• Nie Znaleziono Wyników

Marketing Information T 86 N

N/A
N/A
Protected

Academic year: 2022

Share "Marketing Information T 86 N"

Copied!
6
0
0

Pełen tekst

(1)

European Power- Semiconductor and Electronic Company

Marketing Information T 86 N

VWK Aug. 1996

(2)

Kritische Stromsteilheit

Kritische Spannungssteilheit

Charakteristische Werte

D u rch la ft spa n n u n g Schleusenspannung Ersatzwiderstand Zundstrom Zundspannung

Nicht zundender Steuerstrom Nicht zundende Steuerspannung Haltestrom

Einraststrom

Vorwarts- und Ruckwarts-Sperrstrom Zundverzug

Freiwerdezeit

Thermische Eigenschaften

Innerer Warmewiderstand

Hochstzul.Sperrschichttemperatur Bet r iebste m pe ratu r

Lagertemperatur

Mechanische Eigenschaften

Si-Elemente mit Druckkontakt Anzugsdrehmoment Gewicht, Bauform E Kriechstrecke Feuchteklasse Schwingfestigkeit M afibild, anliegend

critical rate o f rise of on-state current

critical rate of rise of off-state voltage

Characteristic values

on-state voltage threshold voltage slope resistance gate trigger current gate trigger voltage gate non-trigger current gate non-trigger voltage holding current latching current

forward off-state and reverse currents gate controlled delay time

circuit commutated turn-off time

Thermal properties

thermal resistance, junction to case

max. junction temperature operating temperature storage temperature

Mechanical properties

Si-pellet with pressure contact tightening torque

weight, case design E creepage distance humidity classification vibration resistance outline, attached

tvj = tvj max, tp = 10 ms VD < 67%, Vdru/i, f = 50 Hz vl =8 V, iGM= 0,6 A, diG/dt =0,6 A/ps tvj = tvj max, VD = 67% Vdrm

tvj - tvj max, It — 400 A tyj — tyj max tyj — tyj max tVj = 25 °C, v d = 6 V tvj = 25 °C, v D = 6 V tvj = tvj max, V D = 6 V tvj “ tvj max, Vq = 0,5 Vqrm tVj = 25 °C, v D = 6 V, Ra = 5 Q tvj = 25 °C,v □ = 6 V, R Gk ^ 10 Q iGM =0,6 A, diG/dt =0,6 A/ps, t g = 20 ps tvj “ tvj maXi VD = Vqrm, Vr= Vrrm tVj=25°C, iGM = 0,6 A, diG/dt = 0,6 A/ps siehe Tech n. Erl ./see Techn. Inf.

© =180° el, sin DC

DIN 40040 f = 50 Hz DIN 41 892-204B3

20000 A 2s

(diT/dt)cr 150 A/pS

(dv/dt)cr 1000 V/[js

vT max. 1,99 V

Vt(to) 1 V

It 2,6 mQ

Igt max. 150 mA

Vqt max. 1,4 V

Igd max. 5 mA

Vqd max. 0,2 V

Ih max. 200 mA

II max. 620 mA

d, Ir max. 25 mA

tgd max. 3 Ms

tq typ. 200 Ms

RthJC max. 0,3 °C/W

max. 0,28 °C/W

tyj max 125 °C

tc op -40...+125 °C

tstg -40...+130 °C

M 20 Nm

G typ. 180 9

8 mm

C

50 m/s2

Fur groftere Stuckzahlen Liefertermin erfragen / Delivery for larger quantities on request

(3)

T 86 N /1 Vt [V] ■ T86 N/ 2 '[A ] Bild / Fig. 1

D urchlaftkennlinie/ On-state characteristic iT= f(vT) a -Typische Kennlinien / typical characteristics b -Grenzkennlinien / limiting characteristics

Bild / Fig. 2

DurchlaGverlustleistung / On-state power loss PTAV = f(lTAv) Parameter: StromfluGwinkel / Current conduction angle 0

0 20 40 60 80 100 120 140 160

T86N/3 ■tAVM tA] ---■

Bild / Fig. 3

Hochstzulassige Geha use tern peratur/ Max. allowable case temperature

*c = ^tavm)

Beidseitege Kuhlung/ Two-sided cooling

Parameter: Stromflu&winkel / Current conduction angle 0

0 10 20 30 40 50 60 70 80 90 100

T 8 6 N /4 'tAVm[ A ] --- 1

Bild / Fig. 4

Hochstzulassige Kuhimitteltemperatur / Max. allowable cooling medium te mp erature tA = f(ITAVM)

Kuhlkorper / Heatsink: K1.1 -M12A

--- Luftsebstkuhlung / Natural air-cooling

--- Verstarkte Luftkuhlung/ Forced air-cooling, VL = 30 l/s Parameter: StromfluGwinkel / Current conduction angle 0

tAVM [a ]

Bild / Fig. 5

Hochzulassige Kuh Imitteltemperatur / Max. allowable cooling medium tem peraturtA = f( lTAVM)

Luftselbstkuhlung / Natural air-cooling Kuhlkorper / Heatsink: K0.55-M12-A

Parameter: StromfluGwinkel / Current conduction angle 0

T 8 6 N /5

(4)

T86N/6 ITAV [A]

Bild / Fig. 6

D urchlaftverlustleistung/On-state power loss PTAV = f(lTAv) Parameter: StromfluGwinkel / Current conduction angle 0

0 20 40 60 80 100 120 140 160 180 200

T86N/7 lTAVM[A] ---

Bild / Fig. 7

Hochstzulassige Gehausetemperatur/ Max. allowable case temperature k = f( 'tavm)

Beidseitige Kuhlung / Two-sided cooling

Parameter: Stromflu&winkel / Current conduction angle 9

0 20 40 60 80 100 120

T86N/8 lTAVMtA ] ---1

Bild / Fig. 8

Hochstzulassige Kuhlmitteltemperatur/ Max. allowable cooling medium temperature tA = f(lTAVM)

KuhIkorper / Heatsink: K1.1-M12A

---Luftsebstkuhlung / Natural air-cooling

--- Verstarkte Luftkuhlung / Forced air-cooling, VL = 30 l/s Parameter: Stromfluftwinkel / Current conduction angle 9

Bild / Fig. 10

Uberstrom / Overload on-state current lT(0V) = f(t) Luftselbstkuhlung / Natural air-cooling tA = 45°C Kuh I ko rper / Heatsink: K1.1-M12-A

Parameter: Vorlaststrom / Pre-load current ljAv(vor)

0 10 20 30 40 50 60 70 80

T 8 6 N /9 'tA Vm[A ] ---1

Bild / Fig. 9

Hochstzulassige Kuhlmitteltemperatur/ Max. allowable cooling medium te mp erature tA = f(ITAVM)

Luftselbst kuhlung / Natural air-cooling KuhIkorper / Heatsink: K0.55-M12-A

Parameter: StromfluGwinkel / Current conduction angle 0

Bild / Fig. 11

U berstrom/ Overload on-state current lT^0Vj = f(t) Luftselbst kuhlung / Natural air-cooling tA = 45°C Kuh Ikor per / Heatsink: K0.55-M12-A

Parameter: Vorlaststrom / Pre-load current ljAv(vor)

(5)

Bild / Fig. 12

Uberstrom / Overload on-state current lT(0V) = f(t) Verstarkte Luftkuhlung / Forced air-cooling, tA= 35 °C Kuhlkorper/H eatsink: K1.1-M12-A, VL = 30 l/s Parameter: Vorlaststrom / Pre-load current IjAV(vor)

Bild / Fig. 14

Hochstzulassiger Durchlaft strom bei Aussetzbetrieb / Max. allowable on-state current at intermittent operation l^i isrr = f(ED)

Luftselbstkuhlung/ Natural air-cooling, tA = 45°C Kuhlkorper / Heatsink: K0.55-M12-A

Parameter: Spieldauer/ Cycle duration SD Vorlaststrom / Pre-load current l j A\/(vor)

Bild / Fig. 13

Hochstzulassiger Durchlaftstrom bei Aussetzbetrieb /M a x. allowable on-state current at intermittent operation It in t = f(ED)

Luftselbstkuhlung / Natural air-cooling, tA = 45°C Kuhlkorper / Heatsink: K1.1 -M12-A

Parameter: Spieldauer / Cycle duration SD Vorlaststrom / Pre-load current l j Av(Vor)

Bild / Fig. 15

Hochstzulassiger DurchlaGstrom bei Aussetzbetrieb /M a x. allowable on-state current at intermittent operation I^int = f(ED)

Verstarkte Luftkuhlung / Forced air-cooling, tA= 35 °C Kuhlkorper/H eatsink: K1.1-M12-A, V L = 30 l/s Parameter: Spieldauer / Cycle duration SD

Vorlaststrom / Pre-load current l j Av(Vor)

Bild / Fig. 16

Grenzstrom / Max. overload on-state current lj(ov)M = f(t)> VRM = 0,8 Vr^ Luftselbstkuhlung / Natural air-cooling, tA= 45 "C

Verstarkte Luftkuhlung / Forced air-cooling, tA= 35 °C, V L = 30 l/s Kuhlkorper/H eatsink: K1.1-M12-A und K0.55-M12-A

Belastung aus / Surge current occurs:

a - Leerlauf/ No-load conditions

b - Betrieb mit Dauergrenzstrom / During operation at max. average on-state current lTAVM

Bild / Fig. 17

Steuercharakteristik mit Zundbereichen / Gate characteristic with trigging areas vG = f(iG) , VD = 6 V

Parameter: a b c d

S teuerim pulsdauer/trigger puls duration ta [ms] 10 1 0,5 0,1 Hochstzulassige Spitzensteuerverlustleistung /

Max. rated peak gate power dissipation [W] 40 80 100 150

(6)

1Q0 2 3 4 5 6 7 8 I Q 1 2 3 4 5 6 7 8 ^ 1

T86N /19 -di/dt [A/(JS]'

Bild / Fig. 18

Zundverzug / Gate controlled delay time t gd = f(iG) t vj = 25 :C. d iG /d t= iG M /1|JS

a - Maximaler Verlauf / Limiting characteristic b -Typischer V erlauf/Typical characteristic

Bild / Fig. 19

Sperrverzogerungsladung / Recovered charge Qr = f(di/dt) Vj = *vj max' VR = °>5 V RRM> VRM = °>8 V RRM

Parameter: Durchlaftstrom / On-state current iTM

1 2 4 10 20 40 100 200 400 1 2 4 10 20 40 100 H--- m s--- ►H--- s --- H

T86 N/20 t ---

Analytische Elemente des transienten Warmewiderstandes Z th jc Pro Zweig fur DC Analytical elements of transient thermal impedance ZthJC per arm for DC

Pos. n 1 2 3 4 5 6 7

Mthn[C/W ] 0,0233 0,0433 0,094 0,122 Tn [s] 0,00137 0,01 75 0,263 1,71

Analytische Funktion/ Analytical function:

nm ax ^

ZthJC = D R t h n d - ^ ) n=1

Bild / Fig. 20

Transienter innerer Warmewiderstand /Transient thermal impedance ZthJC = f(t)

Parameter: StromfluGwinkel/ current conduction angle©

Cytaty

Powiązane dokumenty

We find that, irrespective of the specific organic molecule and dielectric used, leakage current flowing through the gate insulator results in an irreversible degradation of

In the case of space charge injection, two types of processes may occur with positive V GS : electron injection from the channel, which would result in a lower channel electron

Fig-6 : Relative variation of gate trigger current and holding current versus junction

4: Relative variation of gate trigger current, holding current and latching current versus junction temperature (typical

The concept of active power measurement based on real-time digital processing of voltage and current signals is best’ introduced with a digital approximation definition.. In

If there is external illumination, in a phototube can exist some current, depending on voltage and incident light intensity.. Dependence of photocurrent i on

Changes in the physical length of the space vector output currents of the voltage inverter result from the changes of the con- trol process, or due to asymmetry of load

Za każdą prawidłową odpowiedź do zadań 1-6 przyznaje się punkty zgodnie z podanym