem ent w as directed' u pw ards along th e ax is of polygons and dow nw ards along th e w alls of the cells (fig. 1). Sim ilar

Fig. 1. Przekrój komórki konw ekcyjnej Fig. 1. C ross-section through a con­

vection cell (after Benard 1911)

experim ents w ith unstable gas layers, yielded cells w ith m ovem ents dow n th e axes ( G r a h a m , 1934; C h a n d r a, 1938). This dowlnward, versus upw ard m otion along th e axis of cells diepends upon viscosity.

W hen th e descent is fro m th e u p p er su rface i t m eans th a t i t is th e upper surface w hich is m ore Unstable and less viscous th a n th e low er (G r a- h a m , I.e., p. 294). The d iffe re n t behaviour of liquids and igases appears from the fact th a t th e viscosity of a gas increases w ith tem perature, whiile w ith liquids it is th e reverse.

W hen a system w ith u n stab le density stratificatio n is subjected to a horizontal shear, i.e. w hen th e vertical m ovem ents combine w ith a fo rw ard flow, th e cell-vortices change in to a p a tte rn of horizontal rolls, parallel to thie direction of flow. The neiighbourilng ro lls ro tate in opposite directions. Such a change appears to b e determ ined b y th e p rim ary arrangem ent of polygonal cells. T he polygons arranged as show n in fig. 2 are easily d raw n into longitudinal rolls, w hile those oriented as in fig. 3 tran sfo rm through th e ’’tran sitio n a l” p a tte rn to the ’’sq u a re”

p a tte rn ( G r a h a m , 1934).

(5)

C h a n d r a (1938) obtained longitudinal rolls show ing a dendritic p a tte rn , w ith d a rk hands of cliear a ir joining in th e direction from w hich thie top p la te of th e sm oke a p p a ra tu s moved (fig. 4) 1.

Fig. 2. Przekształcenia struktur szesciobocznyich w pasowe Fig. 2. Transform ations o f h ex a ­ gonal pattern in to a pattern o f lon gitu d in al bands (modified,

after Graham 1934)

Fig. 3. Przekształcenia struktur sześciobocznych w „przejściow e”

i czworoboczne

Fig. 3. Transform ation o f h e x a ­ gonal pattern into transitional and square patterns (modified, after Graham 1934). The arrow indicates the direction in w hich th e toip p la te m oved to ex er t

shear upon the gas

Fig. 4. Zbieżne simuigi konw ekcyjne. Czarne lin ie to sm ugi czystego ogrzanego po­

w ietrza utw orzone przez prądy w stępujące. Jtasne pasy to sm ugi dym u

!Fiig. 4. ’’D en tritic” (pattern o f longitudinal convection rolls in experim ents on gases heated from b elow , and subjected to a 'horizontal shear. Dark lines inuark th e lanes

o f clear air and ascending currents (after a photograph by C h a n d r a 1938)

1 In the experim ents by G r a h a m i(1:934) and C h a n d r a (1938) th e air w ith tobacco and titanium tetrachloride sm oke w as placed and/or drawn through

a container bounded iby a hot sh eet ibelow 'ainld a cotLd plaite aibove. To produce a horizontal v elo city shear Ithe itop p late w as m oved across th e container.

(6)

As long th e horizontal shear continues, th e longitudinal rolls, once form ed, are v ery stable. However, th e transform ations discussed are reversible (as long th e re exists an instability in density stratification), i.e. the rolls bre'aik up tran sv ersally into, a .pattern of ipolygons w hen the forw ard mlotion is arrested.

CONVECTIONmLIKiE PATTERN OF MOTION IN SU SPEN SIO N S UNDER ISOTHERMIC (CONDITIONS

So far we have spoken of regular cell-vortices and sp iral m otion (in rolls) in cases w here in stab ility in density stratificatio n was brought about b y te m p eratu re differences. Now wte shall see th a t identical pattern s of m otion m ay ex ist in sus,pensions .under isotherm ic conditions (fig 5 A, B, C). It w ill be shown th a t such m ovem ents too, m ay result from instability in dlensity stratification.

Let ius 'begin w ith a steady flow in longitudinal rolls w ith opposite sense of rotation, i.e. clocik-wise and anti-clock-w ise. Such sp irals exist in sediiment-laden flows and are com m only indicated as ste'ady

’’secondary cross-currents” . The origin of thes'e secondary cross-currents

«ttWniSSMm

? 1 f---- ■ ’j

- --i«V

r

******* r \

C 1 h„

VO X** w r* * ft* tr* r& ->g?-wftg * * »*»h. ' V * V

a -< ?

Fig. 5. Układ sm ug zaw iesinow ych w prądzie cieczy w warunkach izoterm icznych.

Wzór w M ob oezn y pow staje w m iejscu ‘ustania p łynięcia. O bjaśnienia w teikście Fig. 5. F low pattern o f m oving suspensions under isotherm ic conditions. Polygonal

pattern appears in places w here th e forw ard flow of the current stops.

Explanation in text.

(7)

ils im perfectly understood. In fact, ’’the contradictions presented by various authors, indicate th e difficulty of obtaining m ore ex a ct and conclusive resu lts concerning th e steady secondary c u rre n ts” (N e m e- n y i , 1946, p. 124) 1.

The effects of Spiral cross-currents on th e distribution of suspended sedim ents are showin by th e transportation of suspended load in bands or ribbons parallel to thie flow. According to V a n o n i (1946, ip. 100),

’’th e cause of these longitudinal bands of sedim ent is not known, although it is believed th a t th e y are th e resu lt of secondary circulation and disturbances due to th e .presence of suspended load” . V a n o n i pointed out th a t even th e slightest d ep a rtu re from a uniform sedim!ent d istrib u ­ tion wj!ll cause diensity gradients th a t can se t up secondary flows.

The flow p a tte rn of suslpensions m ay be identical w ith th a t of convection currents. This can toe dem onstrated (by experim ents using diluted and sem i-tran sp aren t suspensions of fin e clay or coal-dust. These are g ently introduced into a glass tanik w ith hypersaline solution (slightly coloured toy potassium perm anganate1) a t the bottom benteath a lay er of fresh w ater. ( D ż u ł y ń s k i , 1965). Undler such conditions th e suspen­

sions Spread in bands along th e interface w hile slow ly sinking w ith increasing concentration of suspended particles a t th e base of the flow.

The toands of suspension form douible-rolls w ith descending m otion along thie central line. There is a' m otion upw ards in betw een th e toands, i.e. the hypersaline solution is welling up w hile the toands them selves are sinking down. Tlhe spiral o r incipient sp iral circulation is m ade visible toy finest clay particles w hich are caught toy th e ascending flow and describe spiral trajectories.

If the cross-currents .are weak, th e suspended particles once arranged in longitudinal toands rem ain in this position (fig 5 A). They are pushed forw ard in bands and th e ir m ovem ent is lam inar, though th e fluid itself m ay be involved in spiral motion.

U nlike tu rb u len t eddies, th e spiral or p a rtly spiral circulation associated w ith th!e tran sp o rt of suspended load, can be observed even when> th e forw ard flow (is reduced to a m inim um 2. W hen, however, th e speed is m uch increased, th e flow ceases to be steady and regular. The longitudinal rolls disappear toeing replaced by irreg u lar tu rb u len t eddies.

The steady regular, „convective” circulation discussed is neither tu rb u len t in th e lusual hydraulic sensie n o r lam inar. I t has been te n ta ti­

vely 'indicated as ’’sub-turbulen't’’ ( D ż m ł y ń s k i , 1965).

The flow p a tte rn in toands, once formed, is v ery s tatole. I t resolves, however, into a netw ork of polygonal cell-vortices if th e forw ard flow stops, and w hen th e re is still an unstable density stratification. W hen all th e suspended' load is already arranged in toands, and these are in th eir

1 There are d ifferent types of „cross-currents” w hich are not related to instability in d en sity stratification. Boundary shear in straight channel's, curvatures of conduits, bottom roughness etc, can initiate th e secondary flow s. A lengthy review o f spiral m ovem ents has been recently given by K o l a f , 1956, se e also T o w n s e n d , 19151.

2 For thils reason th e spiral m ovem ent under consideration should not be identified w № the turbulent spiral m otion in cylindrical eddies along the direction of flow . Such eddiies w hich obtain energy from th e m ean flo w d issip ate through turbulent friction {see T o w i m s e n d , 19511).

(8)

stable position a t th e bottom or in a relativ ely stab le position on the interface between, th e saline and fresh waiter w ith no suspension above, the polygons do n o t form .

W ith welaik and/or n o t repeatedly revolving cell-circulation th e suspended p articles once arranged' in polygons do not reap p e ar in th e cen tres and the space betw een polygonal walls' is filled w ith a clear 'fluid (fig. 5 B, C). S uch stabilized polygons if n o t disturbed or dispersed m ay sink dow n to th e bottom of the tanlk. Given, however, a horizontal velocity, th ey m ay tran sfo rm into a p a tte rn of p arallel bands. These bands too, m ay sink dow n to thie bottom an d be preserved. If, however, th e ra te of dow n-sinking is slow er th a n th e (lateral dispersion consequent u,pon th e to ta l disappearance of circulation, th e suspended particles arranged in bands would1 spread unilformy over th e bottom of th e tank.

The bands m oving forw ard m ay b ifu rcate up-, or d o w n-current and th e resulting dendritic p a tte rn (fig. 6) is identical w ith th a t obtained in

10

Fig. 6. Rozbieżne sm ugi za'wiesiny w prądzie

Fig. 6. D iverging bands o f suspension. Flow under isotherm ic conditions

experim ents on convection in heated, smOkte cham bers (fig. 4). W ith diverging flows, lim ited am ount of suspension and: w idely separated bands th e la tte r m|ay b ifu rcate dow n-current. W ith converging flows and ab undant am ount of suspension it is the reverse (see p. 12).

W ith strongier flows, tran sv e rse rolls are form ed in fro n t of th e distal w all of a ta n k o r an y b a rrie r m)et by th e cu rren t. These tran sv erse rolls should 'be looked, upon as ’’boundary effects” in agreem ent w ith the explanation given by C h a n d r a (1938) fo r identical p a tte rn s in ex p eri­

m ents on convection curren ts.

F rom th e foreigoing i t appears th a t under certain conditions the p a tte rn of flow displayed b y moving suspensions is analogous to th a t of convection currents. W ith regard1 to th e flow of suspension along the interface 'between sa lt an d fresh w ater, th e prerequisitels too, are the same, i.e. th e instability resulting from differences in density.

T he existence of sp iral m otion in tu b e-lik e bodies at th e base of th e tu rb id ity c u rre n t p ro p er (i.e. th e g rav ity flows of suspensions along the bottom) h as been inferred from th e form ation lof longitudinal ridlges on

(9)

11

m uddy bottom surfaces invaded by th e c u rre n t (D z u 1 yi n s k i and W a l t o n , 1963). These ridges show a strik in g likeness to those produced ex perim entally by C ais e y (1935) and' assigned to th e action of secondary cros's-currents.

T he question com es up w h eth er th e form ation of thiese ridges^ and th e in ferred convection-ffike m otion can bie interpreted' in term s of in stab ility engendered b y reversed: density gradients.

The im pression gained from experim ents is th a t th e prerequisites fo r this ty p e of instability a re found a t th e base and in fro n t of tu rb id ity cu rren ts. T he problem m ay be (treated as follows:

1) C onsider th e case of a rela tiv e ly slbw tu rb id ity c u rre n t w ith sm all degree of turbulence. Though, in general th e concentration' of suspended p articles increases dow nw ards, im m ediately above th e floor, th e c u rre n t velocity decreases d ue to th e viscous drag. Therefore, below a certain level correspondling to a certain critica l velocity, th e suspended particles w ill se ttle down. P artic les of th e sam e size, situated above the critical level, m ay still rem ain in suspension. This causes th e in stab ility in density stratification, i.e. th e appearance of low density la y e r close' to th e bottom i(see U n r u g , 1959). (Such in stab ility shouid' set up spiral circulation in parallel! rolls sufficient to produce th e sm all ridges on soft bottom m aterial.

2) The instability m ay also re su lt from th e onset of a heavy suspen­

sion upon a fine1 bottom clay of low density. This effect is seen in expe- rimlemts w ith thle p laster - of-pa ris tu rb id ity cu rren ts spreading in a form of a th in sheet over a v e ry fine d a y . One can observe th e grow th of ridges in betw een thb ban d s of suspension, and occasionally th e grow th of point-iilntecitlons of clay.

3) Anothler region of in stab ility is developed along the leading fro n t of moving tu rb id ity cu rren ts. T he sam e kind of in stab ility exists w ithin th e tu rb id flowis, in fro n t of denser clouds of suspension m oving faster th a n th e f irs t advancing and less d'enise m asses of th e suspended m aterial.

As indicated by experim ents, th e fro n tal part, of th e m oving suspension is slig h tly elevated above th e bottom (fiig. 7). T his results from th e fact th a t th e (suspension in th e im m ediate proxim ity of th e bottom is lagging behind th a t situated higher up, wWicb is n o t so m uch affected b y th e bottom friction. T hus a n overhang i® form ed w hich causes an u nstable d en sity g rad ien t and consequently a se t of ’’convective” rolls w hich m ay bring about th e form ation of ridges.

4) An im portant, and presum ably th e m ost im p o rtan t factor influencing the form ation of longitudinal ridges is th e instability in den sity distrib u tio n along th e ’’dem arcation” surface betw een th e standing cl'ear flluid and th e advancing fro n t of suspension. The frontal su rface of a m oving tu rb id ity c u rre n t can be com pared w ith an in te r fa c e betw een fluids differing in d ensity and showing an unstable density stratification. This in stab ility lead's to th e 1 formation! of characteristic lobes o r lob ate projections th a t m a rk the1 fro n tal surface o f an advancing tu rb id ity c u rre n t (Fig. 7). The lobes correspond closely to ’’ascending or descending colum ns” b ro u g h t about b y thie vertical instability in density stratificatio n (see p. 16). In both cases th e p a tte rn of cross-currents is analogous. It causes th e ’’sidew ard pushing action” ex erted Iby th e lobes whlilch d irectly contact itihie bottom i(fig. 7). This pushing action upon soft sedim ents considered as the1 m ain facto r in producing th e ridges ( D z u l y n s f e i 1 and W a l t o n , ,1963) is w ell explained in term s

(10)

12

of instability in density distribution. I t is to be noted th a t th e slow ly advancing frontal lobes becom e crenulated. Thiesle secondary lobes are m ainly responsible flor th e form ation of secondary ridlges (dendritic pattern, see fig. 8) which join (the m ain ridges in the dow n-current direction ( D z u i y n s k i and W a l t o n , 1965).

From th e foregoing lit appears thalt th e re m ay be unstable density Stratification at th e bottom and in fro n t of th e flowing tu rb id ity cu r rants.

This instability m ay initiate th e convection-like1 movem ents, w hich in tu rn m ay produce a characteristic p a tte rn of sole m arkings (see p. 13).

Fig. 7. N iestateczne rozm ieszczenie gęstości u czoła prądu zaw iesinow ego. W ysokość nadwieszenia przewięktszona. a — nadw ieszone czoło prądu, w idok z góry; b — czo­

ło przydennej w arstw y prądu z tw orzącym i s ię garbami p rądow ym i na ile;

c — czoło gęściejszej „ahmury” zaw iesinow ej w obrębie płynącego prądu Fig. 7. Instability in density distribution along th e leading front o f a m ovin g turbi­

dity current. Overhang exaggerated, a — lobate leading front o f the current;

b — lobate front of th e current close to the bottom and dendritic ridges (plan view);

c — denser ctouds o f suspension w ithin the current

Fig. 8. O dlewy grzbietów prądowych (zbieżnych) na spągu piaskowca.

W edług zdjęcia

Fig. 8. Moulds o f converging dendritic ridges o n bottom surface o f a sandstone.

A fter a photograph

(11)

13

I t should be borne in m'iind, how ever, th a t though th e presence of suspended1 load m ay be th e cause of th e convection-dilke circulation (point 1) ilt iis mot a necessary condition .for th e ir generation. If the m oving suspension consists e.g. of pure saline solutions, th e ridges too, a re being form ed. The sam e phenom enon occurs w hen th e fro n t of a pure liquid advances upon an exposed' soft clayey o r piaster-of-paris surface ( D ż u ł y ń s k i and W a l t o n , 1963). In thesie cases the ridgies are chiefly made by th e fro n ta l lobes (point 4).

SEDIMENTARY STRUCTURES REFLECTING CONVECTION-LIKE FLOW PATTERN OF TURBIDITY CURRENTS

A num ber of sedim entary stru ctu res w hich develop a t interfaces betw een th e sioft bottom and the c u rre n t can 'be in terp reted in term s of convection-like m ovem ents. These stru c tu re s are as follows:

1) Moulds of longitudinal and polygonal rildgeis on bottom surfaces of sandstones.

The ridges discussed in th e proceeding ch ap ter have th e ir replicas among th e siole m arkings. They appear as m oulds of th e stru c tu re s produced on soft bottom s (K u e n e n , 1957; D ż u ł y ń s k i arnd Ś l ą c z- k a, 1958; D ż u ł y ń s k i i and S a n d e r s , 1962; C r a i g and W a l t o n , 1982; J i p a and M i h a i l e s c u , 1964, and others). The rid-ges m ark the llnss of the asic'snd'ing secondary c u rre n ts while (the areas iin betw een the

G Q Q Q O Q O O

C O X X X X ' )

Fig. 9. Sposób po wstawiania grzbietów prądowych (a) oraz gleb pasow ych (b) w uproszczeniu

Fig. 9. S'cheimatic presentation o f the developm ent of current ridges (a) and sorted soil strip (b)

ridges correspond to th e descending flows (fig. 9). The energy im parted to th e secondary flows b y th e m ean flow land u nstable density gradient m ay lead bo scouring of th e d'eep furrow s in betw een th e ridges.

The ridges m ay b ifu rcate (fig. 8) or pass into a- polygonal p attern (fig. 10). Exam ining the polygonal stru ctu res in cross-sections one can suggest th a t m ovem ents along the axes of th e p rim a ry cell-vortices was dow nw ards. This indicates th a t the settling suspension w as m ore mobile th a n the underlying clay (see p. 6).

(12)

14

2) Ridjges on surfaces of lamiination w ith in th e sandstone 'beds.

RM'geis sim ilar to those previously disculssed occur on surfaces! of in tern al lam ination and are b e st visible w hen a sandstone is p a rte d alonjg bedding surfaces. T he stru c tu re s are fre q u en tly associated w ith

’’incipient” convolutions (ten H1 a a f , 1956, 1959; K u e n e n and S a n -

Fig. 10. O dlew y podłużnych grzlbiętów prądow ych przechodzących w grzbiety w ie- loiboczne. Spąg dośw iadczalnego osadu zaw iesinow ego. W edług zdjęcia

i(lD ż u ł y ń si k i, 1005)

Fig. 10. M oulds o f longitudinal ridges passing in to a polygonal pattern. Bottom surface o f an experim ental turbidite. A fter a photograph by D ż u I y ń s> k i 1&05

d e r s , 1956; D ż u ł y ń s k i and S m i t h , 1963)1 and, th e ir orijgin is dlosely rela ted to rthie process w hich bring about th e 1 ridiges on bottom surfaces of sandstones i ( D ż u ł y ń s !k i and W a l t o n , 1965). The „in tra- s tra ta l” ridges under consideration, how ever, com prise several lam inae, and this cąlils fo r com m ents. Threte possibilities m ay be invoked in this connection; 1) th e ascending cross-currents w ere sltronig enough to w arp a set of highly plastic and d uctile lam inae into a ridge, 2) th e ridges once form ed ,u|pon a surfaoe iof lam ination grew up during th e deposition of th e subsequent lam inae ijn response1 to a m ore effective deposition in th e troughs separating th e ridgtes, 3) th e flow p a tte rn w hich produced1 th e firglt ridge® on a given bedding surface did not change d u rin g th e1 deposi- tion th e subsequent lam inae. Evidently, th e th re e .possibilities are not m u tu ally excljusiVe.

3) S orted1 bands on surfaces of lam ination.

Kelliated to th e ridges a re .sorted bands on surfaces of lam inat'ed beds.

T hey consist of heav ier o r coarser p article s and are separated1 by streak s of lighter o r finer particles. The bands tre n d in th e direction of c u rre n t flow, showing thus, how th e particles w ere distributed across the c u rre n t

1 .Similar m arkings h ave been described a s ripples (longitudinal), s e e e.g.

Q u j k l o w s - k i, 1957). For [illustration the readier is referred to D z u l y n i s fci and S m i t h , 1963, fig. 3 and 5.

(13)

15

(fig. 5 A). Whlile th e d istinct ridges tend1 to develop upon cohesive and d u ctile m aterials, th e bands fo rm upon frictional sedim ents. The bands, too, are a s o rt of v e ry .Dow ridges, in m iniature. They m a rk th e lines of ascending o r descending c ro ss-c u rre n ts 1.

4) ’’F eath er” o r ’’frondescent” m arkings.

Closely allied in melchianism to th e stru ctu re s h ith erto discussed, though m orphologjcally seem ingly d iffe re n t are ’’fe a th e r” or ’’fromdes- cent m ark in g s” ( K s i q z k i 1 e w i c z , 1958; te n H a a f , 1959). T hey re su lt from sinking and branching of tu b u la r bodies of suspensions into a fluidi'zed o r p artially fluidizted1 su bstratum . These stru c tu re s w ere produced experim en tally uising a sofit tra n sp a re n t gelatine as a low d ensity la y e r .underneath th e flowing suspension. Thu© th e ir origin could be exam ined in d etail and a close relationship to th e flow of s’uslpensions in longitudinal rolls established ( D z u l y n s k i and W a l ­

t o n , 1963).

T he stru ctu re s hiSthbrfto discussed fo rm lunder conditions of lim ited turbulence. Increase in c u rre n t velocity accom panied b y an increase1 in turbulences leads to decay of .the reg u la r flow p attern . The effect of in stab ility in d en sity stratificatio n becomes negligible as com pared w ith o th er facto rs su|ch as (bottom roughness, cu rv atu res of channels: etc.

D ifferent velocities set up pressure differences w hich cauise cross-cur­

re n ts deriving th e ir energy from th e m ean flow. There m ay be a com­

p lete gradation betw een th e re g u la r convection-like and irre g u la r highly tiurbullent flow land this gradation is. reflected iin sole m arkings. E.g. th e fu rro w s in betw een th e nidges become m odified by flutes. It is som etim es im possible to discern betw een th e rounded scours produced b y strong

’’iboils” ije. th e iirrelgular ceill-vortices deriving th e ir energy from th e m ean flow, from stru c tu re s generated1 b y th e convective celil-clrc uil at ion.

I t is the g en eral character of th e m arkings assem blage (e. g. th e associa­

tio n w ith flutes) w hich m ay give some inform ation concerning th e ty p e olf flow in th e im m ediate p ro x im ity of th e bottom .

O n th e o th e r hand th e m arkings discussed in this1 ch a p te r and im plicitly classed as „c u rren t stru c tu re s” m ay b e produced en tirely outside th e dom ain of ’’o rd in ary ” cu rren ts and tu rb id ity curren ts. E.g.

th e frondescent m arkings m a y appear as post-depositkmad feature® on the bottom, of th e deposited amid subsequently liquefied sand layer. T heir form ation follows a com plete disappearance of p rim a ry c u rre n t m arkings (D z u l y n s k i , 1963b). Ridges passing into a roughly polygonal p a tte rn of ’’pillow ” structures^ too, m ay form as post deposotional featu re s at th e base of load-deform ed and p artly liquefied rip p les ( D z u l y n s k i and K o t l a r c z y k , 1962). This, however, ils w h at should be expected.

The liquefaction of deposited sedim ents m eans th e form ation of a lay er of fluid. As long th e re are conditions Of instability ailong th e bounding surfaces of this layer „convective” m ovem ents m ay occur.

Betw een such ”post-depositional” stru ctu res and th e c u rre n t m ark ­ ings proper th e re is a com plete gradation1 and in m ost cases ”it- is impos­

1 The banded lam ination surfaces should not be identified w ith „parting lineation ” ( C r o w e l l , 1955) though both structures may be in tim a tely related.

The parting lineation comprise v isib le effects o f splitting and presents a picture o f a terraced surface involving several adjacent lam inae („parting-step lin ea tio n ” — M c B r i d e and Y e a k e l , 1963).

(14)

16

sible to designaite the stru c tu re s clearly in term s 'Oif th e ir tim e of form a­

tion” ( D ż u i ł y ń s k i anld1 W ai 11 o n, 1963).

CONVECTION -LIKE MOVEMENTS IN W ATER-SATURATED PLA STIC SEDHMCEINTS

The concepit of convective m ovem ents consequent upon unstable density gradient offers a possible explanation for a numlber of sedim en­

ta ry stru ctu re s w hich tend to develop in soft layered sedim ents no m at­

te r w hat th e ir sedim entary environm ent. It ils beyond th e scope of this publication to discuss th e full v ariety of ’’post-depositional’’ stru ctu res resulting from instability in density stratificatio n 1. W e concentrate on those only Which show a reg u lar convection-like p a tte rn and th is brings us logically to the controversial problem of ’’patterned groundis” (W a s h - b u r n , 1956).

The folloiwing dliscussion ils based on th e experim ents decriibed alread y in ea rlie r publications (ID ż u ł y ń s k i, 1963 a ; B u t r y m e t al., 1964). The .procedure of preparing unstable density stratificatio n in mo­

del m aterials was as follows; Fine sand, coal-dust or sim ilar clas'tics were gently sieved through w ate r onto a settled clay, or diluted p laster of piaris susipensions were g en tly introduced in to a w a te r ta n k w ith settled clay to produce a uniform lay er of 'heavier m aterial upon the clay. Then, th e tanks were j air red o r slightly tilted. In a new series of experim ents plaster of paris was su b stitu ted for the clay settled from w ater suspen­

sions, and th e sand w as sieved th ro u g h th e w a te r upon th e still soft and plastic pllas'ter-of partis deposit. This technique p erm itted 1 perm anent specim ens of th e stru ctu re s produced to be O b ta in ed .

a) D eform ations of layers u n d er conditions of instability in the absence of horizontal displacem ents

Consider th e in stab ility of a sequence w ith a loose sand at th e top, and clay at the bottom. Suppose th e1 top layer is u n ifo rm in thickness and composition, the stre n g th of th e clay sufficient to su p p o rt th e load, and th a t th e whole sequence is waiter-'saturated'. Such a sequence m ay brealk down w hen th e stren g th of th e low er layer is descreased by lique­

faction or increasing plasticity. This is frequently observed in th ix o tro - pic clays and' looseily 'packed1 sands. G iven 'a slight m echanical im pulse, e. g. a shock or local overloading, the sedim ent w hich is prone to lique­

faction m ay pasis from a solid to a liquid or semil-liquid p h ase;1

In absence of horizontal displacem ent, th e disturbance of equilibrium w hich follows th e liquefaction gives rise to ascending and descending m ovem ents sim ilar to those1 produced by heating of a fluid1 from bellow.

W ith th e low er lay er 'less viscous th a n th e upper (fiig. 11 a), cine obser­

ves th e grow th of colum nar clay intrusions '(involutions) w hich m ay break through th e sand; layer, and form ro u n d ed humlmodks m ore or less uni­

form y distributed1 over th e to p su rface (fig. 11 b). W hen th e flow of clay continues, th e hum m ocks grow larg er pushing th e top m aterial aside so

1 Load deform ation and the resulting structures, clastic intrusions (sand or clay dykes and sand or m ud volcanoes etc) belong ihere. T hese structures have been described in num erous publications and there is a considerable literature

devoted to th e experim ental production o f such structures.

(15)

17

to form th e ring-liike stru ctu re s (fig l i b ) . F inally the sta te is reached w hen th e m argins of th e rings com e to m u tu al contact (fig. 11 c). This unevitably leads to ipalyganal, and in case of uniform ity, to hexagonal p attern s. Whien th is stage is reached, the area occupied b y th e heavier m aterial on the top surface is a minimum.

Fig. 11. P ow staw an ie ‘gleb wielobocznych w w yniku zaburzenia rów now agi w n ie ­ statecznym u w arstw ieniu gę^to.ścmwym w imiękkich, p lastycznych i upłyinnia!jących

się osadach. O bjaśnienie w tekście

Fig. 11. Formation of 'polygonal structures from unstable d en sity stratification in cross-section and in ,pla'n v ie w (righ't). Upper layer — sand, low er — clay. After

experim ents. E xplanation in text

Judging from, experim ents th e polygonal p a tte rn s are relativ ely stable, p articu la rly w hen [the denser m aterial descending along the waills of polygons reaches th e bottom (or a layer of hligh viscosity) so to form

„rooted polygons” (fig. 11 d). Even suspended polygons m ay be stable, though th is is m ainly due to th e fact th a t a t th is stage, th e clay rap id ly looses the excess of w ate r 1 and its fluidity decreases.

If, however, th e re ils a continuous flow of clay from below, and th e viscosity of Ithe clay sufficiently low, the top m aterial m ay g ath er at the bottom in form of polygonal ridges (fig. 11 e).

The size of polygons largely depends Upon th e thickness of the mobile

1 The expulsion of water leadis to the form ation of concave polygonal fields and -cracks (fig. 11 c2). Larger cracks preferably d evelop along the m ’anginls of.

polygons (fig. 11 c2), and th e form at ion of ioracks takes ipllace under w ater as w e ll, as under su b-aerial conditions.

2 R o c z n ik

(16)

18

low er layer of low viscosity. The thicker is th a t layer, th e larger are the polygons.

We n ex t (proceed to exam ine th e case of ia hi|ghly m obile sand1 deposi­

te d upon a sodft b u t relativ ely viscous d a y . To obtain, such a sequence in experim ents it i® useful to sieve sand rapidly thorough w a te r on to the surface of settled clay. U nder siuch conditions, w hich m ay ibe com pared w ith liquefaction of a sand lay er «Deposited uipon th e viscous clay, the in stab ility (takes a form of descending sand columns. These, if closely sett, have polygonal outlines dm horizontal sections '(fig. 12). T he situation is th u s reverse to rt'ha't previously (described since the instability in th is case begins w ithin the u p p er layer (see p. 6).

i • *

v *

Fig. 12. Struktury w yw ołane grzęźnięciem upłynnionego piasku w ił o lepkości w iększej niż lepkość upłynnionego piasku. W przekroju pionow ym i poziom ym Fig. 12. P en d en t structures produced by descending liquefied sandy suspensions into a clay of relatively high viscosity in vertical (left) and horizontal sections

(right)

W here density differences ane less ex trem e and th e viscosities of both layers are high th e n th e interface betw een th e layers sim ply becomes undulating. W ith low viscosities of both th e u'pper and low er lay ers th e sand is observed to m ove dow nw ards in vertical stringers, th e m ud1 being pushed up in betw een th e sandy threads. The resulting sediiment appears as a layer of gradded m uddy sandstone w ith characteristic vertical striping { D ż U ł y ń s k i anld W a l t o n , 1963).

E ffects of horizontal m ovem ent on 'unstable d ensity stratificatio n of soft sedim ents

Consider now th e sequence w ith sand at th e top, and' clay a t th e bot­

tom subjected1 to a horizontal displacem ent. S lig h t tillin g of a tra y w ith th e sequence prepared is u su ally enough to break dow n th e unstable equilibrium . The clay colum ns w hich b u rst upw ards becom e im m edia­

te ly elongated and' tran sfo rm in parallel strip s trending in th e direction of sedim ent creep. In each of these strip s th e re is an upward: m ovem ent iof clay along th e cen tral line. The to p m aterial is pushed aside anld pres­

sed into a p a tte rn of p arallel ridges m arking the lines of dow nw ard m ovem ent (fig. 9 b). Because of high viscosilty and in absence of continu­

ing inflow of energy necessary to m aintain the spiral circulation, th e particles involved in th e m ovem ents seMom if ever describe th e full

(17)

19

sp iral trajectories. O nce arranged iin strips, th e y move dow n-slope along th e already established p attern .

Occasionally th e stru ctu re s showing th e ’’transitional” p a tte rn indi­

cated by fig. 3 b are form ed. T hey are d u e to the prim ary orientation o f polygons unfavourable to the change into strip s (see p. 7) !.

A pplication of th e results to ’’patterned grounds”

The foregoing considerations offer an explanation to a num ber o f stru c tu re s comiprised und'er a general te rm of ’’p a tte rn e d grounds^

( W a s h b u r n , 1956). This problem has already been d ealt witth else­

w h ere ( B u t r y m e t al. 1964) and th e re is no need to dw ell oin th is subject. lObviously not all of th e stru c tu re s indicated iais p a tte rn e d groundis would fa ll in to a cathegory of stru ctu re s resu ltin g from in stab ility in d ensity stratificatio n {e.g. th e ice-w edge polygons)2. Thtis instability, how ever, explains th e stru c tu re s such as so rted polygons, circles anid strips. I t accounts also fo r a p a rt of nonsorted 'polygons.

The concept of ’’convective” m ovem ents a s a cause of polygonal soils and sorted strip s has already foeen invoked !by a num ber of au th o rs (L o w, 1925; G r i p p and i S i m o n , 1933; G r i p p 1951; S o r e n s e n , 1935;

R o m a n o v s k y , 1939; and others). Too m uch em phasis, how ever, has been laid dow n upon tem p eratu re and m oisture controlled d en sity c u r­

rents. These tu rn e d o u t to ibe incapable of m oving clastics 'against gravi­

ty, as req u ired iby mo^t of th e convection hypotheses. However, as indi­

cated b y S o r e n s e n '(1935), th e superposition of th e’ coarse d eb ris upon th e fin er m aterials (in polar regions) is n o t dependent lupon th e processes w hich lead to th e form ation of polygons b u t vice versa. U nstable s tr a ti­

fication ex ists in jpoilar regions, a n d is due to th e segregation caused by fro st-h eav e o r deposition of heavier clastics upon th e frozen silts. The refreezing of such unstable sequences m ay in itia te th e convection-like m ovem ents.

i

CONCLUDING REMARKS

Sedim ents e x h ib it a v arie ty of stru ctu re s w hich in th e p resen t clas­

sification are separated from each other, given d iffe re n t nam es and in ter­

pretations. Tracing th e form ation of sedim entary stru ctu re s in experi­

m en ts one sees that, a n u m b er of seem ingly ’'in d ep en d en t” stru c tu re s are stages o r transitional form s in one chain of physical phenom ena, belong­

ing to a silngle physical process. O n th e o th e r hand, th e sam e physical processes operating und'er d ifferen t conditions and in d ifferen t e n v ir o n ­ m ents give rise to th e stru c tu re s which m ay ibe m orphologically d iffe re n t b u t genetically closely allied to each 'other.

I t is realized th a t th e present classification of sedim en tary stru c tu re s w ith its overgrow n term inology is inadequate. A new approach to this question is needed. This new approach should be based upon experim ental studies and a close cooperation betw een geologists and hydirodynamicist.

1 Such structures may b e compared w ith ’’sorted step s” in th e m eaning o f W a s h b u r n (1996).

2 T h ese 'may be compared w ith dessi'cation cracks.

2*

(18)

20

Acknow ledgem ents: The w riter is g ratefu lly indebted to D r J. K o t - l a r c z y k , Dr A. R a d o r n s k i and Dr R. U n r u g for discussion and critical reading of thiis paper.

Geological L a boratory

of the Polish A c a d e m y of Sciences K rakow

A d d e n d u m . A fter .this ipalper wals subm itted to th e Editors., an i<m!portant (publi­

cation b y E. V. A r't y u s ' h k o v appeared in the Decelmlber issu e o f Izvestia A kadem ii Naulk UiSISIR, ser. igeoil., 1965 under the title: C onvective deform ations develoiped in feeibly llithiilfied sedim entary rocks. The R ussian author d eals w ith sediimemltary structures arising from instability in denisity stratification in a treatm ent sim ilar to that o f the p resent a'ooount.

WYKAZ LITERATURY REFERENCES

B e n a r d H. (l#0tl), Les touribillons cellulaires dans une nappe liquide t r a n sportant de la chaleur par convection en regim e perm anent. Ann. C h im ie Phys., t. X X III,

ser. 7, p. 62—144.

B u t r y m J., C e g ł a J., D ż u ł y ń s k i S,, N a k o n i e c z n y S. (1964), Nowia in ­ terpretacja „struktur peryglaicjalnyoh” N ew Interpretation o f ’’periglacial stru ­ ctures”. Folia Q uatem a ria , 17, p. 1—34, Kraków.

C h a n d r a K. 1938, Instability o f fluids heated from below. Proc. Roy. Soc., ser. A, 164, p. 231—242, London.

C r a i g G. Y., W a l t o n E. K. (1902), Sedim entary structures and Palaeocurrent directions from th e S ilurian rocks o f Kircudbrightshire. Trans. Edinb. Geol. Soc.,

19, 100— 119.

C r o w e l l J. C. (1955), D irectional current-structures from the Prealpine Flysch, Switzerland. Bull., Geol. Soc. A m er. p. 66, p. 1351—‘1384.

D ż u ł y ń s k i S. (1963a), Polygonal structures in experim ents and their bearing upon som e periglacial phenomena. Bull. Acad. Pol. Sc., Ser. sc. geol. et geogr., XI, no. 3, p. 145'—'150, (for plates see ibid., ino. 4).

D ż u ł y ń s k i S. (1963'b), W skaźniki kierunkow e transportu w osadach fliszow ych (Directional structures .in flysch). S tu dia Geol. Pol. v . X II, p. 1— 136.

D ż u ł y ń s i k i S. (1965), N ew data on experim ental production of sedim entary structures, J. Sed. Petr., v. 35, p. 196—212.

D ż u ł y ń s k i S., K o t l a r c z y k J. (1962), O pogrzęźniętych pręgach falistych (On load-casted ripples), Rocz. Pol. Tow. Geol. (Ann. Soc. Geol. Pol.), X X X , p. 214—241.

D ż u ł y ń s k i S., S a n d e r s J. E. (1962), Bottom marks on firm bottom mud., Trans. Conn. Acad. A r ts Sc., 42, p. 57— 96.

D ż u ł y ń s k i S., S m i t h A. J. (1963), Convolute lam ination its origin, preserva­

tion and directional significance. J. Sed. Petr., 33, no. 3, p. 616— 627.

D ż u ł y ń s k i S., S l ą c z i k a A. (1958), Sedym entacja i w skaźniki kierunkow e transportu w w arstw ach krośnieńskich (Directional structures and sed im en ta­

tion o f th e Krosno beds), Rocz. Pol. Tow. Geol., (Ann. Soc. Geol. Pol.), X XVIII, p. 205—'260.

D ż u ł y ń s k i S., W a l t o n E. K. (1963), E xperim ental production of Sole Mark­

ings, Trans. Edinb. Geol. Soc., 19, p. 279—303.

(19)

21

D ż u ł y ń s k i S., W a l t o n E. К. (1965), Sedim entary structures o f flysoh and greyw'ackes. E lsevier Publ. Comp. A m ste rd a m , p. 274.

G r a h a m A. (1934), Shear pattern in an unstable la y e r o f air 'Phil Trans., Roy.

Soc., London, A, 232, ,p. 285—296.

G r i p p K. (1952), Z w ei Bei'trage zur Fragen der Periglaeialen Vorgange. M eyn ia- na, 1, p. 121—118.

G r i p p K., S i m o n W. G. (1933), Experim ente zum Brodelbodenproblem , Centrbl.

Min. ... Abt. B. Abh. ip. 433—440.

H a a f E. ten (1956), Significance o f convolute lam ination. Geol. en Mijnb., N. S., 18 Jaarg., p. Ili8—'194.

H a a f E., ten (1959), Graded beds o f Northern Appenines. Ph. D. Thesis, Groningen.

J e f f r e y s H. (1928), Some cases o f instability in fluid motion Proc. Roy. Soc., Ser. A. 118, p. 195— 208.

J i p a D., Mil h a i 1 esi с u N. (1963), A propos d e l ’origine des mecanoiglyphes sy n - drom iques. Ass. Geologique Kanpato-BaLkanique. V l- e m e Congres, Varsovie,

Cracovie, Resumes des Communications, p. 75.

K o l a r V. (1956), Proudy s pricnou cirkulaci (Spiral m otion in fluids), Rozpr. Cesk.

Solv. Akad. Ved., Rada Tech. Ved, Roc. 66. ses. 5.

K s i ą ż k i e w i ' c z M. (1958), Stratygralfia serii m agurskiej w B eskidzie Średnim, (Stratigraphy of the Magura Series in the Beskid Średni, Carpathians (Biul.

Inst. Geol., nr 135, p. 43—©6.

K u e n e n Ph. H. (1957), Sole markings of graded greyw acke beds J. Geol,, 05, p. 231—258.

K u e n e n Ph. H., S a n d e r s J. E. (1956), S edim entation Phenom ena in K ulm and Flozleeres greyw ackes, Sauerland and Gberharz, Germany. A m er. J. Sc., 254, p. 649—671..

L o w A. (1925), Instability o f viscous fluid m otion. N ature 115, p. 299—300.

L o w A. (1929), On the criterion for sta b ility o f a layer o f viscous fluid heated from below. Proc. Roy. Soc., Ser. A. 125, p. 180—195.

M c B r i d e E. F., Y e a k e l L. S. (1963), R elationship b etw een parting lineation and rock fabric. J. Sed. Petr. 33, no. 3, p. 779—782.

N e m e n y i P. F. (1946), Discussion o f Vanoni, V. A. Transportation o f suspended sed im en t by water. Trans. Amer. Soc. С. E. I l l , p. 116— 125.

R a y l e i g h L o r d (1916), On convection currents in a horizontal layer o f fluid ...

Phil. Mag., 6, ser. 192, p. 529—546.

R o i m a n o v s ' k y V. (1939), Toiurbilloins dans lels boues epaisses. A pplication aux terrains polygonaux arctiques. C. r. Acad. Sc. (Paris), 208, p. 621— 623.

S o r e n s e n T. (1935), Bodenform en und Ptlanzendecke im Nordostgronland. Medd.

от Gronland, Kobehavn, 93.

S u j k o w s k i Z. L. (1957), Flysch sedim entation, Bull. Geol. Soc. A m er. 68, 543—554.

T o w n s e n d A. A. (1951), The structure o f the turbulent boundary layer. Proc.

Cambridge Phil Soc., 47, p. 375—395.

U n r u g R. (1959), Spostrzeżenia nad sedym entacją w arstw lgockich (On the sed i­

m entation o f the Lgota beds (Rocz. Pol. Tow. Geol. Ann. Soc. Geol. Pol., 29,

197— 225. i

i

V a n o n i V. A. (1946), Transportation o f suspended sedim ent by water. Trans.

Amer. Soc. С. E., I l l , p. 67— 102.

W a s h b u r n A. L. (1956), C lassification o f patterned grounds; a reviev o f sug­

gested origins. Bull. Geol. Soc. Amer. 67, p. 262—271.

Cytaty

Powiązane dokumenty

-wie, przez jakie miasta płynie Wisła, - potrafi zatańczyć Krakowiaka, - zapisuje zdania z pamięci,.. Uczeń:- potrafi pokazać na mapie Wisłę

We studied the safety of placing multiple sheaths via one line, and the effect of heparin on the incidence of vascular complications and on the risk of in situ and deep vein

In this paper, we report a case of permanent, unilat- eral blindness occurring as a complication of bacterial inflammation of the orbital soft tissues in the course of herpes

Based on the presence or absence of typical OP-like pattern on the initial CT, the patients were divided into two groups: OP group (n = 103) and non-OP group (n = 107). CT

Autorzy najlepszych prac otrzymają nagrody pieniężne i inne cenne nagrody. Regulamin konkursu na stronie

For some val ues of the trans port rate of the bedload and the con cen tra tion of the sus pended load we found in ter est ing dif fer ences be tween Ti - tan’s and

North of the land that comprised the southern margins of these mountains there stretched a basin with accumulations of greywackes and siltstones. Greywackes

In a num ber of instances I found fairly large crescent casts provoked by fragm ents of wood, quartz pebbles and sandstone