• Nie Znaleziono Wyników

Earthworm coelomocyte extracellular traps : structural and functional similarities with neutrophil NETs

N/A
N/A
Protected

Academic year: 2022

Share "Earthworm coelomocyte extracellular traps : structural and functional similarities with neutrophil NETs"

Copied!
14
0
0

Pełen tekst

(1)

CellandTissueResearch(2018)371:407–

414https://doi.org/10.1007/s00441-018- 2787-0

REVIEW

Earthwormcoelomocyteextracellulartraps:structuralandfunctionalsim ilaritieswithneutrophilNETs

JoannaHoma1

Received:6October2017/Accepted:4January2018/Publishedonline:5February2018

#TheAuthor(s)2018.Thisarticleisanopenaccesspublication

Abstract

Invertebrateimmunityisassociatedwithnaturalmechanismsthatincludecellularandhumoralelements,similartothosethatplayaro leinvertebrateinnateimmuneresponses.Formationofextracellulartraps(ETs)isanewlydiscoveredmechanismtocombatpathoge ns,operatingnotonlyinvertebrateleucocytesbutalsoininvertebrateimmunecells.TheETcomponentsincludeextracellularDNA(e xDNA),antimicrobialproteinsandhistones.FormationofmammalianETsdependsonenzymessuchasneutrophilelastase,myelop eroxidase,thecitrullinationofhistonesandproteaseactivity.Itwasconfirmedthatcoelomocytes—

immunocompetentcellsoftheearthwormEiseniaandrei—arealsoabletoreleaseETsinaprotease-dependentmanner,depen- dentorindependentoftheformationofreactiveoxygenspeciesandrearrangementofthecellcytoskeleton.Similartovertebrateleukoc ytes(e.g.,neutrophil),coelomocytesareresponsibleformanyimmunefunctionslikephagocytosis,cytotoxicityandsecretionofh umoralfactors.ETsformedbycoelomocyteanaloguestoneutrophilETsconsistofexDNA,histoneH3andattachedtothesestruc turesproteins,e.g.,heatshockproteinsHSP27.ThelatterfactconfirmsthatmechanismsofETreleaseareconservedinevolution.The studyonAnnelidaaddsthisanimalgrouptothelistofinvertebratescapableofETrelease,butmostimportantlyprovidesinsidesintoinn atemechanismsofETformationinloweranimaltaxa.

KeywordsCoelomocytes.Amoebocytes.Eleocytes.Extracellulartraps.Histones

Introduction

Theearthwormimmuneresponsedemonstratesanumberofstr ucturalandfunctionalsimilaritiestotheinnateimmunesyst emofvertebrates.Ininvertebrateswithasecondarybodycavity(

e.g.,Annelids),coelomicfluidisrichinmanyproteins(lysozym e,fetidins,lysineprotease)andspecificcells,i.e.coelomo cytes,whichcanbeclassifiedasamoebocytesandeleocytes(B ilejetal.2010).Ontheotherhand,ininverte-

bratesthathaveanopencirculatorysystem,suchasarthro- pods(insects,crustaceans)andmolluscs,hemocytesarere- sponsibleforphagocytosisandcytotoxicity.Hemocytescanbe furthersubdividedintohyalinehemocytesandgranuloc ytes.Thesecells,togetherwithnumeroushumoralcomponent s(e.g.,cecropins,defensins,proteases)arepresent

*JoannaHomajoanna.homa@uj.edu.p l

1

DepartmentofEvolutionaryImmunology,InstituteofZoologyandBio medicalResearch,JagiellonianUniversity,Gronostajowa9, 30-387Krakow,Poland

(2)

inthehemolymph(Söderhäll2010).Regardlessoftheadopt edcellnamesofcoelomocytesandhemocytes,theirkill- ingmechanismsaresimilartoeachotherandpathogende- structionisbasedonphagocytosis,enzymeactivation(e.g.,ly sozyme),andformationofreactiveoxygenspecies(ROS)and antimicrobialproteins(e.g.,defensins)

(Bilejetal.2010;Söderhäll2010).Recentpapersalsoconfirm thepossibilitythatinvertebratephagocytesarecapabletoprod uceextracel-lulartraps(ETs)

(e.g.,Homaetal.2016a;Robbetal.2014).

Anatomyoftheearthwormimmunesystema ndimmuneeffectormechanisms

Theearthwormsareprotostomiananimalspossessingtrueco elomcavityfilledwithcoelomicfluidthatnotonlyformsastabl ehydrostaticskeletonbutalsoincludesmanycellsoftheimmu nesystem,coelomocytesandhumoralfactors(Bilejetal.2010;

Cooperetal.2002).Thecoelomocytesoriginateinthemesench ymalliningofthecavity(Bilejetal.2010)andaretheprimaryim munecellsofearthworms.Insimplifiedno-

menclature,coelomocytesaredividedintoamoebocytes(hy- alineandgranular)andcellsderivedfromchloragogentissue

(3)

CellTissueRes(2018)371:407–414 3 surroundingthegut,calledeleocytes/chloragocytes(Kureke

tal.2007;Bilejetal.2010)

(Fig.1a,b).Takingintoaccountphysicalparametersmeasuredb yflowcytometry,smallandlargecoelomocyteswithdifferentf unctionalcharacteristicsmaybedistinguished(Cooperetal.1 995,2002;Cossarizzaetal.1996;Quaglinoetal.1996).Inturn ,Engelmannandcoworkersidentifiedusingflowcytometrythr eedifferent

populationsofcoelomocytes:(1)R1–granularcoelomocytes, (2)R2–hyalinecells,and(3)R3–

chloragocytes/eleocytes(Engelmannetal.2004,2005).Moreo ver,insomeolderclas-

sificationsbasedoncytomorphologyandcytochemistry,theco elomocytesoftheannelid(e.g.,Eiseniafetida)weredividedint ofourmajorcategories:acidophils,basophils,chlorago cytescells,andneutrophils(SteinandCooper

Fig.1A natomyoftheearthworm(Eiseniaandrei)immunesystemandim muneeffectormechanisms.aCross-

sectionofearthwormandtheirelementsofimmunesystem:surroundingt hegut(G),chloragogentissue(Ch)andfree-

floatingcoelomocytes;amoebocytesandfreeeleocytesderivedfromc hloragogentissue.Representativeimagesofcoelomocytes’basicim munereactions:bcross-

sectionwithvisiblechloragogentissue(Ch)andincoelomcavityfreecoelo

mocytes(C),cphagocytosis,d ROSproduction,cellcontainingdarkblue NBT

(4)

408 CellTissueRes(2018)371:407–414 formazandeposits(*),emovingcells–

chemotaxis,fencapsulation,gROSandproPOactivationintheformedka psuleandhmelaninsynthesis(darkdeposits)whichfinallyleadingtobro wnbodiesformation,e.g.,inematodesclosure,visibleinsidethecapsul e(arrow),j thelatestmechanismofcoelomocytesresponse,production ofextracellulartraps(ETs)andkjointactionofencapsulationandET sformationprocess(Sytoxorangestaining).Scalebar25μm

(5)

1978).Amoebocytesareinvolvedintheimmuneresponsein cludingphagocytosis(ValemboisandLassègues1995),ROSp roduction(Homaetal.2013,2016b),andcytotoxicity(NKcell- likeactivity)(Cossarizzaetal.1996).Theyalsoex-pressToll- likereceptors(TLRs)

(Škantaetal.2013;Fjøsneetal.2015).Itisknownthatantimicro bialAMP-

likeproteinoftheneutrophilgranulecontentinthefunctionaresi milartolipopolysaccharide-

bindingprotein(LBP)andbacterialpermeability- increasingprotein(BPI)

(WiesnerandVilcinskas2010).Similarlytoneutrophils,coel omocytesoftheearthwormEiseniaandreiexpressgenesunco dingforatleasttwoconserveddomains(Ealbp/bpiandccf)w iththeabilitytobindlipopolysaccharide(LPS).Theydifferinth eirtissueexpressionandsharehomologywithLBP/BPIfamily(

Škantaetal.2016).Accordingtotheauthors,theup- regulationofmRNAlevelofEalbp/bpiafterbacterialin- fectionsuggeststheirsignificantroleinearthwormimmunedef ense(Škantaetal.2016).

Ontheotherhand,eleocytessynthesizeandreleasehumor- alfactors,suchasagglutininsandopsonins(Bilejetal.2010).Imp ortantantimicrobialpeptides(AMPs),belongingtotwostructu rallydistinctclasses,knownasthedefensinsandthecathelicidi ns,aremainlyproducedbyvertebrateneutrophils(Wiesnerand Vilcinskas2010).Severalauthorshavedemon-

stratedthatearthworminnateimmunityalsodependsoncoelo mocytesthatsynthesizeandsecretehumoralantimicro- bialmolecules(e.g.,lysenin,fetidin,coelomiccytolyticfactor1, CCF-1)

(e.g.,Bilejetal.2000,2001,2010;Engelmannetal.2005).A mongsubpopulationsofcoelomocytes,lyseninismainlyprodu cedbychloragocytesanditsexpressioncanbemodulatedbyGra m-

positivebacterialexposure(Opperetal.2013).Inturn,CCF- 1islocalizedinthecellsofchloragogenoustissueadjuncttot hegutwallandinthetrans-

lucentfreelargecoelomocytes,i.e.incellswithmacroph age-likefunction(Bilejetal.1998).Amongothers,CCF- 1isinvolvedinpathogenrecognitionandleadstoitsimmobiliz ation(Bilejetal.2001).Inaddition,eleocytes,de-

rivedfromchloragogentissue,areresponsibleformaintainingt heconstantpHofcoelomicfluidandstorageofglycogenandlipid s(Affaretal.1998;FischerandMolnár1992).Moreover,eleocyt egranulesstoreriboflavin(B2vitamin)

(Plytyczetal.2006).Intheearthwormcoelomcavity,numerou senzymessuchasproteasesarealsopresent.Theproteasesexert antimi-

crobialeffectsandtakepartintheactivationofthepropheno loxidasesystem(pro-PO)

(Valemboisetal.1994).Thefinalstageofpro- POactivationismelanizationandelim-

inationofpathogens(e.g.,nematodes)(Fig.1g–i).

Earthworms,duringtheirdefenseagainstpathogens,usesev eralelementarymechanisms.Phagocytosisbycoelomoc ytes,similarlytothatofvertebrates,canbemodu-

latedbyhumoralcomponents,opsonins,whichcoatthepar- ticleandthuspromoteitsphagocytosis.Moreover,theyarecapa bleofROSandnitricoxide(NO)production(Homaetal.

(6)

2013;Bernardetal.2015;Homaetal.2016b;ValemboisandLa ssègues1995).Furthermore,coelomocyteshaveavarietyofd efensemechanismstoresisttheharmfulsideeffectsofROS.

Theyincludeexpressionofsuperoxidedismutase(SOD)wh ichcatalyzestheconversionofsuperoxideintohy-

drogenperoxideandoxygen,aswellasglutathioneperoxi- dasesandcatalases,whichthendegradehydrogenperoxide(

Homaetal.2016b;Saint-Denisetal.1998).

Theabove-mentionedmoleculesarekeyfactorsinthepro- cessofchemotaxis,phagocytosisandencapsulation,i.e.clos- ingthepathogensinsidestructurescalledBbrownbodies^(B ilejetal.2010;Valemboisetal.1992)(Fig.1c–

i).Encapsulationisacellularimmuneresponseusedagainstp athogensthataretoolargetobephagocytosed(Valemboisetal .1994).BBrownbodies^aregraduallypushedintotheposteri orpartsoftheearthwormbody,andfinallydisposedwithseg mentsthroughthenaturalamputationcalledautotomy(Bilejet al.2010).

Inmanygroupsofinvertebrates,thepro-

PO,anelementofthehumoralinnateimmunesystem,isthefirstl ineofdefenseinthefightagainstpathogens.Phenoloxidase(P O)isapartofacomplexsystemofpatternrecognition,madeofpr oteinasesandproteinaseinhibitors,constitutingtheso- calledprophenoloxidase-

activatingsystem(Söderhäll2010).Thisinnateimmunerea ctionprovidestoxicquinonesubstancesandothershort- livedreactionintermediatesinvolvedintheformationofmore long-

livedproducts,suchasmelanin,thatphysicallyencapsulatepa thogens(Valemboisetal.1992,1994).Recentevidencealsost ronglyimpliesthatthemelani-

zationcascadeprovides,orisintimatelyassociatedwith,theap pearanceoffactorsstimulatingcellulardefensebyaidingpha gocytosis.Inannelids,thepro-POsystemisstrictlyin- volvedinencapsulationandtheformationofbrownbodies,in whichmelaninandlipofuscinaresynthesized.Therefore,itisn otsurprisingthatseveralstudieshaveunequivocallyshownt heimportanceofthemelanizationreactionfortheoutc omeofseveralspecificpathogen–hostencounters,includ- ingbacterialinfections.

Extracellulartrapproductio n

SincethediscoveryofETs,theresultsofresearchconductedon vertebratecellshaveaddedmuchinformationonboththecomp onentsofETsandthemechanismsnecessarytoinitiatetheirfor mation(Brinkmannetal.2004;Neelietal.2009;Papay annopoulosetal.2010;Kolaczkowskaetal.2015).Thepheno menonofcreatingETswasfirstdescribedformam-

malianneutrophils(Brinkmannetal.2004).Theauthorscon- cludedthat,uponstimulationwithGram-

positive(Staphylococcusaureus)orGram-

negative(SalmonellatyphimuriumandShigellaflexneri)b acteria,aswellasundertheinfluenceofphorbol12-

myristate13-acetate(PMA),LPSandinterleukin-8(IL- 8)neutrophilsareabletoproduceETs,

(7)

7

CellTissueRes(2018)371:407–414

so-calledneutrophilETs(NETs),inwhichDNAandcytoplas- micgranulefactorsarecontained.Thefollowingyearsbroug htreportsontheabilitytoalsocreateETsbyotherpop-

ulationsofmammalianleukocytes,i.e.,monocytes/macro- phages,eosinophils,andmastcells(Chowetal.2010;Yousefi etal.2008)inmice(Kolaczkowskaetal.2015),sheepandcattle(

Yildizetal.2017),aswellasbyothernon-

mammalianvertebrateneutrophilsandmacrophages,e.g.,tel eostfish(Pijanowskietal.2013)andchicken(Chuammitrieta l.2017).TheproductionofETsisimportantinthedefenseagain stpathogens,butthereisstillnoclearevaluationofthewholer angeofconsequencesoftheiracti-

vation.Although13yearshaspassedbysincethediscoveryofETs tructures,thenumberofreportsonETsininvertebratesisstilllimi ted.Todate,ithasbeenfoundthatETsareproducedbythehemoc ytesofshrimps(Ngetal.2013,2015;Koiwaietal.2016),crab(C arcinusmaenas)

(Robbetal.2014),oyster(Crassostreagigas) (Poirieretal.2014),gastropodslugspe-

cies(ArionlusitanicusandLimaxmaximus),andsnail(Ac hatinafulica)(Langeetal.2017).Thelatestreportsindi- catethatthecellsofsimplerorganisms,e.g.,thesocialamoeba(D ictyosteliumdiscoideum),alsohaveanabilitytoreleaseextracellu larDNAwiththeformationofstructuressimilartoNETs(Zhan getal.2016;ZhangandSoldati2016).Earthwormcoelomoc ytesshowasimilarmechanism(Homaetal.2016a).

InsomestudiesofthestructureofETsreleasedfrominver- tebrateimmunocompetentcells,onlythepresenceofextracel- lularDNA(extDNA)wasfoundaftercellimmunologicalstim ulation(Koiwaietal.2016).Otherstudieshaverevealedthathist ones(Ngetal.2013;Robbetal.2014;Homaetal.2016a),hsp27 (Homaetal.2016a)andc-

typelysozyme(Koiwaietal.2016)arealsoattachedtoextDNA.

ThemostdetailedcharacteristicofETswasrevealedinshrimph emo-

cytes(Ngetal.2013,2015).TheydemonstratedthatE.colicanb ecapturedbyETsandthathistoneH1proteinscolocalizedwi thDNAfibers.AveryinterestingprocessofETformationwasa lsofoundinsocialamoeba(Zhangetal.2016;ZhangandSoldat i2016).Duringtheemergenceofmulticellularity,theseanima lsdevelopedaprimitiveimmunesystemintheformofadedicated setofspecializedphagocyticcellsincludingcells(Sentinelcel ls)whichreleaseETstructures.

Basedonknowledgegainedthroughresearchonvertebratece lls,itisknownthatthemechanismofETformationconsistsofsev eralbasicsteps,asfollows:(1)productionofROSand

(2)thetransportofproteases,includingneutrophilelastasere sponsibleforthechromatindecondensation,fromcytoplas- micgranulestothecellnucleus(PapayannopoulosandZychli nsky2009).ThenextstepoftheETformationisthecitrullinatio nofhistones,and,finally,generationofETs,whichmeansthro wingunfoldedDNAtogetherwithgranulecomponentsoutoft hecell(Brinkmannetal.2004;

Kolaczkowskaetal.2015).Ingeneral,theproteinsattachedtone utrophilETsincludehistones,proteases(e.g.,neutrophilelasta se,cathepsinG),oxidativeenzymes(e.g.,myeloperoxida se,MPO)andantimicrobialproteinssuchaslactoferrin(Gold mannandMedina2013;VorobjevaandPinegin2014).Itshoul dbeunderlinedthathistonesarethemainproteincomponents ofchromatinthatcompact,helpcondensateDNA,andposs essantimicrobialproperties(Brinkmannetal.2004).Moreov er,recentresearchsuggeststhattheunderlyingstructureofNE Tsisconsiderablyorga-

nizedandthatpartoftheirproteincontentplaysanimportantrolei nmaintainingtheirmesharchitecture(Piresetal.2016).

Instudiesonearthwormcoelomocytes,wedemonstratedth eappearanceofNET-

likestructures(Fig.1j,k)asaresultofcoelomocytestimulationwi thLPS,zymosan,PMA,aswellasMicrococcuslysodeikusand Xenorhabdusbovienii(symbioticbacteriainhabitingnematod es).Moreover,itwasrevealedthatthecoelomocyteETsarebuilt, amongothers,ofnuclearDNA,H3histones(Fig.2a–

g)andconservedheatshockproteinsHSP27(Homaetal.2016a ).However,itshouldbementionedthatthelackofspecificantibo diesmakesstudiesofinverte-brateETsverydifficult.

TheresultsindicateastrongsimilarityofinvertebrateETstoo riginallydescribedETsformedbyvertebrateneutrophils.More over,bothinstudiesofvertebrateandinvertebrateETs,inhibitor sofproteases,neutrophilelastaseandNADPHoxi-

dasewereusedtorevealthemechanismsresponsibleforETtrigg ering.Serineproteases,includingelastase-

likeproteasecalledearthwormfibrynolyticenzyme(EFE),hav ealsobeendescribedinAnnelida(Zhaoetal.2007).EFEdegrade sfibrin-

ogen,elastinandfibrin,butalsopartiallyconvertsplasmino- genintoactiveplasmin(Zhaoetal.2007).Inourexperimentsone arthwormETs,wefoundthatproteaseinhibitorsincludingserin eproteasesandelastaseinhibitETformationwhilethei n h i bi t o r so faut o p ha g yan dt hein h i b i t or so fapoptosis- promotingcaspasesdidnothinderthisprocess(Homaetal.20 16a).Surprisingly,itwasshownthatNETformationinhum anneutrophilsisdependentonautophagy(Remijsenetal.2011 a).

Intriguingly,P ieterseetal.

(2016)observedthat,inwholebloodculturesexvivoorinvitroint hepresenceofplatelets,allLPSserotypesinducedBvital^NETfo rmation.Thisplatelet-

dependentr eleaseo f N ETso ccurredr apidlyw ithoutneutrophilc elldeathandwasindependentof ROSformationanda utophagy butr equiredplateletTLR4-an dCD62P-

dependentplatelet–

neutrophilinteractions.Nevertheless,theinhibitionofROS(

withDPI)orautophagy(withwortmannin)didnotinfluenceBvita l^NETosisinducedbyLPS-

O111(Pieterseetal.2016).Moreover,itwasrecentlydemonstrate dthatLPS-

activatedplateletsinduceBvital^NETosisduringsepsis(Maand

(8)

CellTissueRes(2018)371:407–414 410

Kubes2008;YippandKubes2013).ThisformofNETreleaseisf undamentallydif-

ferentfromBsuicidal^NETosis;hence,Bvital^NETosisoccurs

(9)

Fig.2Earthworm(Eiseniaandre i)coelomocytesformextracellular traps(ETs)composedofextracell ularDNA(extDNA)andhistones.

aRepresentativeimagesoflivecoe lomocytesthatreleasedETsorarei naprocessoftheirrelease(ETting).

C oelomocytesretrievedfromE.an dreiwereseatedinslidechambersa ndstimulatedwithPMAand,after 24h,Sytoxorangewasaddedtostai ntheextDNA.bAutofluorescente leocytes(*,greenfluorecscenceis derivedfromriboflavin)andamoe bocytes(^),csomecoelomocytesi naprocessofextrudingtheirDNA(

ET).dRepresentativeimagesofim munofluorescencestainingofETs releasedbyE.andreicoelomocyt escollectedfromearthwormstreat edfor24hwithbacteriaX.bovienii .Retrievedcoelomocytesweresea tedinslidechambersandtheimmu nostainingwasperformedafter24 h;additionally,eSytoxorangewas usedtocounter-

stainextDNA.f,gImmunostainin gwithspecificantibodiesrevealed thatextDNA(red)isdecoratedwit hhistones3(H3,green).Scalebar 25μm

muchfaster,isnotdependentonautophagyorROS,andisnotasso ciatedwithdirectlyticcelldeath.Incontrasttoapoptoticcells,NE Tformationinvolveddifferentmechanismswithoutsignalssucha sphosphatidylserinebeforeplasmamembranedisruption(Remijs enetal.2011a).Moreover,caspaseactivityisonlydetectedduring spontaneousneutrophilapoptosis,butnotduring,e.g.,PMA- inducedNETosis(Remijsenetal.2011b).Furthermore,incoel omocytes,theNADPHoxidaseinhibitor,suppressingtherespirat oryburst,exertedaninhibito-

ryeffectontheETsformationincellsstimulatedwithPMAbutnot uponstimulationwithbacteria.Theseresultshaveconfir medearlierobservationsinvertebrates(Kolaczkowskaetal.2015

;Pijanowskietal.2013)thattheproductionofETsisnotalwaysR OS-dependent.

Asmentionedabove,theETscontainhistones,but,inter- estingly,partsofthemarecitrullinatedhistones.Itisknownthatt hepackingofnuclearchromatinisassociatedwiththepresence ofhistones,anditsdecondensationispartiallyde-

pendentonanappropriatemodificationoftheseconservative

proteins.Thereisalsoevidencethathistonesaresubjecttoanum berofpost-

translationalmodifications,fromwhichcitrullination(deimi nationofguanidineresiduesinarginines)inhistonesisessentia lforNETformation.Invertebrates,PAD4(peptidylargininede iminase4)istheenzymeresponsi-

bleforhistonecitrullination(Rohrbachetal.2012).As,todate ,PAD4hasnotbeendetectedinlowerorganisms(Bachand2 007),themodeofET-

containedhistonecitrullinationstillremainsunclear.Surprisi ngly,inourrecentstudy(Homaetal.2016a),aninhibitoryeff ectofa well-knownPAD4inhibitor(Cl-

amidine)onETformationinearthwormcoelomocytes,aswel lasthepresenceofcitrullinatedH3histoneswithintheETs,wa sfound.Theseresultssuggestthepotentialtocarryoutthepro cessofH3histonecitrullinationinearthworms,andthep ossibilityofthepresenceofanenzymethatplaysasimilarrolea ndshowssusceptibilitytothestandardPAD4inhibitor.Tosupp ortthisconclusion,itisworthnotingthatthemechanismoftheE Tformationininvertebrates,includingearthworms,exhibits

(10)

412 CellTissueRes(2018)371:407–414

manysimilaritieswiththemechanismdescribedinvertebrates(

Table1).Asmentionbefore,thesesimilaritiescanbefoundeven inthepresenceandactivityofserineproteases,produc- tionofROSandtheactivityofantioxidantenzymes.

Studiesconductedtodatehaveallowedscientiststoiden- tifyconsiderablesimilaritiesbetweentheformationandcom- positionofETsinearthwormsandstructuresformedbyver- tebrateneutrophils.Itshouldbenoted,however,thatmanyaspe ctsrelatedtotheinvertebrateETshavenotyetbeenverified.

Onemorequestionwhichhasnotbeenrevealeduntilnow istheinvolvementofETsintheprocessoftheeradicationoflarge rpathogens.Theimmunesystemofbothvertebratesandinverte bratescontrolspathogensofvaryingsizes,rangingfromsmallv irusesandbacteriatofungiandparasites.Largepathogens(e.g., parasites)avoidphagocytosisandthereforecanbedifficulttore move(Branzketal.2014).Asexplainedintheprevioussection,e ncapsulationandformationofbrownbodiesplayaparamountro leinremovingbiggerpathogens(e.g.,nematodes),andelimin atingbacteriaorthecellscontainedinthestructureofcapsule(V alemboisetal.1994).Withinsuchaggregates,activatedcoelom ocytesgenerateROS,andactivatetheproPOsystem.Thelatteri sdependentontheactionofproteases.Inturn,melanindepositio noccurswithinthebordersofbrownbodies.Themelaninisinvol vedintheseparationofpathogensfromthecoelom.Theidentity ofmechanisms/moleculesinvolvedintheformationofbrownbo diesandETssuggestthattheseareconnectedprocesses.And,i ndeed,itwasfoundthattheextracellularDNAmayfacilitatet heagglomerationofcellsandformationofbrownbodies(Homa etal.2016a).

Lifeisallaboutevolution:fromETstoNETs

Theearthwormsimmunesystemwhenstimulatedshowsphag ocytosis,encapsulation,agglutination,opsonization,clotting andlysis.Thelistofearthwormdefensemechanismsdemonstra tedthatcoelomocytescanalsoformETswhichsuccessfullyt rapbacteria.Similartovertebrates,earthworm

ETsareDNase-andheparin-

sensitive.ETsformationbycoelomocytesdependsonprotease activitybutisindependentofcoelomocyteapoptosisandNADP Hoxidase-independentinthecaseofbacteria-

inducedETs,incontrasttoROS- dependentETformationuponPMA-

stimulation.Moreover,coelomocyteETstrapbacteriaanda reinvolvedintheformationofcellaggregates(Homaetal.2016 a).Furthermore,theresultsobtainedonSentinelcellsofsociala moebae(Zhangetal.2016)arestrongevidencethatDNA- basedcell-

intrinsicdefensemechanismsemergedmuchearlierthanthoug ht,about1.3billionyearsago(ZhangandSoldati2016).Interest ingly,inplants,uponinfection,special-

izedcellsonthesurfaceofarootalsoreleasetheirchromatininapr ocessthatrequiresROSproduction(Hawesetal.2011).TheseN ET-

likestructureshavea defensefunction,asdegradingthemwit hDNasesmakestheplantmoresuscepti-bletofungalinfections.

Ininvertebrates,thereleasedchromatinparticipatesinde- fensenotonlybyensnaringmicroorganismsandalsobyex- ternalizingantibacterialhistonestogetherwithothercoel omocyte-/haemocyte-deriveddefensefactors,but,cru- cially,alsoprovidesthescaffoldonwhichintactcellsassem- bleduringencapsulation;aresponsethatsequestersandkillspot entialpathogensinfectingthebodycavity(Robbetal.2014 ).

WhatistheET/NETfunction,immobilizationoractive killing?

TheantimicrobialactivityofETsislikelytheresultacombinati onofthecomponents,andtheireffectsareen-

hancedbythehighlocalconcentrationsachievedintheNETstru cture.Lastly,antibodiesagainsthistonespreventNET- mediatedkillingofvariousmicroorganisms(Brinkman netal.2004),underliningthefindingthattheseabundantprote inskillmicrobesveryefficiently.Histonesareindispensablefor eukaryoticandarchaeallife.Histonesarehighlyconservedthr oughevolution,formthebasicunitofthechromatin,thenucl eosome,andhavebeenintensivelystudiedandarewellchara cterized(ThatcherandGorovsky1994;KornbergandLorch19 99).Inmammals,extranuclearhistonesarefoundinthecytoplas mandonthesurfaceofcellsandarereleasedabundantlyinNETs(

Urbanetal.2009;

Table1Summaryofsimilaritiesbet weene arthwormcoelomocytese x tracellulart rapsandv ertebraten eu trophilextracellulart raps

Neutrophilextracellulartrapsa Coelomocytesextracellulartrapsb

extDNA extDNA

Histones Histones(H3)

NeutrophilelastaseNE Elastase–likep roteases

MyeloperoxidaseMPO Proteases

PAD4/Cytrulination PAD4-notdetectedininvertebrates/cytrulination?

Cytoplasmic/granularproteins Cytoplasmic/granularproteins ROS-dependentornon-dependent ROS–dependentornon-dependent

(11)

CellTissueRes(2018)371:407–414 3

aB

rinkmannetal.2004;Papayann opoulosandZychlinsky2009

bH

omaetal.2016a

(12)

BrinkmannandZychlinsky2012).Invertebratehistonesalsosh owantimicrobialactivityagainstawiderangeofmicroor- ganisms:bacteriaandparasitesinvitroandinvivoandhavethea bilitytobindbacteriallipopolysaccharideandotherpathogen- associatedmolecules(Nikapitiyaetal.2013).Forexample,am ixofcorehistoneproteinsH2A,H2B,H3,andH4,isolatedfromt hehemocytesofthePacificwhiteshrimp,haveantimicrobialact ivityagainstMicrococcusluteus(Patatetal.2004).

Theexpulsionofchromatinasaweaponmightwellbeanancie nttoolconservedinevolutionintheformofETs.Exploringho wETsaremadeandtestingtheirrelevancedur-

ingdiseaseandinhealthcouldenhanceourunderstandingofthis novelaspectofimmunity.ETscould,onthehostside,helporg anismssurviveinanenvironmentwherepredationandparasiti smbymicrobesareathreat.However,ETsdrivetheevolutionar yselectionofmorepathogenicstrainsofmi-

croorganisms(BrinkmannandZychlinsky2012).

Suchatacticoffightpathogenshasalwaysbeenneeded,even intheworldofplants(Wenetal.2009;Hawesetal.2011).ETf ormationreliesoncommoncellularandmolecularmechanisms fromvertebratestoinvertebrates.

Inconclusion,theknowledgeabouttheproductionofETsini nvertebratesconfirmsthattheextracellularreleaseofchro- matinisanancientdefenseprocess,andhasbeenconservedthro ughevolution.

AcknowledgementThisstudywassupportedbytheNationalScienceCen treofPoland(grantnumber2014/15/B/NZ6/02519,Opus8)andK/ZD S/006311.

OpenAccessThisarticleisdistributedunderthetermsoftheCreativeCo m mo nsAt tribu t ion4. 0In t ernat iona lLicen se(ht tp://creativecommo ns.org/licenses/by/4.0/),whichpermitsunrestricteduse,distribution,andr eproductioninanymedium,providedyougiveappro-

priatecredittotheoriginalauthor(s)andthesource,providealinktotheCreat iveCommonslicense,andindicateifchangesweremade.

References

AffarEB,DufourM,PoirierGG,NadeauD(1998)Isolation,purificationan dpartialcharacterizationofchloragocytesfromtheearthwormspeci esLumbricusterrestris.MolCellBiochem185:123–133

BachandF(2007)Proteinargininemethyltransferases:fromunicellulareu karyotestohumans.EukaryotCell6:889–898

BernardF,BrulleF,DumezS,LemiereS,PlatelA,NesslanyF,CunyD,Dera mA,VandenbulckeF(2015)Antioxidantresponsesofanne- lids,BrassicaceaeandFabaceaetopollutants:areview.EcotoxicolEn vironSaf114:273–303

BilejM,RossmannP,SinkoraM,HanusováR,BeschinA,RaesG,DeBaets elierP(1998)Cellularexpressionofthecytolyticfactorinearthwor msEiseniafoetida.ImmunolLett60:23–29

BilejM,DeBaetselierP,BeschinA(2000)Antimicrobialdefenseoftheeart hworm.FoliaMicrobiol(Praha)45:283–300

BilejM,DeBaetselierP,VanDijckE,StijlemansB,ColigeA,BeschinA(200 1)Distinctcarbohydraterecognitiondomainsofaninvertebrate

defensemoleculerecognizegram-negativeandgram-positivebac- teria.JBiolChem49:45840–45847

BilejM,ProcházkováP,ŠilerováM,JoskováR(2010)Earthwormim- munity.In:SöderhällK(ed)Invertebrateimmunity.Springer,NewY ork,pp66–79

BranzkN,LubojemskaA,HardisonSE,WangQ,GutierrezMG,Brown GD,PapayannopoulosV(2014)Neutrophilssensemicrobesizeands electivelyreleaseneutrophilextracellulartrapsinresponsetolargepat hogens.NatImmunol15:1017–1025

BrinkmannV,ReichardU,GoosmannC,FaulerB,UhlemannY,WeissDS, WeinrauchY,ZychlinskyA(2004)Neutrophilextracellulartrapsk illbacteria.Science303:1532–1535

BrinkmannV,ZychlinskyA(2012)Neutrophilextracellulartraps:isim- munitythesecondfunctionofchromatin?JCellBiol198:773–783 ChowOA,vonKöckritz-

BlickwedeM,BrightTA,HenslerME,ZinkernagelAS,CogenAL, Gal loRL,MonestierM,WangY,GlassCK,NizetV (2010)Statin sEnhanceFormationofPhagocyteExtracellularTraps.CellHostM icrobe8:445–454

ChuammitriP,OstojićJ,AndreasenCB,RedmondSB,LamontSJ,PalićD(

2017)Chickenheterophilextracellulartraps(HETs):novelde- fensemechanismofchickenheterophils.VetImmunolImmun opathol129:126–131

CooperEL,CossarizzaA,SuzukiMM,SalvoliS,CapriM,QuaglinoD,Fran ceschiC(1995)Autogeneicbutnotallogeneicearthwormef- fectorcoelomocyteskillthemammaliantumorcelltargetK562.CellI mmunol166:113–122

CooperEL,KauschkeE,CossarizzaA(2002)Diggingforinnateimmu- nitysinceDarwinandMetchnikoff.BioEssays24:319–333 CossarizzaA,CooperEL,SuzukiMM,SalvioliS,CapriM,GriG,

QuaglinoD,FranceschiC(1996)Earthwormleukocytesthatarenot phagocyticandcross-

reactwithseveralhumanepitopescankillhumantumorcelllines.Exp CellRes224:174–182

EngelmannP,MolnarL,PalinkasL,CooperEL,NemethP (2004)Earthw ormleukocytepopulationsspecificallyharborlysosomalen- zymesthatmayrespondtobacterialchallenge.CellTissueRes316:39 1–401

EngelmannP,PálinkásL,CooperE,NémethP(2005)Monoclonalanti- bodiesidentifyfourdistinctannelidleukocytemarkers.DevCompIm munol29:599–614

FischerE,MolnárL(1992)Environmentalaspectsofthechloragogenousti ssueofearthworms.SoilBiolBiochem12:1723–1727

FjøsneTF,StensethEB,MyromslienF,RudiK(2015)GeneexpressionofT LRhomologuesidentifiedbygenome-

widescreeningoftheearthwormDendrobaenaveneta.InnateImmu n21:161–166

GoldmannO,MedinaE(2013)Theexpandingworldofextracellulartrap s:notonlyneutrophilsbutmuchmore.FrontImmunol3:1–10 HawesMC,Curlango-

RiveraG,WenF,WhiteGJ,VanettenHD,XiongZ(2011)Extracellul arDNA:thetipofrootdefenses?PlantSci180:741–745

HomaJ,OrtmannW,KolaczkowskaE(2016a)Conservativemecha- nismsofextracellulartrapformationbyAnnelidaEiseniaandrei:ser ineproteaseactivityrequirement.PLoSONE11:e0159031 HomaJ,StalmachM,WilczekG,KolaczkowskaE(2016b)Effectiveacti

vationofantioxidantsystembyimmune-relevantfactorsre- verselycorrelateswithapoptosisofEiseniaandreicoelomocytes.JC ompPhysiolB186:417–430

HomaJ,ZorskaA,WesolowskiD,ChadzinskaM(2013)Dermalexposuretoi mmunostimulantsinduceschangesinactivityandproliferationofcoelo mocytesofEiseniaandrei.JCompPhysiolB183:313–322

KolaczkowskaE,JenneCN,SurewaardBG,ThanabalasuriarA,LeeWY,S anzMJ,MowenK,OpdenakkerG,KubesP(2015)Molecularmech anismsofNETformationanddegradationrevealedbyintravi- talimaginginthelivervasculature.NatCommun6:6673

(13)

KoiwaiK,AlentonRR,KondoH,HironoI(2016)Extracellulartrapfor- mationinkurumashrimp(Marsupenaeusjaponicus)hemocytesiscou pledwithc-typelysozyme.FishShellfishImmunol52:206–209

(14)

KornbergRD,LorchY(1999)Twenty-

fiveyearsofthenucleosome,fundamentalparticleoftheeukaryotec hromosome.Cell98:285–294

KurekA,HomaJ,PłytyczB(2007)Characteristicsofcoelomocytesof thes tubbyearthworm,A llolobophorac hlorotica(Sav.)E urJ S oilBiol 4 3:121–126

LangeMK,Penagos-TabaresF,Muñoz-CaroT,GärtnerU,MejerH, SchaperR,HermosillaC,TaubertA(2017)Gastropod-

derivedhaemocyteextracellulartrapsentrapmetastrongyloidlarvals tagesofAngiostrongylusvasorum,Aelurostrongylusabstrususa ndTroglostrongylusbrevior.ParasitVectors10:50

MaAC,KubesP(2008)Platelets,neutrophils,andneutrophilextracellu- lartraps(NETs)insepsis.JThrombHaemost6:415–420

NeeliI,DwivediN,KhanS,RadicM(2009)Regulationofextracellularchro matinreleasefromneutrophils.JInnateImmun1:194–201

NgTH,ChangSH,WuMH,WangHC(2013)Shrimphemocytesreleaseext racellulartrapsthatkillbacteria.DevCompImmunol41:644–651 NgTH,WuMH,ChangSH,AokiT,WangHC(2015)TheDNAfibersofshri

mphemocyteextracellulartrapsareessentialfortheclearanceofEsch erichiacoli.DevCompImmunol48:229–233

NikapitiyaC,DorringtonT,Gómez-ChiarriM(2013)Theroleofhis- tonesintheimmuneresponsesofaquaticinvertebrates.InvertebrateSu rvivJ10:94–101

OpperB,BognárA,HeidtD,NémethP,EngelmannP(2013)Revisinglysen inexpressionofearthwormcoelomocytes.DevCompImmunol39 :214–218

PatatSA,CarnegieRB,KingsburyC,GrossPS,ChapmanR,ScheyKL(200 4)Antimicrobialactivityofhistonesfromhemocytesofthepacific whiteshrimp.EurJBiochem271:4825–4833

PapayannopoulosV,ZychlinskyA(2009)NETs:anewstrategyforusingol dweapons.TrendsImmunol30:513–521

PapayannopoulosV,MetzlerKD,HakkimA,ZychlinskyA (2010)Neutr ophilelastaseandmyeloperoxidaseregulatetheformationofneutrop hilextracellulartraps.JCellBiol191:677–691

PieterseE,RotherN,YanginlarC,HilbrandsLB,vanderVlagJ(2016)Neutr ophilsdiscriminatebetweenlipopolysaccharidesofdifferentbacteri alsourcesandselectivelyreleaseneutrophilextracellulartraps.Fr ontImmunol7:484

PijanowskiL,GolbachL,KolaczkowskaE,ScheerM,Verburg-van KemenadeBM,ChadzinskaM (2013)Carpneutrophilicgranul ocytesformextracellulartrapsviaROS-dependentandinde- pendentpathways.FishShellfishImmunol34:1244–1252 PiresRH,FelixSB,DelceaM(2016)Thearchitectureofneutrophile

xtracellulartrapinvestigatedbyatomicforcemicroscopy.Nano8:1 4193–14202

PlytyczB,HomaJ,KoziolB,RozanowskaM,MorganAJ(2006)Riboflavi ncontentinautofluorescentearthwormcoelomocytesisspecies- specific.FoliaHistochemCytobiol44:65–71

PoirierAC,SchmittP,RosaRD,VanhoveAS,Kieffer- JaquinodS,RubioTP,CharrièreGM,Destoumieux-

GarzónD(2014)AntimicrobialhistonesandDNAtrapsininverte brateimmunity:evidencesinCrassostreagigas.JBiolChem28 9:24821–24831

QuaglinoD,CooperE,SalvioliS,CapriM,SuzukiM,RonchettiI ,FranceschiC,CossarizzaA(1996)Earthwormcoelomocytesinvi tro:cellularfeaturesand‘granuloma’formationduringcytotox- icactivityagainstthemammaliantumorcelltargetK562.EurJCellBio l70:278–288

RemijsenQ,KuijpersTW,WirawanE,LippensS,VandenabeeleP,Van denBergheT(2011a)Dyingforacause:NETosis,mechanismsbehind anantimicrobialcelldeathmodality.CellDeathDiffer18:581–588 RemijsenQ,VandenBergheT,WirawanE,AsselberghB,ParthoensE,

DeRyckeR,NoppenS,DelforgeM,WillemsJ,VandenabeeleP

(2011b)Neutrophilextracellulartrapcelldeathrequiresbothau- tophagyandsuperoxidegeneration.CellRes21:290–304

RobbCT,DyryndaEA,GrayRD,RossiAG,SmithVJ(2014)Invertebra teextracellularphagocytetrapsshowthatchromatinisanancientdef enceweapon.NatCommun5:4627

RohrbachAS,SladeDJ,ThompsonPR,MowenKA(2012)ActivationofP AD4inNETformation.FrontImmunol3:360

Saint-

DenisM,LabrotF,NarbonneJF,RiberaD(1998)Glutathione,gluta thione-relatedenzymes,andcatalaseactivitiesintheearth- wormEiseniafetidaandrei.ArchEnvironContamToxicol35:602 –614

SteinEA,CooperEL(1978)Cytochemicalobservationsofcoelomocytesfr omtheearthworm,Lumbricusterrestris.HistochemJ10:657–

678ŠkantaF,ProcházkováP,RoubalováR,DvořákJ,Bilej(2016)LBP/BP IhomologueinEiseniaandreiearthworms.DevCompImmunol54:

1–6

ŠkantaF,RoubalováR,DvořákJ,ProcházkováP,BilejM(2013)Molecul arcloningandexpressionofTLRintheEiseniaandreiearthworm.

DevCompImmunol41:694–702

SöderhällK(2010)Invertebrateimmunity.Advancesinexperimentalm edicineandbiology,vol708.Springer,NewYork

ThatcherTH,GorovskyMA(1994)Phylogeneticanalysisofthecorehist onesH2A,H2B,H3,andH4.NucleicAcidsRes22:174–179 UrbanCF,ErmertD,SchmidM,Abu-

AbedU,GoosmannC,NackenW,BrinkmannV,JungblutPR,Zychlin skyA(2009)Neutrophilextra-

cellulartrapscontaincalprotectin,acytosolicproteincomplexin- volvedinhostdefenseagainstCandidaalbicans.PLoSPathog5:e10 00639

ValemboisP,LassèguesM(1995)Invitrogenerationofreactiveoxygenspe ciesbyfreecoelomiccellsoftheannelidEiseniafetidaandrei:ananal ysisbychemiluminescenceandnitrobluetetrazoliumreduc- tion.DevCompImmunol19:195–204

ValemboisP,LassèguesM,RochP(1992)Formationofbrownbodiesinthe coelomiccavityoftheearthwormEiseniafetidaandrei:ananal- ysisbychemiluminescenceandnitrobluetetrazoliumreduction.De vCompImmunol16:95–101

ValemboisP,SeymourJ,LasséguesM(1994)Evidenceoflipofuscinandm elanininthebrownbodyoftheearthwormEiseniafetidaandrei.Cell TissueRes227:183–188

VorobjevaNV,PineginBV(2014)Neutrophilextracellulartraps:mech- anismsofformationandroleinhealthanddisease.Biochemistry(M osc)79:1286–1296

WenF,WhiteGJ,XiongX,VanEttenHD,HawesMC(2009)Extracellul arDNAisrequiredforroottipresistancetofungalinfec-

tion.PlantPhysiol151:820–829

WiesnerJ,VilcinskasA(2010)Antimicrobialpeptides:theancientarmofth ehumanimmunesystem.Virulence1:440–464

YildizK,GokpinarS,GazyagciAN,BaburC,SursalN,AzkurAK(

2017)RoleofNETsinthedifferenceinhostsu sceptibilitytoTox oplasmagondiibetweensheepandcattle.VetImmunolImmuno pathol189:1–10

YippBG,KubesP(2013)NETosis:howvitalisit?Blood122:2784–

2794YousefiS,GoldJA,AndinaN,LeeJJ,KellyAM,KozlowskiE,Schmi d

I,StraumannA,ReichenbachJ,GleichG J,S imonHU( 2008) Catapult-likereleaseofmitochondrialDNAbyeosinophilscontrib- utestoantibacterialdefense.NatMed14:949–953

ZhaoJ,XiaoR,HeJ,PanR,FanR,WuC,LiuX,LiuY,HeRQ(2007)Insitulocaliza tionandsubstratespecificityofearthwormprotease-IIandprotease-III- 1fromEiseniafetida.IntJBiolMacromol40:67–75

ZhangX,ZhuchenkoO,KuspaA,SoldatiT(2016)Socialamoebaetrapand killbacteriabycastingDNAnets.NatCommun7:10938

ZhangX,SoldatiT(2016)Ofamoebaeandmen:extracellularDNAtrapsasan ancientcell-intrinsicdefensemechanism.FrontImmunol7:269

Cytaty

Powiązane dokumenty

The analysis of ROS production by PMNs stimulated with FOH showed that neutrophils release ROS in just a few minutes after activation confirming the ROS-dependent netosis pathway

Multifaceted roles of human elafin and secretory leukocyte proteinase inhibitor (SLPI), two serine protease inhibitors of the chelonianin family.. Majchrzak-Gorecka M, Majewski

Nb also activates toll-like receptor 4 (TLR4) signaling with expression of Ifnb transcripts in the skin and the development of an IFN type I signature on helminth

Tissueresidentdendriticcel ls(DCs)arecriticalfortheprimi ngofantigenspecificTcellresp onses.Theyareabletoshapethe polarizationofadaptiveimmu

Neutrophils carry out these func- tions via numerous mechanisms, including a relatively recently described activity based on a release of neutrophil extracellular traps (NETs),

Comparison of human immature (bone marrow) and mature (blood) neutrophils in their capac- ity to produce NETs upon IFN-α/γ priming and following stimulation with complement factor

restimatedasNETspreventmicrobialdisseminationthrough outthebody.Thiswas,forexample,showninthecourseof Escherichia colisepsis(McDonald

formazan deposits (*), e moving cells – chemotaxis, f encapsulation, g ROS and proPO activation in the formed kapsule and h melanin synthesis (dark deposits) which finally leading