• Nie Znaleziono Wyników

Measurement of the running of the fine structure constant below 1 GeV with the KLOE detector

N/A
N/A
Protected

Academic year: 2022

Share "Measurement of the running of the fine structure constant below 1 GeV with the KLOE detector"

Copied!
8
0
0

Pełen tekst

(1)

Contents lists available atScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Measurement of the running of the fine structure constant below 1 GeV with the KLOE detector

The KLOE-2 Collaboration

A. Anastasi

e,d

, D. Babusci

d

, G. Bencivenni

d

, M. Berlowski

u

, C. Bloise

d

, F. Bossi

d

,

P. Branchini

r

, A. Budano

q,r

, L. Caldeira Balkeståhl

t

, B. Cao

t

, F. Ceradini

q,r

, P. Ciambrone

d

, F. Curciarello

e,b,l

, E. Czerwi ´nski

c

, G. D’Agostini

m,n

, E. Dané

d

, V. De Leo

r,

, E. De Lucia

d

, A. De Santis

d

, P. De Simone

d

, A. Di Cicco

q,r

, A. Di Domenico

m,n

, R. Di Salvo

p

,

D. Domenici

d

, A. D’Uffizi

d

, A. Fantini

o,p

, G. Felici

d

, S. Fiore

s,n

, A. Gajos

c

, P. Gauzzi

m,n

, G. Giardina

e,b

, S. Giovannella

d

, E. Graziani

r

, F. Happacher

d

, L. Heijkenskjöld

t

,

T. Johansson

t

, D. Kami ´nska

c

, W. Krzemien

u

, A. Kupsc

t

, S. Loffredo

q,r

, P.A. Lukin

v,w

, G. Mandaglio

f,g

, M. Martini

d,k

, M. Mascolo

d

, R. Messi

o,p

, S. Miscetti

d

, G. Morello

d

, D. Moricciani

p

, P. Moskal

c

, M. Papenbrock

t

, A. Passeri

r

, V. Patera

j,n

, E. Perez del Rio

d

, A. Ranieri

a

, P. Santangelo

d

, I. Sarra

d

, M. Schioppa

h,i

, A. Selce

q

, M. Silarski

d

, F. Sirghi

d

, L. Tortora

r

, G. Venanzoni

d,∗

, W. Wi´slicki

u

, M. Wolke

t

aINFNSezionediBari,Bari,Italy bINFNSezionediCatania,Catania,Italy

cInstituteofPhysics,JagiellonianUniversity,Cracow,Poland dLaboratoriNazionalidiFrascatidell’INFN,Frascati,Italy

eDipartimentodiScienzeMatematicheeInformatiche,ScienzeFisicheeScienzedellaTerradell’UniversitàdiMessina,Messina,Italy fDipartimentodiScienzeChimiche,Biologiche,FarmaceuticheedAmbientalidell’UniversitàdiMessina,Messina,Italy

gINFNGruppocollegatodiMessina,Messina,Italy

hDipartimentodiFisicadell’UniversitàdellaCalabria,Rende,Italy iINFNGruppocollegatodiCosenza,Rende,Italy

jDipartimentodiScienzediBaseedApplicateperl’Ingegneriadell’Università“Sapienza”,Roma,Italy kDipartimentodiScienzeeTecnologieapplicate,Università“GuglielmoMarconi”,Roma,Italy lNovosibirskStateUniversity,630090Novosibirsk,Russia

mDipartimentodiFisicadell’Università“Sapienza”,Roma,Italy nINFNSezionediRoma,Roma,Italy

oDipartimentodiFisicadell’Università“TorVergata”,Roma,Italy pINFNSezionediRomaTorVergata,Roma,Italy

qDipartimentodiMatematicaeFisicadell’Università“RomaTre”,Roma,Italy rINFNSezionediRomaTre,Roma,Italy

sENEAUTTMAT-IRR,CasacciaR.C.,Roma,Italy

tDepartmentofPhysicsandAstronomy,UppsalaUniversity,Uppsala,Sweden uNationalCentreforNuclearResearch,Warsaw,Poland

vBudkerInstituteofNuclearPhysics,Novosibirsk,630090,Russia wNovosibirskStateUniversity,Novosibirsk,630090,Russia

F. Jegerlehner

x,y

xInstituteofPhysics, Humboldt-UniversityofBerlin,Berlin,Germany

yDeutschesElektronen-Synchrotron(DESY),Platanenallee6,D-15738Zeuthen,Germany

*

Correspondingauthors.

E-mailaddresses:veronica.deleo@roma3.infn.it(V. De Leo),graziano.venanzoni@lnf.infn.it(G. Venanzoni).

http://dx.doi.org/10.1016/j.physletb.2016.12.016

0370-2693/©2016TheAuthor.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).Fundedby SCOAP3.

(2)

1. Introduction

PrecisiontestsoftheStandardModel(SM)requireanappropri- ateinclusion of higher-order effectsand the very preciseknowl- edge of input parameters [1].One of the basic input parameters is the effective QED coupling constant

α

, determined from the anomalousmagneticmoment oftheelectronwiththeimpressive accuracyof0.37partsperbillion[2].However,physicsatnon-zero momentumtransferrequiresaneffectiveelectromagneticcoupling

α

(s).1 The shift of the fine-structure constant from the Thom- son limit to high energy involves low energy non-perturbative hadronic effects which affect the precision. These effects repre- sentthelargestuncertainty(andthemainlimitation)fortheelec- troweak precision testsas the determination ofsin2θW at the Z poleortheSMpredictionofthemuong2[3].

The QED coupling constant is predicted and observed [4,5]

to increase with rising momentum transfer (differently fromthe strongcouplingconstant

α

S whichdecreaseswithrisingmomen- tumtransfer),whichcanbeunderstoodasaresultofthescreening ofthebarecharge causedby thepolarizedcloudofvirtual parti- cles. The vacuum polarization (VP) effects can be absorbed in a redefinitionofthefine-structureconstant,makingits dependent:

α (

s

) = α (

0

)

1

−  α (

s

) .

(1)

The shift

α

(s) interms ofthe vacuumpolarization function γ(s)isgivenby:

 α (

s

) = −

4

π α (

0

)

Re

[

γ

(

s

)

γ

(

0

)]

(2)

anditisthesumofthelepton(e,

μ

,

τ

) contributions,thecontri- butionfromthefivequark flavours(u, d, s, c, b), andthe contribu- tion of the top quark (which can be neglected at low energies):



α

(s)= 

α

lep(s)+ 

α

had(5)(s)+ 

α

top(s)[1].

Theleptoniccontributionscanbecalculatedwithveryhighpre- cision in QED using the perturbation theory [6,7]. However, due tothenon-perturbativebehaviourofthestronginteractionatlow energies, perturbative QCD only allows us to calculate the high energytailofthehadronic(quark) contributions.Intheloweren- ergy region the hadronic contribution can be evaluated through a dispersion integral over the measured e+ehadrons cross- section:

 α

had

(

s

) = −  α (

0

)

s 3

π



Re



m2π

ds Rhad

(

s

)

s

(

s

s

i

) ,

(3)

1 Inthefollowingwewillindicatewiths themomentumtransfersquaredofthe reaction.

where Rhad(s) is defined as the cross section ratio Rhad(s)= σ(e+eγ∗→hadrons)

σ(e+eγ∗→μ+μ).

Inthisapproachthedominantuncertaintyintheevaluationof



α

isgivenbytheexperimentaldataaccuracy.

In the Eq. (2)Im

α

relatedto the imaginary part ofthe VP function γ iscompletelyneglected,whichisagoodapproxima- tioninthecontinuumasthecontributionsfromtheimaginarypart aresuppressed.However,thisapproximationisnotsufficientinthe presence of resonances likethe

ρ

meson, where theaccuracy of thecrosssectionmeasurementsreachestheorderof(orevenless than)1%,andtheimaginarypartshouldbetakenintoaccount.

Inthispaperwepresentameasurementoftherunningofthe effective QED coupling constant

α

in the time-like region 0.6<

s<0.975 GeV.Thestrengthofthecouplingconstantismeasured asafunctionofthemomentum transferoftheexchangedphoton

s=Mμμ where Mμμ isthe

μ

+

μ

invariant mass. Thevalueof

α

(s)isextractedfromtheratioofthedifferentialcrosssectionfor the process e+e

μ

+

μ

γ

(

γ

) withthe photon emittedin the InitialState(ISR)tothecorrespondingcrosssectionobtainedfrom MonteCarlo(MC)simulationwiththecouplingsettotheconstant value

α

(s)=

α

(0):

| α (

s

)

α (

0

) |

2

=

d

σ

data

(

e+e

μ

+

μ

γ ( γ ))|

I S R

/

d

s d

σ

MC0

(

e+e

μ

+

μ

γ ( γ ))|

I S R

/

d

s (4)

ToobtaintheISRcrosssection,theobservedcrosssectionmustbe corrected forevents withone ormore photonsin thefinal state (FSR).ThishasbeendonebyusingthePHOKHARAMCeventgen- erator,whichincludesnext-to-leading-orderISRandFSRcontribu- tions [8]. Inthe following we onlyuse eventswhere the photon is emitted atsmallangles, whichresults ina large enhancement of the ISR with respect to the FSR contribution. From the mea- surement ofthe effectivecoupling constant andthe dipion cross section [9],we extractedforthe firsttimeina singleexperiment therealandimaginarypartof

α

.

The analysis has been performedby using the data collected with the KLOE detector at DANE [10], the e+e collider run- ning atthe φ meson mass,with a totalintegrated luminosity of 1.7 fb1.

2. TheKLOEdetector

The KLOEdetectorconsistsofa cylindricaldriftchamber (DC) [11] andanelectromagneticcalorimeter(EMC)[12].TheDChasa momentumresolutionof

σ

p/p0.4% fortrackswithpolaran- gleθ >45.TrackpointsaremeasuredintheDCwitharesolution inr− φof0.15 mm and∼2 mm inz.TheEMChasanenergy resolution of

σ

E/E5.7%/

E (GeV) andan excellent time reso- lutionof

σ

t54 ps/

E (GeV)100 ps.Calorimeter clustersare reconstructedgroupingtogetherenergydepositscloseinspaceand

(3)

Fig. 1. Detectorsectionwith theacceptance regionforthe chargedtracks(wide cones)andforthephoton(narrowcones).

time. A superconducting coil provides an axial magnetic field of 0.52Talongthebisectorofthecollidingbeamdirections.Thebi- sectoristakenasthezaxisofourcoordinatesystem.Thexaxisis horizontalandtheyaxisisvertical,directedupwards.Acrosssec- tionofthedetectorinthey,zplaneisshowninFig. 1.Thetrigger uses both EMC andDC information. Events used in thisanalysis aretriggered by two energy depositslarger than 50MeV in two sectorsofthebarrelcalorimeter.

2.1.Eventselection

A photon and two tracks of opposite curvature are required toidentifya

μμγ

event.Events areselectedwitha(undetected) photonemittedatsmallangle(SA),i.e. withinaconeofθγ<15 aroundthebeamline(narrowconesinFig. 1)andthetwocharged muons are emitted at large polar angle, 50< θμ<130. High statisticsfortheISRsignalandsignificantreductionofbackground events as φ

π

+

π

π

0 in which the

π

0 mimics the missing momentumof thephoton(s) andfrom theFSRradiation process, e+e

μ

+

μ

γ

F S R, are guaranteed by this selection. However, this requirement results in a kinematical suppression of events with √

s<0.6 GeV, since a highly energetic photon emitted at smallangleforcesthemuonsalsotobeatsmallangles(andthus outsidetheacceptance).

Toavoidspirallingtracksinthedriftchamber,thereconstructed momentamusthavepT>160MeVor|pz|>90MeV.Thisensures goodreconstructionandefficiency.

Themainbackgroundreactionsaregivenby:

e+e

π

+

π

γ

(

γ

)

e+e

π

+

π

π

0

e+ee+e

γ

(

γ

).

AparticleIDestimator(PID)basedonapseudo-likelihoodfunc- tion (L±) using time-of-flight and calorimeter information (size andshapeoftheenergydeposit)isusedtoobtainseparationbe- tweenelectronsandpionsormuons.Eventswithbothtrackssat- isfyingL±<0 arerejectedase+e

γ

.Toseparatethemuonsfrom thepionsweappliedmainlytwocuts:thefirstonthetrackmass (MT R K)variableandthesecondonthe

σ

M T R K,theestimatederror

Fig. 2.π π γ andμμγ MT R Kdistributions.Theverticallineshowstheμμγselec- tioncut(MT R K<115 MeV).TheeffectoftheσMT R K cutonthetwodistributionsis clearlyvisible.

on MT R K.Assumingthepresenceofonlyone unobservedphoton andthatthetracksbelongtoparticlesofthesamemass,MT R K is computedfromenergy andmomentumconservation.The

σ

M T R K variableisconstructedeventbyeventwiththeerrormatrixofthe fitted tracks at the point of closest approach (PCA) [13]. Cutting the highvalues of thisvariable the bad reconstructed tracks are rejected allowing a reduction of the

π π γ

events contamination (showninFig. 2).

ResidualbackgroundisevaluatedbyfittingtheobservedMT R K spectrumwithasuperpositionofMCsimulationdistributionsde- scribing signal and

π

+

π

γ

,

π

+

π

π

0 and e+e

γ

events. The normalizationfactorsfromsignalandbackgroundsarefreeparam- etersofthefit,performedfor30intervalsins of0.02 GeV2 width for0.35<s<0.95 GeV2.Additionalbackgroundfromthee+ee+e

μ

+

μ

process has been evaluated using the NEXTCALIBUR MC generator [14]. The maximum contribution is 0.7% at √

s= 0.6 GeV. The uncertainty on this background has been taken as 50% of the total contribution and added to the systematic error.

The contribution from e+ee+e

π

+

π

has been evaluated withtheEKHARAgenerator[15]andfoundtobenegligible.

Thetotalfractional systematicuncertaintyonbackgroundsub- traction,obtainedbyaddinginquadraturetheuncertaintiesonthe fit normalization parameters and the e+e

μ

+

μ

residual back- ground,rangesfrom0.2%to0.05%decreasingwiths.

About4.106

μμγ

eventspasstheseselectioncriteria.

3. Measurementofthe

μμγ

crosssection

The experimental ISR

μ

+

μ

γ

cross section is obtained from theobservednumberofevents(Nobs)andthebackgroundestimate (Nbckg)as:

d

σ (

e+e

μ

+

μ

γ ( γ ))

d

s

 

I S R

=

Nobs

Nbkg



s

· (

1

− δ

F S R

) (

s

) ·

L

,

(5) where (1− δF S R) is the correction applied to remove the FSR contribution (which increases with the energy from 0.998 at 0.605 GeV to1.032 at0.975GeV),

isthe efficiency(seesection below)andL istheintegratedluminosity.

We firstly compare the

μ

+

μ

γ

cross-section with only ISR withthecorrespondingNLOQEDcalculationfromPHOKHARAgen- eratorincludingtheVPeffects.

IntheupperplotofFig. 3themeasured

μ

+

μ

γ

cross-section as a function of √

s for both experimental (red points) and MC (bluepoints)dataisshown.Theagreementbetweenthetwocross sectionsisexcellent.Thesamefigureshowsaninteresting feature around 0.78 GeV (corresponding to the mass of the

ω

meson),

(4)

Fig. 3. Upperplot:comparisonofthemeasureddifferentialcrosssection(redpoints) andPHOKHARAMCprediction(bluepoints)ofthe μ+μγ crosssection.Lower plot:theratioofthetwo.Thegreenbandshowsthesystematicerror.(Forinterpre- tationofthereferencestocolourinthisfigurelegend,thereaderisreferredtothe webversionofthisarticle.)

where a small step appears in the cross section. This step be- haviourisduetothe

ρ

ω

interferenceinthephotonpropagator, asitwillbeshowninthefollowing.Inthelowerplotthedatato MCratioisshowntogetherwiththesystematicerror(greenband) oftheorderof1%.

4. Efficienciesandsystematicerrors

Theglobalefficiency,whichrangesfrom0.086at0.605 GeVto 0.27at0.975 GeV,hasbeenobtainedfroma

μ

+

μ

γ

eventsgen- eration with PHOKHARA interfaced with the detector simulation codeGEANFI[16].It includescontributions fromtrigger, tracking, PID,

σ

M T R K,MT R K andacceptance.

Trigger:thetriggerefficiencyhasbeenobtainedfromasample of

μ

+

μ

γ

events where a single muon satisfies the trigger re- quirement. Triggerresponse fortheother muon isparameterized asafunction ofits momentum anddirection.The efficiencyasa functionofs isobtainedusingtheMC eventdistributionanddif- fersfromonebylessthan104,withnegligiblesystematicerror.

Tracking: the single muon track efficiencyhas been obtained asafunctionoftheparticlemomentumandpolaranglebymeans ofa highpurity

μ

+

μ

γ

sample obtainedby usingone muonto tag the presence of the other. The combined efficiency is about

in s)whichwetakeassystematicerror.

The systematic uncertainty on

σ

MTRK cut has beenevaluated asthe maximumdifferencebetweenthe

μμγ

normalization parametersofthebackgroundfittingprocedure,obtainedwith standard cuts, and thoseobtained by shifting

σ

MTRK by ±2%.

Thecontributionislessthan1%inthewholeenergyrange.

Systematic effects due to polar angle requirements for the muonsand forthephoton, are estimatedby varying the an- gularacceptanceby±1 (morethantwotimestheresolution onthepolarangle)aroundthenominalvalue.Theuncertainty rangesfrom0.1to0.6%.

Softwaretrigger:Athird-level triggerisimplementedto keep the physics eventswhichare misidentified ascosmic rays. Its ef- ficiencyfor

μμγ

events,evaluatedfromanunbiaseddownscaled sample,isconsistentwithonewithin103 whichistakenassys- tematicerror.

Table 1givesthesystematicerrorsatthe

ρ

-peakmassvalue.

5. Luminosityandradiativecorrections

Large angleBhabha scatteringis used to determine the lumi- nosity,withareferencecrosssectionobtainedwithBabayaga@NLO MC eventgenerator[17],convolvedwithdetectorandbeamcon- ditions[18].Twosourcescontribute tothesystematicuncertainty intheevaluationoftheluminosity:

the theoreticalaccuracy ofBabayaga@NLO,quoted as0.1%by theauthors;

the systematic error associated to the counting of Bhabha eventswhichis0.3%[18]

When extractingtherunningof

α

(see followingSection),the dependenceoftheBhabhacrosssectionontheVPeffectmustbe taken into account. By switching off the hadronic corrections to theVP,wecheckedthatthepresenceofthehadroniccontribution to 

α

forboth s andt channelsinthecrosssection givesa 0.2%

contributionwhichweconsiderasasystematicerrorofourmea- surement(

α

haddep. inTable 1).

TheuncertaintyonPHOKHARAMCgenerator(Rad.functionH in Table 1) is0.5% constant in s, mostly dueto missingISR higher- order terms[8]. Theuncertaintyinthe procedureto subtractthe FSRcontributionis0.2%,mostlyduetomissingFSRdiagrams[19].

6. Measurementoftherunningof

α

We use Eq.(4)and Eq.(5) inthe angularregion θγ <15 to extract the running of the effectiveQED coupling constant

α

(s). By setting in the MC the electromagnetic coupling to the con- stant value

α

(s)=

α

(0), thehadronic contributionto the photon propagator,withits characteristic

ρ

ω

interferencestructure,is clearly visible in the data to MC ratio, as shown in Fig. 4. The

(5)

Table 1

Listofsystematicerrors.

Source σμμγ |α(s)/α(0)|2

Trigger <0.1%

Tracking s dep. (0.5% atρ-peak) Particle ID <0.1%

Background subtraction s dep. (0.1% atρ-peak)

MT R K 0.4%

σM T R K s dep. (<0.1% atρ-peak)

Acceptance s dep. (0.3% atρ-peak) Software Trigger 0.1%

Luminosity 0.3%

haddep. (normalization) 0.2%

FSR treatment 0.2%

Rad. function H 0.5%

Total systematic error s dep. (0.8% atρ-peak) (1% atρ-peak)

Fig. 4. Thesquareofthemodulusoftherunningα(s)inunitsofα(0)compared withtheprediction(providedbythealphaQEDpackage[20])asafunctionofthe dimuoninvariantmass.TheredpointsaretheKLOEdatawithstatisticalerrors;

thevioletpointsarethetheoreticalpredictionforafixedcoupling(α(s)=α(0));

theyellowpointsarethepredictionwithonlyvirtualleptonpairscontributingto theshiftα(s)= α(s)lep,andfinallythepointswiththesolidlinearethefull QEDpredictionwithbothleptonandquarkpairscontributingtotheshiftα(s)=

α(s)lep+had.(Forinterpretationofthereferencestocolourinthisfigurelegend, thereaderisreferredtothewebversionofthisarticle.)

prediction fromRef. [20] is also shown. While the leptonic part is obtained by perturbation theory, the hadronic contribution to

α

(s) is obtained via an evaluation in terms of a weighted aver- age compilation of Rhad(s), based on the available experimental e+e→hadrons annihilationdata(foran up todatecompilation see[21]andreferencestherein).

Forcomparison,thepredictionwithconstantcoupling(norun- ning) and with only lepton pairs contributing to the running of

α

(s)isgiven.

The value of |

α

(s)/

α

(0)|2 with the statistical and systematic uncertaintyis reported inTable 2. As can be seen, the total un- certaintyisatthe1%level.

Inordertoevaluate thestatisticalsignificanceofthehadronic contributiontotherunningof

α

(s),a

χ

2 basedstatisticaltestfor twodifferentrunninghypotheses:(a)norunning;(b)running due toleptonpairsonlyisperformed.

Byincludingstatisticalandsystematicserrors, weexclude the only-leptonic hypothesis at 6

σ

which is the strongest direct ev- idence ever achieved by a single experiment. Our result is also consistentwiththeestimateof

α

(s)ofRef.[22]witha

χ

2 prob- abilityof0.3(

χ

2/ndf=41.2/37).

Fig. 5. ImextractedfromtheKLOEdatacomparedwiththevaluesprovidedby alphaQEDroutine(withouttheKLOEdata)forIm=Imlep(yellowpoints) andIm=Imlep+hadonlyforπ π channels(bluesolidline).(Forinterpreta- tionofthereferencestocolourinthisfigurelegend,thereaderisreferredtothe webversionofthisarticle.)

Similar results are obtained using different

α

(s) predictions inRef.[22,23].

7. Extractionofrealandimaginarypartof

α

(s)

Inthe contributionto therunningof

α

,theimaginary partis usuallyneglected.Thisisagoodapproximationasthecontribution fromthe imaginary partof 

α

enters atorder O(

α

2) compared to O(

α

) for the real part, and is suppressed [26]. However, the imaginary part should be taken into account in the presence of resonanceslikethe

ρ

meson, wherethecrosssectionismeasured withanaccuracybetterthan1%.

By usingthe definition of therunning of

α

(Eq. (1)) the real partoftheshift

α

(s)canbeexpressedintermsofitsimaginary partand|

α

(s)/

α

(0)|2:

Re

 α =

1

− 

| α (

0

)/ α (

s

)|

2

− (

Im

 α )

2

.

(6)

The imaginary part of 

α

(s) can be related to the total cross section

σ

(e+e

γ

anything), where the precise relation reads[3,24,25]:Im

α

= −α3R(s),withR(s)=

σ

tot/4π|α3s(s)|2. R(s) takes into account leptonic and hadronic contribution R(s)= Rlep(s)+Rhad(s),wheretheleptonicpartcorresponds tothepro- ductionofalepton pairatlowest ordertakingintoaccount mass effects:

Rlep

(

s

) =



1

4m

2 l

s



1

+

2m

2 l

s

, (

l

=

e

, μ , τ ).

(7)

Intheenergyregionaroundthe

ρ

-mesonwecanapproximate thehadroniccrosssectionbythe2

π

dominantcontribution:

Rhad

(

s

) =

1 4

1

4m2π s

32

|

Fπ0

(

s

) |

2

,

(8)

where 0 is the pion form factor deconvolved: |Fπ0(s)|2 =

|Fπ(s)|2αα((0s))2.

The resultsobtainedforthe2

π

contributiontothe imaginary part of

α

(s) by using the KLOE pionform factormeasurement [9],are shown in Fig. 5and compared withthe values givenby the Rhad(s) compilation of Ref. [20] using only the 2

π

channel,

(6)

0.705 1.004±0.007±0.010 2.1±3.4±5.116.89±0.23±0.07 0.715 1.005±0.007±0.010 2.7±3.3±519.46±0.26±0.09 0.725 1.017±0.007±0.010 8.6±3.3±4.920.54±0.28±0.11 0.735 1.018±0.007±0.010 9.3±3.3±5.123.04±0.33±0.11 0.745 1.009±0.006±0.010 4.8±3.2±4.724.15±0.34±0.23 0.755 1.006±0.006±0.010 3.3±3.1±5.125.76±0.37±0.25 0.765 1.013±0.006±0.010 6.5±3.1±5.125.89±0.37±0.25 0.775 1.018±0.006±0.010 9.2±3.0±4.825.93±0.36±0.51 0.785 1.065±0.007±0.011 31.1±3.0±4.921.36±0.27±0.69 0.795 1.066±0.007±0.011 31.8±3.0±5.019.49±0.22±0.16 0.805 1.049±0.006±0.011 23.8±2.8±5.018.69±0.22±0.17 0.815 1.050±0.006±0.011 24.2±2.8±5.116.2±0.17±0.12 0.825 1.049±0.006±0.011 23.6±2.7±5.014.79±0.15±0.11 0.835 1.057±0.006±0.011 27.2±2.7±5.013.93±0.13±0.1 0.845 1.044±0.006±0.011 21.3±2.6±5.012.49±0.11±0.08 0.855 1.044±0.005±0.011 21.4±2.5±4.911.65±0.09±0.06 0.865 1.041±0.005±0.011 20.2±2.5±5.011.25±0.09±0.05 0.875 1.044±0.005±0.011 21.6±2.4±5.110.16±0.07±0.04 0.885 1.050±0.005±0.011 24.4±2.3±4.99.53±0.06±0.03 0.895 1.048±0.005±0.011 23.1±2.2±59.03±0.05±0.03 0.905 1.045±0.004±0.011 22.0±2.1±5.18.81±0.05±0.02 0.915 1.035±0.004±0.011 17.2±1.9±5.38.35±0.04±0.02 0.925 1.046±0.004±0.011 22.3±1.8±5.17.89±0.03±0.02 0.935 1.035±0.003±0.011 17.0±1.7±5.17.62±0.03±0.01 0.945 1.038±0.003±0.010 18.3±1.5±4.87.33±0.02±0.01 0.955 1.039±0.003±0.010 18.8±1.4±4.87.13±0.02±0.01 0.965 1.029±0.003±0.010 14.2±1.3±4.86.94±0.02±0.01 0.975 1.030±0.002±0.010 14.6±1.1±4.76.82±0.02±0.01

Fig. 6. Reextractedfromtheexperimentaldatawithonlythestatisticalerror includedcomparedwiththealphaQEDprediction(withouttheKLOEdata)when Re=Relep (yellowpoints)andRe=Relep+had (bluesolidline).(For interpretationofthereferencestocolourinthisfigurelegend,thereaderisreferred tothewebversionofthisarticle.)

withtheKLOEdataremoved (toavoidcorrelations).Table 2gives the 2

π

contribution to Im

α

(s) with statistical and systematic errors.

The extraction of the Re

α

has been performed using the Eq.(6)anditisshowninFig. 6.Theexperimental datawithonly the statistical error included have been compared with the al- phaQEDpredictionwhen Re

α

=Re

α

lep (yellowpoints inthe colourfigure)andRe

α

=Re

α

lep+had(dotswithsolidline).The Re

α

(s)valueswithstatisticalandsystematicerrorsaregivenin Table 2.Thesystematicerrorsincludethemissinghadroniccontri- butions (3

π

,4

π

,...)which werenot includedintheevaluationof Im

α

(s).Ascanbeseen,anexcellentagreementforRe

α

(s)has beenobtainedwiththedata-basedcompilation.

8. FitofRe

α

andextractionofB R(

ω

μ

+

μ

)B R(

ω

e+e)

We fitRe

α

bya sumoftheleptonic andhadroniccontribu- tions, where the hadroniccontribution isparametrized asa sum ofthe

ρ

(770),

ω

(782)andφ (1020) resonancecomponentsanda non-resonant term. We usea Breit–Wigner descriptionforthe

ω

andφresonances[3,26,27]:

Re

 α

V=ω

=

3

BR

(

V

e+e

) ·

BR

(

V

μ

+

μ

) α

MV

×

s

(

s

M2V

)

V

(

s

M2V

)

2

+

s



V2

,

(9) whereMV andV arethemassandthetotalwidthofthemesons V =

ω

andφ.Forthe

ρ

weusea Gounaris–Sakuraiparametriza-

(7)

Table 3

ResultsfromthefitofRecomparedwiththeworldaveragevalues(PDG[31]).Second(third)column:without(with) theρωinterference.Onlystatisticalerrorsarereportedforthefitvalues.

Parameter Result from the fit Result from the fit withρωinterf. PDG

Mρ,MeV 775±6 778±7 775.26±0.25

ρ,MeV 146±9 147±10 147±0.9

Mω,MeV 782.7±1.1 783.4±0.8 782.65±0.12

B Rμ+μ)B Re+e) (4.3±1.8)·109 (4.4±1.8)·109 (6.5±2.3)·109

χ2/ndf 1.19 1.15

Fig. 7. Fit of the Redata. Only statistical errors are shown.

tionB WρG S(s)[28,29]ofthepionformfactor,whereweneglectthe interferencewiththe

ω

andthehigherexcitedstatesofthe

ρ

:

Fπ

(

s

) =

B WρG S(s)

=

M

2ρ

(

1

+

d



ρ

/

Mρ

)

Mρ2

s

+

f

(

s

)

iMρ



ρ

(

s

)

(10)

Theterms d and f(s) are described inRef. [29]. As itwill be shown in the following, this approximation turns out to be ap- propriategiventhelimitedstatisticsofthedata.Inparticular,the inclusionoftheenergydependenceonthetotalwidthsof

ω

and φresonances[30]givesnegligiblecontributions.Thenon-resonant termhasbeenparametrizedasafirst-orderpolynomial p0+p1

s.

The following parameters have been fixed to the PDG val- ues[31]:ω= (8.49±0.08)MeV, Mφ= (1019.461±0.019)MeV,

φ= (4.266±0.031)MeV,and B R(φe+e)B R(φ

μ

+

μ

)= (8.5+00..56)·108.

ResultsofthefitareshowninFig. 7andcomparedinTable 3 (second column) with the corresponding values from PDG [31].

Onlystatisticalerrorsarereported.

The parameters of thenon-resonant term are consistent with zero within the statistical uncertainties: p0= (2.4.5)·103, p1= (−2.5.3)·103.The

χ

2/ndf ofthefitis36.85/31=1.19.

Tostudytheeffectofthe

ρ

ω

interferenceinestimating

α

, an additional term δ s

M2ωB W ω(s)B WρG S has been included in the fit.Results are shown in the third column of Table 3 where we fix |δ|=1.45·103 and arg δ=10.2 [32]. As it can be seen, results withthe interference term are well within the statistical uncertainties,andinthefollowingwewillusetheresultswithout theinterferenceterm.

Byincludingthesystematicerrors(takingalsointoaccountthe correlationsofthe systematic uncertainties onthe parameters of thefit,andtheuncertaintyofthePDGvaluesforfixedparameters) theproductofthebranchingfractionsreads:

B R

( ω μ

+

μ

)

B R

( ω

e+e

) = (

4

.

3

±

1

.

8

±

2

.

2

) ·

109

,

(11)

where the first error is statisticaland the second systematic. By multiplyingbythephasespacefactorξ=

1+2mm2μ2 ω

 1−4mm2μ2

ω

1/2 and assuming lepton universality, B R(

ω

μ

+

μ

) can be ex- tracted:

B R

( ωμ

+

μ

) = (

6

.

6

±

1

.

4stat

±

1

.

7syst

) ·

105 (12)

comparedtoB R(

ω

μ

+

μ

)= (9.3.1)·105fromPDG[31].

9. Conclusions

We have measured the hadronic contribution to the running ofthe effectiveQEDcouplingconstant

α

(s) usingthe differential crosssectiond

σ

(e+e

μ

+

μ

γ

)/d

s intheregion0.6<s<

0.975 GeV,withthephotonemittedintheinitialstate.Ourresults show aclearcontributionofthe

ρ

ω

resonancestothephoton propagator, which results in a more than 5

σ

significance of the hadroniccontributiontotherunningof

α

(s).Thisisthestrongest directevidenceachievedinbothtime- andspace-likeregionsbya single experiment.Forthefirsttime therealandimaginaryparts of 

α

(s) havealso beenextracted. From a fitof therealpart of



α

(s) and assuming the lepton universality the branching ratio B R(

ω

μ

+

μ

)= (6.1.4stat±1.7syst)·105hasbeenobtained.

Acknowledgements

We thank F. Ignatov and C.M. Carloni Calame for useful dis- cussions. We warmly thank our former KLOE colleagues for the access to the data collected during the KLOE data taking cam- paign.We thanktheDANEteamfortheireffortsinmaintaining lowbackgroundrunningconditionsandtheir collaborationduring all data taking. We want to thank our technical staff: G.F. For- tugno andF. Sborzacchi for their dedication in ensuring efficient operation oftheKLOEcomputingfacilities; M.Anelli forhis con- tinuousattentionto the gassystemanddetectorsafety;A. Balla, M.Gatta, G. CorradiandG.Papalino forelectronicsmaintenance;

M. Santoni, G. Paoluzziand R.Rosellini for generaldetectorsup- port; C. Piscitelli for his help during major maintenance periods.

This work was supported in part by the EU Integrated Infras- tructure Initiative Hadron Physics Project under contract number RII3-CT-2004-506078;bytheEuropeanCommissionunderthe7th Framework Programme through the ‘Research Infrastructures’ ac- tion of the ‘Capacities’ Programme, Call: FP7-INFRASTRUCTURES- 2008-1, Grant Agreement No. 227431; by the Polish National Science Centre through the Grants No. 2011/03/N/ST2/02652, 2013/08/M/ST2/00323,2013/11/B/ST2/04245,2014/14/E/ST2/00262, 2014/12/S/ST2/00459.

References

[1]F.Jegerlehner,J.Phys.G29(2003)101.

[2]T.Aoyama,M.Hayakawa,T.Kinoshita,M.Nio,Phys.Rev.D77(2008)053012.

[3]F.Jegerlehner,TheAnomalousMagneticMomentoftheMuon,SpringerTracts Mod.Phys.,vol. 226,2008,p. 1.

[4]A.B.Arbuzov,D.Haidt,C.Matteuzzi,M.Paganoni,L.Trentadue,Eur.Phys.J.C 34(2004)267.

(8)

148.

[15]H.Czy ˙z,E.Nowak-Kubat,Phys.Lett.B634(2006)493;

H.Czy ˙z,E.Nowak,ActaPhys.Pol.B34(2003)5231.

[16]F.Ambrosino,etal.,Nucl.Instrum.MethodsA534(2004)403.

[17]G.Balossini,C.M.CarloniCalame,G.Montagna,O.Nicrosini,F.Piccinini,Nucl.

Phys.B758(2006)227;

C.M.CarloniCalame,C.Lunardini,G.Montagna,O.Nicrosini,F.Piccinini,Nucl.

Phys.B584(2000)459.

[26]S.Actis,etal.,Eur.Phys.J.C66(2010)585.

[27]S.Iwao,M.Shako,Lett.NuovoCimento9(1974)693.

[28]G.J.Gounaris,J.J.Sakurai,Phys.Rev.Lett.21(1968)244.

[29]R.R.Akhmetshin,etal.,CMD-2Collaboration,Phys.Lett.B527(2002)161.

[30]M.N.Achasov,etal.,Phys.Rev.D63(2001)072002.

[31]K.A.Olive,etal.,ParticleDataGroup,Chin.Phys.C38(2014)090001.

[32]G.Mandaglio,etal.,KLOE-2Collaboration,Nucl.Part.Phys.Proc.260(2015) 87.

Cytaty

Powiązane dokumenty

The corrected multiplicity distribution of K 0 S mesons in 7 TeV data compared with the hadron-level distributions in the MC samples for a variety of tunes, normal- ized to unity..

New results on the differential cross section in deuteron-proton elastic scattering are obtained at the deuteron kinetic energy of 2.5 GeV with the HADES spectrometer.. The

The systematic term is calculated from the following main contri- butions: 1) applying different selection regions to the flat part of the confidence level (probability) distribution

Results of the fits to the analyzing power data in dependence of the deuteron scattering angle by use of eq.. Results of the fits to the analyzing power data in dependence of the π

(iv) Reconstruction efficiency For estimating the uncertainty of the reconstruction efficiency corrected results for π spectra from the dE/dx analysis using different recon-

35 (a) Institute o f High Energy Physics, Chinese Academy o f Sciences, Beijing; (b) Department o f Modern Physics, University o f Science and Technology o f China,

Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; (b) Department of Modern Physics, University of Science and Technology of China, Anhui; (c) Department

Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Belarus 91 National Scientific and Educational Centre for Particle and High Energy Physics, Minsk,