Measurement of the running of the fine structure constant below 1 GeV with the KLOE detector

Download (0)

Full text

(1)

Contents lists available atScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Measurement of the running of the fine structure constant below 1 GeV with the KLOE detector

The KLOE-2 Collaboration

A. Anastasi

e,d

, D. Babusci

d

, G. Bencivenni

d

, M. Berlowski

u

, C. Bloise

d

, F. Bossi

d

,

P. Branchini

r

, A. Budano

q,r

, L. Caldeira Balkeståhl

t

, B. Cao

t

, F. Ceradini

q,r

, P. Ciambrone

d

, F. Curciarello

e,b,l

, E. Czerwi ´nski

c

, G. D’Agostini

m,n

, E. Dané

d

, V. De Leo

r,

, E. De Lucia

d

, A. De Santis

d

, P. De Simone

d

, A. Di Cicco

q,r

, A. Di Domenico

m,n

, R. Di Salvo

p

,

D. Domenici

d

, A. D’Uffizi

d

, A. Fantini

o,p

, G. Felici

d

, S. Fiore

s,n

, A. Gajos

c

, P. Gauzzi

m,n

, G. Giardina

e,b

, S. Giovannella

d

, E. Graziani

r

, F. Happacher

d

, L. Heijkenskjöld

t

,

T. Johansson

t

, D. Kami ´nska

c

, W. Krzemien

u

, A. Kupsc

t

, S. Loffredo

q,r

, P.A. Lukin

v,w

, G. Mandaglio

f,g

, M. Martini

d,k

, M. Mascolo

d

, R. Messi

o,p

, S. Miscetti

d

, G. Morello

d

, D. Moricciani

p

, P. Moskal

c

, M. Papenbrock

t

, A. Passeri

r

, V. Patera

j,n

, E. Perez del Rio

d

, A. Ranieri

a

, P. Santangelo

d

, I. Sarra

d

, M. Schioppa

h,i

, A. Selce

q

, M. Silarski

d

, F. Sirghi

d

, L. Tortora

r

, G. Venanzoni

d,∗

, W. Wi´slicki

u

, M. Wolke

t

aINFNSezionediBari,Bari,Italy bINFNSezionediCatania,Catania,Italy

cInstituteofPhysics,JagiellonianUniversity,Cracow,Poland dLaboratoriNazionalidiFrascatidell’INFN,Frascati,Italy

eDipartimentodiScienzeMatematicheeInformatiche,ScienzeFisicheeScienzedellaTerradell’UniversitàdiMessina,Messina,Italy fDipartimentodiScienzeChimiche,Biologiche,FarmaceuticheedAmbientalidell’UniversitàdiMessina,Messina,Italy

gINFNGruppocollegatodiMessina,Messina,Italy

hDipartimentodiFisicadell’UniversitàdellaCalabria,Rende,Italy iINFNGruppocollegatodiCosenza,Rende,Italy

jDipartimentodiScienzediBaseedApplicateperl’Ingegneriadell’Università“Sapienza”,Roma,Italy kDipartimentodiScienzeeTecnologieapplicate,Università“GuglielmoMarconi”,Roma,Italy lNovosibirskStateUniversity,630090Novosibirsk,Russia

mDipartimentodiFisicadell’Università“Sapienza”,Roma,Italy nINFNSezionediRoma,Roma,Italy

oDipartimentodiFisicadell’Università“TorVergata”,Roma,Italy pINFNSezionediRomaTorVergata,Roma,Italy

qDipartimentodiMatematicaeFisicadell’Università“RomaTre”,Roma,Italy rINFNSezionediRomaTre,Roma,Italy

sENEAUTTMAT-IRR,CasacciaR.C.,Roma,Italy

tDepartmentofPhysicsandAstronomy,UppsalaUniversity,Uppsala,Sweden uNationalCentreforNuclearResearch,Warsaw,Poland

vBudkerInstituteofNuclearPhysics,Novosibirsk,630090,Russia wNovosibirskStateUniversity,Novosibirsk,630090,Russia

F. Jegerlehner

x,y

xInstituteofPhysics, Humboldt-UniversityofBerlin,Berlin,Germany

yDeutschesElektronen-Synchrotron(DESY),Platanenallee6,D-15738Zeuthen,Germany

*

Correspondingauthors.

E-mailaddresses:veronica.deleo@roma3.infn.it(V. De Leo),graziano.venanzoni@lnf.infn.it(G. Venanzoni).

http://dx.doi.org/10.1016/j.physletb.2016.12.016

0370-2693/©2016TheAuthor.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).Fundedby SCOAP3.

(2)

1. Introduction

PrecisiontestsoftheStandardModel(SM)requireanappropri- ateinclusion of higher-order effectsand the very preciseknowl- edge of input parameters [1].One of the basic input parameters is the effective QED coupling constant

α

, determined from the anomalousmagneticmoment oftheelectronwiththeimpressive accuracyof0.37partsperbillion[2].However,physicsatnon-zero momentumtransferrequiresaneffectiveelectromagneticcoupling

α

(s).1 The shift of the fine-structure constant from the Thom- son limit to high energy involves low energy non-perturbative hadronic effects which affect the precision. These effects repre- sentthelargestuncertainty(andthemainlimitation)fortheelec- troweak precision testsas the determination ofsin2θW at the Z poleortheSMpredictionofthemuong2[3].

The QED coupling constant is predicted and observed [4,5]

to increase with rising momentum transfer (differently fromthe strongcouplingconstant

α

S whichdecreaseswithrisingmomen- tumtransfer),whichcanbeunderstoodasaresultofthescreening ofthebarecharge causedby thepolarizedcloudofvirtual parti- cles. The vacuum polarization (VP) effects can be absorbed in a redefinitionofthefine-structureconstant,makingits dependent:

α (

s

) = α (

0

)

1

−  α (

s

) .

(1)

The shift

α

(s) interms ofthe vacuumpolarization function γ(s)isgivenby:

 α (

s

) = −

4

π α (

0

)

Re

[

γ

(

s

)

γ

(

0

)]

(2)

anditisthesumofthelepton(e,

μ

,

τ

) contributions,thecontri- butionfromthefivequark flavours(u, d, s, c, b), andthe contribu- tion of the top quark (which can be neglected at low energies):



α

(s)= 

α

lep(s)+ 

α

had(5)(s)+ 

α

top(s)[1].

Theleptoniccontributionscanbecalculatedwithveryhighpre- cision in QED using the perturbation theory [6,7]. However, due tothenon-perturbativebehaviourofthestronginteractionatlow energies, perturbative QCD only allows us to calculate the high energytailofthehadronic(quark) contributions.Intheloweren- ergy region the hadronic contribution can be evaluated through a dispersion integral over the measured e+ehadrons cross- section:

 α

had

(

s

) = −  α (

0

)

s 3

π



Re



m2π

ds Rhad

(

s

)

s

(

s

s

i

) ,

(3)

1 Inthefollowingwewillindicatewiths themomentumtransfersquaredofthe reaction.

where Rhad(s) is defined as the cross section ratio Rhad(s)= σ(e+eγ∗→hadrons)

σ(e+eγ∗→μ+μ).

Inthisapproachthedominantuncertaintyintheevaluationof



α

isgivenbytheexperimentaldataaccuracy.

In the Eq. (2)Im

α

relatedto the imaginary part ofthe VP function γ iscompletelyneglected,whichisagoodapproxima- tioninthecontinuumasthecontributionsfromtheimaginarypart aresuppressed.However,thisapproximationisnotsufficientinthe presence of resonances likethe

ρ

meson, where theaccuracy of thecrosssectionmeasurementsreachestheorderof(orevenless than)1%,andtheimaginarypartshouldbetakenintoaccount.

Inthispaperwepresentameasurementoftherunningofthe effective QED coupling constant

α

in the time-like region 0.6<

s<0.975 GeV.Thestrengthofthecouplingconstantismeasured asafunctionofthemomentum transferoftheexchangedphoton

s=Mμμ where Mμμ isthe

μ

+

μ

invariant mass. Thevalueof

α

(s)isextractedfromtheratioofthedifferentialcrosssectionfor the process e+e

μ

+

μ

γ

(

γ

) withthe photon emittedin the InitialState(ISR)tothecorrespondingcrosssectionobtainedfrom MonteCarlo(MC)simulationwiththecouplingsettotheconstant value

α

(s)=

α

(0):

| α (

s

)

α (

0

) |

2

=

d

σ

data

(

e+e

μ

+

μ

γ ( γ ))|

I S R

/

d

s d

σ

MC0

(

e+e

μ

+

μ

γ ( γ ))|

I S R

/

d

s (4)

ToobtaintheISRcrosssection,theobservedcrosssectionmustbe corrected forevents withone ormore photonsin thefinal state (FSR).ThishasbeendonebyusingthePHOKHARAMCeventgen- erator,whichincludesnext-to-leading-orderISRandFSRcontribu- tions [8]. Inthe following we onlyuse eventswhere the photon is emitted atsmallangles, whichresults ina large enhancement of the ISR with respect to the FSR contribution. From the mea- surement ofthe effectivecoupling constant andthe dipion cross section [9],we extractedforthe firsttimeina singleexperiment therealandimaginarypartof

α

.

The analysis has been performedby using the data collected with the KLOE detector at DANE [10], the e+e collider run- ning atthe φ meson mass,with a totalintegrated luminosity of 1.7 fb1.

2. TheKLOEdetector

The KLOEdetectorconsistsofa cylindricaldriftchamber (DC) [11] andanelectromagneticcalorimeter(EMC)[12].TheDChasa momentumresolutionof

σ

p/p0.4% fortrackswithpolaran- gleθ >45.TrackpointsaremeasuredintheDCwitharesolution inr− φof0.15 mm and∼2 mm inz.TheEMChasanenergy resolution of

σ

E/E5.7%/

E (GeV) andan excellent time reso- lutionof

σ

t54 ps/

E (GeV)100 ps.Calorimeter clustersare reconstructedgroupingtogetherenergydepositscloseinspaceand

(3)

Fig. 1. Detectorsectionwith theacceptance regionforthe chargedtracks(wide cones)andforthephoton(narrowcones).

time. A superconducting coil provides an axial magnetic field of 0.52Talongthebisectorofthecollidingbeamdirections.Thebi- sectoristakenasthezaxisofourcoordinatesystem.Thexaxisis horizontalandtheyaxisisvertical,directedupwards.Acrosssec- tionofthedetectorinthey,zplaneisshowninFig. 1.Thetrigger uses both EMC andDC information. Events used in thisanalysis aretriggered by two energy depositslarger than 50MeV in two sectorsofthebarrelcalorimeter.

2.1.Eventselection

A photon and two tracks of opposite curvature are required toidentifya

μμγ

event.Events areselectedwitha(undetected) photonemittedatsmallangle(SA),i.e. withinaconeofθγ<15 aroundthebeamline(narrowconesinFig. 1)andthetwocharged muons are emitted at large polar angle, 50< θμ<130. High statisticsfortheISRsignalandsignificantreductionofbackground events as φ

π

+

π

π

0 in which the

π

0 mimics the missing momentumof thephoton(s) andfrom theFSRradiation process, e+e

μ

+

μ

γ

F S R, are guaranteed by this selection. However, this requirement results in a kinematical suppression of events with √

s<0.6 GeV, since a highly energetic photon emitted at smallangleforcesthemuonsalsotobeatsmallangles(andthus outsidetheacceptance).

Toavoidspirallingtracksinthedriftchamber,thereconstructed momentamusthavepT>160MeVor|pz|>90MeV.Thisensures goodreconstructionandefficiency.

Themainbackgroundreactionsaregivenby:

e+e

π

+

π

γ

(

γ

)

e+e

π

+

π

π

0

e+ee+e

γ

(

γ

).

AparticleIDestimator(PID)basedonapseudo-likelihoodfunc- tion (L±) using time-of-flight and calorimeter information (size andshapeoftheenergydeposit)isusedtoobtainseparationbe- tweenelectronsandpionsormuons.Eventswithbothtrackssat- isfyingL±<0 arerejectedase+e

γ

.Toseparatethemuonsfrom thepionsweappliedmainlytwocuts:thefirstonthetrackmass (MT R K)variableandthesecondonthe

σ

M T R K,theestimatederror

Fig. 2.π π γ andμμγ MT R Kdistributions.Theverticallineshowstheμμγselec- tioncut(MT R K<115 MeV).TheeffectoftheσMT R K cutonthetwodistributionsis clearlyvisible.

on MT R K.Assumingthepresenceofonlyone unobservedphoton andthatthetracksbelongtoparticlesofthesamemass,MT R K is computedfromenergy andmomentumconservation.The

σ

M T R K variableisconstructedeventbyeventwiththeerrormatrixofthe fitted tracks at the point of closest approach (PCA) [13]. Cutting the highvalues of thisvariable the bad reconstructed tracks are rejected allowing a reduction of the

π π γ

events contamination (showninFig. 2).

ResidualbackgroundisevaluatedbyfittingtheobservedMT R K spectrumwithasuperpositionofMCsimulationdistributionsde- scribing signal and

π

+

π

γ

,

π

+

π

π

0 and e+e

γ

events. The normalizationfactorsfromsignalandbackgroundsarefreeparam- etersofthefit,performedfor30intervalsins of0.02 GeV2 width for0.35<s<0.95 GeV2.Additionalbackgroundfromthee+ee+e

μ

+

μ

process has been evaluated using the NEXTCALIBUR MC generator [14]. The maximum contribution is 0.7% at √

s= 0.6 GeV. The uncertainty on this background has been taken as 50% of the total contribution and added to the systematic error.

The contribution from e+ee+e

π

+

π

has been evaluated withtheEKHARAgenerator[15]andfoundtobenegligible.

Thetotalfractional systematicuncertaintyonbackgroundsub- traction,obtainedbyaddinginquadraturetheuncertaintiesonthe fit normalization parameters and the e+e

μ

+

μ

residual back- ground,rangesfrom0.2%to0.05%decreasingwiths.

About4.106

μμγ

eventspasstheseselectioncriteria.

3. Measurementofthe

μμγ

crosssection

The experimental ISR

μ

+

μ

γ

cross section is obtained from theobservednumberofevents(Nobs)andthebackgroundestimate (Nbckg)as:

d

σ (

e+e

μ

+

μ

γ ( γ ))

d

s

 

I S R

=

Nobs

Nbkg



s

· (

1

− δ

F S R

) (

s

) ·

L

,

(5) where (1− δF S R) is the correction applied to remove the FSR contribution (which increases with the energy from 0.998 at 0.605 GeV to1.032 at0.975GeV),

isthe efficiency(seesection below)andL istheintegratedluminosity.

We firstly compare the

μ

+

μ

γ

cross-section with only ISR withthecorrespondingNLOQEDcalculationfromPHOKHARAgen- eratorincludingtheVPeffects.

IntheupperplotofFig. 3themeasured

μ

+

μ

γ

cross-section as a function of √

s for both experimental (red points) and MC (bluepoints)dataisshown.Theagreementbetweenthetwocross sectionsisexcellent.Thesamefigureshowsaninteresting feature around 0.78 GeV (corresponding to the mass of the

ω

meson),

(4)

Fig. 3. Upperplot:comparisonofthemeasureddifferentialcrosssection(redpoints) andPHOKHARAMCprediction(bluepoints)ofthe μ+μγ crosssection.Lower plot:theratioofthetwo.Thegreenbandshowsthesystematicerror.(Forinterpre- tationofthereferencestocolourinthisfigurelegend,thereaderisreferredtothe webversionofthisarticle.)

where a small step appears in the cross section. This step be- haviourisduetothe

ρ

ω

interferenceinthephotonpropagator, asitwillbeshowninthefollowing.Inthelowerplotthedatato MCratioisshowntogetherwiththesystematicerror(greenband) oftheorderof1%.

4. Efficienciesandsystematicerrors

Theglobalefficiency,whichrangesfrom0.086at0.605 GeVto 0.27at0.975 GeV,hasbeenobtainedfroma

μ

+

μ

γ

eventsgen- eration with PHOKHARA interfaced with the detector simulation codeGEANFI[16].It includescontributions fromtrigger, tracking, PID,

σ

M T R K,MT R K andacceptance.

Trigger:thetriggerefficiencyhasbeenobtainedfromasample of

μ

+

μ

γ

events where a single muon satisfies the trigger re- quirement. Triggerresponse fortheother muon isparameterized asafunction ofits momentum anddirection.The efficiencyasa functionofs isobtainedusingtheMC eventdistributionanddif- fersfromonebylessthan104,withnegligiblesystematicerror.

Tracking: the single muon track efficiencyhas been obtained asafunctionoftheparticlemomentumandpolaranglebymeans ofa highpurity

μ

+

μ

γ

sample obtainedby usingone muonto tag the presence of the other. The combined efficiency is about

in s)whichwetakeassystematicerror.

The systematic uncertainty on

σ

MTRK cut has beenevaluated asthe maximumdifferencebetweenthe

μμγ

normalization parametersofthebackgroundfittingprocedure,obtainedwith standard cuts, and thoseobtained by shifting

σ

MTRK by ±2%.

Thecontributionislessthan1%inthewholeenergyrange.

Systematic effects due to polar angle requirements for the muonsand forthephoton, are estimatedby varying the an- gularacceptanceby±1 (morethantwotimestheresolution onthepolarangle)aroundthenominalvalue.Theuncertainty rangesfrom0.1to0.6%.

Softwaretrigger:Athird-level triggerisimplementedto keep the physics eventswhichare misidentified ascosmic rays. Its ef- ficiencyfor

μμγ

events,evaluatedfromanunbiaseddownscaled sample,isconsistentwithonewithin103 whichistakenassys- tematicerror.

Table 1givesthesystematicerrorsatthe

ρ

-peakmassvalue.

5. Luminosityandradiativecorrections

Large angleBhabha scatteringis used to determine the lumi- nosity,withareferencecrosssectionobtainedwithBabayaga@NLO MC eventgenerator[17],convolvedwithdetectorandbeamcon- ditions[18].Twosourcescontribute tothesystematicuncertainty intheevaluationoftheluminosity:

the theoreticalaccuracy ofBabayaga@NLO,quoted as0.1%by theauthors;

the systematic error associated to the counting of Bhabha eventswhichis0.3%[18]

When extractingtherunningof

α

(see followingSection),the dependenceoftheBhabhacrosssectionontheVPeffectmustbe taken into account. By switching off the hadronic corrections to theVP,wecheckedthatthepresenceofthehadroniccontribution to 

α

forboth s andt channelsinthecrosssection givesa 0.2%

contributionwhichweconsiderasasystematicerrorofourmea- surement(

α

haddep. inTable 1).

TheuncertaintyonPHOKHARAMCgenerator(Rad.functionH in Table 1) is0.5% constant in s, mostly dueto missingISR higher- order terms[8]. Theuncertaintyinthe procedureto subtractthe FSRcontributionis0.2%,mostlyduetomissingFSRdiagrams[19].

6. Measurementoftherunningof

α

We use Eq.(4)and Eq.(5) inthe angularregion θγ <15 to extract the running of the effectiveQED coupling constant

α

(s). By setting in the MC the electromagnetic coupling to the con- stant value

α

(s)=

α

(0), thehadronic contributionto the photon propagator,withits characteristic

ρ

ω

interferencestructure,is clearly visible in the data to MC ratio, as shown in Fig. 4. The

(5)

Table 1

Listofsystematicerrors.

Source σμμγ |α(s)/α(0)|2

Trigger <0.1%

Tracking s dep. (0.5% atρ-peak) Particle ID <0.1%

Background subtraction s dep. (0.1% atρ-peak)

MT R K 0.4%

σM T R K s dep. (<0.1% atρ-peak)

Acceptance s dep. (0.3% atρ-peak) Software Trigger 0.1%

Luminosity 0.3%

haddep. (normalization) 0.2%

FSR treatment 0.2%

Rad. function H 0.5%

Total systematic error s dep. (0.8% atρ-peak) (1% atρ-peak)

Fig. 4. Thesquareofthemodulusoftherunningα(s)inunitsofα(0)compared withtheprediction(providedbythealphaQEDpackage[20])asafunctionofthe dimuoninvariantmass.TheredpointsaretheKLOEdatawithstatisticalerrors;

thevioletpointsarethetheoreticalpredictionforafixedcoupling(α(s)=α(0));

theyellowpointsarethepredictionwithonlyvirtualleptonpairscontributingto theshiftα(s)= α(s)lep,andfinallythepointswiththesolidlinearethefull QEDpredictionwithbothleptonandquarkpairscontributingtotheshiftα(s)=

α(s)lep+had.(Forinterpretationofthereferencestocolourinthisfigurelegend, thereaderisreferredtothewebversionofthisarticle.)

prediction fromRef. [20] is also shown. While the leptonic part is obtained by perturbation theory, the hadronic contribution to

α

(s) is obtained via an evaluation in terms of a weighted aver- age compilation of Rhad(s), based on the available experimental e+e→hadrons annihilationdata(foran up todatecompilation see[21]andreferencestherein).

Forcomparison,thepredictionwithconstantcoupling(norun- ning) and with only lepton pairs contributing to the running of

α

(s)isgiven.

The value of |

α

(s)/

α

(0)|2 with the statistical and systematic uncertaintyis reported inTable 2. As can be seen, the total un- certaintyisatthe1%level.

Inordertoevaluate thestatisticalsignificanceofthehadronic contributiontotherunningof

α

(s),a

χ

2 basedstatisticaltestfor twodifferentrunninghypotheses:(a)norunning;(b)running due toleptonpairsonlyisperformed.

Byincludingstatisticalandsystematicserrors, weexclude the only-leptonic hypothesis at 6

σ

which is the strongest direct ev- idence ever achieved by a single experiment. Our result is also consistentwiththeestimateof

α

(s)ofRef.[22]witha

χ

2 prob- abilityof0.3(

χ

2/ndf=41.2/37).

Fig. 5. ImextractedfromtheKLOEdatacomparedwiththevaluesprovidedby alphaQEDroutine(withouttheKLOEdata)forIm=Imlep(yellowpoints) andIm=Imlep+hadonlyforπ π channels(bluesolidline).(Forinterpreta- tionofthereferencestocolourinthisfigurelegend,thereaderisreferredtothe webversionofthisarticle.)

Similar results are obtained using different

α

(s) predictions inRef.[22,23].

7. Extractionofrealandimaginarypartof

α

(s)

Inthe contributionto therunningof

α

,theimaginary partis usuallyneglected.Thisisagoodapproximationasthecontribution fromthe imaginary partof 

α

enters atorder O(

α

2) compared to O(

α

) for the real part, and is suppressed [26]. However, the imaginary part should be taken into account in the presence of resonanceslikethe

ρ

meson, wherethecrosssectionismeasured withanaccuracybetterthan1%.

By usingthe definition of therunning of

α

(Eq. (1)) the real partoftheshift

α

(s)canbeexpressedintermsofitsimaginary partand|

α

(s)/

α

(0)|2:

Re

 α =

1

− 

| α (

0

)/ α (

s

)|

2

− (

Im

 α )

2

.

(6)

The imaginary part of 

α

(s) can be related to the total cross section

σ

(e+e

γ

anything), where the precise relation reads[3,24,25]:Im

α

= −α3R(s),withR(s)=

σ

tot/4π|α3s(s)|2. R(s) takes into account leptonic and hadronic contribution R(s)= Rlep(s)+Rhad(s),wheretheleptonicpartcorresponds tothepro- ductionofalepton pairatlowest ordertakingintoaccount mass effects:

Rlep

(

s

) =



1

4m

2 l

s



1

+

2m

2 l

s

, (

l

=

e

, μ , τ ).

(7)

Intheenergyregionaroundthe

ρ

-mesonwecanapproximate thehadroniccrosssectionbythe2

π

dominantcontribution:

Rhad

(

s

) =

1 4

1

4m2π s

32

|

Fπ0

(

s

) |

2

,

(8)

where 0 is the pion form factor deconvolved: |Fπ0(s)|2 =

|Fπ(s)|2αα((0s))2.

The resultsobtainedforthe2

π

contributiontothe imaginary part of

α

(s) by using the KLOE pionform factormeasurement [9],are shown in Fig. 5and compared withthe values givenby the Rhad(s) compilation of Ref. [20] using only the 2

π

channel,

(6)

0.705 1.004±0.007±0.010 2.1±3.4±5.116.89±0.23±0.07 0.715 1.005±0.007±0.010 2.7±3.3±519.46±0.26±0.09 0.725 1.017±0.007±0.010 8.6±3.3±4.920.54±0.28±0.11 0.735 1.018±0.007±0.010 9.3±3.3±5.123.04±0.33±0.11 0.745 1.009±0.006±0.010 4.8±3.2±4.724.15±0.34±0.23 0.755 1.006±0.006±0.010 3.3±3.1±5.125.76±0.37±0.25 0.765 1.013±0.006±0.010 6.5±3.1±5.125.89±0.37±0.25 0.775 1.018±0.006±0.010 9.2±3.0±4.825.93±0.36±0.51 0.785 1.065±0.007±0.011 31.1±3.0±4.921.36±0.27±0.69 0.795 1.066±0.007±0.011 31.8±3.0±5.019.49±0.22±0.16 0.805 1.049±0.006±0.011 23.8±2.8±5.018.69±0.22±0.17 0.815 1.050±0.006±0.011 24.2±2.8±5.116.2±0.17±0.12 0.825 1.049±0.006±0.011 23.6±2.7±5.014.79±0.15±0.11 0.835 1.057±0.006±0.011 27.2±2.7±5.013.93±0.13±0.1 0.845 1.044±0.006±0.011 21.3±2.6±5.012.49±0.11±0.08 0.855 1.044±0.005±0.011 21.4±2.5±4.911.65±0.09±0.06 0.865 1.041±0.005±0.011 20.2±2.5±5.011.25±0.09±0.05 0.875 1.044±0.005±0.011 21.6±2.4±5.110.16±0.07±0.04 0.885 1.050±0.005±0.011 24.4±2.3±4.99.53±0.06±0.03 0.895 1.048±0.005±0.011 23.1±2.2±59.03±0.05±0.03 0.905 1.045±0.004±0.011 22.0±2.1±5.18.81±0.05±0.02 0.915 1.035±0.004±0.011 17.2±1.9±5.38.35±0.04±0.02 0.925 1.046±0.004±0.011 22.3±1.8±5.17.89±0.03±0.02 0.935 1.035±0.003±0.011 17.0±1.7±5.17.62±0.03±0.01 0.945 1.038±0.003±0.010 18.3±1.5±4.87.33±0.02±0.01 0.955 1.039±0.003±0.010 18.8±1.4±4.87.13±0.02±0.01 0.965 1.029±0.003±0.010 14.2±1.3±4.86.94±0.02±0.01 0.975 1.030±0.002±0.010 14.6±1.1±4.76.82±0.02±0.01

Fig. 6. Reextractedfromtheexperimentaldatawithonlythestatisticalerror includedcomparedwiththealphaQEDprediction(withouttheKLOEdata)when Re=Relep (yellowpoints)andRe=Relep+had (bluesolidline).(For interpretationofthereferencestocolourinthisfigurelegend,thereaderisreferred tothewebversionofthisarticle.)

withtheKLOEdataremoved (toavoidcorrelations).Table 2gives the 2

π

contribution to Im

α

(s) with statistical and systematic errors.

The extraction of the Re

α

has been performed using the Eq.(6)anditisshowninFig. 6.Theexperimental datawithonly the statistical error included have been compared with the al- phaQEDpredictionwhen Re

α

=Re

α

lep (yellowpoints inthe colourfigure)andRe

α

=Re

α

lep+had(dotswithsolidline).The Re

α

(s)valueswithstatisticalandsystematicerrorsaregivenin Table 2.Thesystematicerrorsincludethemissinghadroniccontri- butions (3

π

,4

π

,...)which werenot includedintheevaluationof Im

α

(s).Ascanbeseen,anexcellentagreementforRe

α

(s)has beenobtainedwiththedata-basedcompilation.

8. FitofRe

α

andextractionofB R(

ω

μ

+

μ

)B R(

ω

e+e)

We fitRe

α

bya sumoftheleptonic andhadroniccontribu- tions, where the hadroniccontribution isparametrized asa sum ofthe

ρ

(770),

ω

(782)andφ (1020) resonancecomponentsanda non-resonant term. We usea Breit–Wigner descriptionforthe

ω

andφresonances[3,26,27]:

Re

 α

V=ω

=

3

BR

(

V

e+e

) ·

BR

(

V

μ

+

μ

) α

MV

×

s

(

s

M2V

)

V

(

s

M2V

)

2

+

s



V2

,

(9) whereMV andV arethemassandthetotalwidthofthemesons V =

ω

andφ.Forthe

ρ

weusea Gounaris–Sakuraiparametriza-

(7)

Table 3

ResultsfromthefitofRecomparedwiththeworldaveragevalues(PDG[31]).Second(third)column:without(with) theρωinterference.Onlystatisticalerrorsarereportedforthefitvalues.

Parameter Result from the fit Result from the fit withρωinterf. PDG

Mρ,MeV 775±6 778±7 775.26±0.25

ρ,MeV 146±9 147±10 147±0.9

Mω,MeV 782.7±1.1 783.4±0.8 782.65±0.12

B Rμ+μ)B Re+e) (4.3±1.8)·109 (4.4±1.8)·109 (6.5±2.3)·109

χ2/ndf 1.19 1.15

Fig. 7. Fit of the Redata. Only statistical errors are shown.

tionB WρG S(s)[28,29]ofthepionformfactor,whereweneglectthe interferencewiththe

ω

andthehigherexcitedstatesofthe

ρ

:

Fπ

(

s

) =

B WρG S(s)

=

M

2ρ

(

1

+

d



ρ

/

Mρ

)

Mρ2

s

+

f

(

s

)

iMρ



ρ

(

s

)

(10)

Theterms d and f(s) are described inRef. [29]. As itwill be shown in the following, this approximation turns out to be ap- propriategiventhelimitedstatisticsofthedata.Inparticular,the inclusionoftheenergydependenceonthetotalwidthsof

ω

and φresonances[30]givesnegligiblecontributions.Thenon-resonant termhasbeenparametrizedasafirst-orderpolynomial p0+p1

s.

The following parameters have been fixed to the PDG val- ues[31]:ω= (8.49±0.08)MeV, Mφ= (1019.461±0.019)MeV,

φ= (4.266±0.031)MeV,and B R(φe+e)B R(φ

μ

+

μ

)= (8.5+00..56)·108.

ResultsofthefitareshowninFig. 7andcomparedinTable 3 (second column) with the corresponding values from PDG [31].

Onlystatisticalerrorsarereported.

The parameters of thenon-resonant term are consistent with zero within the statistical uncertainties: p0= (2.4.5)·103, p1= (−2.5.3)·103.The

χ

2/ndf ofthefitis36.85/31=1.19.

Tostudytheeffectofthe

ρ

ω

interferenceinestimating

α

, an additional term δ s

M2ωB W ω(s)B WρG S has been included in the fit.Results are shown in the third column of Table 3 where we fix |δ|=1.45·103 and arg δ=10.2 [32]. As it can be seen, results withthe interference term are well within the statistical uncertainties,andinthefollowingwewillusetheresultswithout theinterferenceterm.

Byincludingthesystematicerrors(takingalsointoaccountthe correlationsofthe systematic uncertainties onthe parameters of thefit,andtheuncertaintyofthePDGvaluesforfixedparameters) theproductofthebranchingfractionsreads:

B R

( ω μ

+

μ

)

B R

( ω

e+e

) = (

4

.

3

±

1

.

8

±

2

.

2

) ·

109

,

(11)

where the first error is statisticaland the second systematic. By multiplyingbythephasespacefactorξ=

1+2mm2μ2 ω

 1−4mm2μ2

ω

1/2 and assuming lepton universality, B R(

ω

μ

+

μ

) can be ex- tracted:

B R

( ωμ

+

μ

) = (

6

.

6

±

1

.

4stat

±

1

.

7syst

) ·

105 (12)

comparedtoB R(

ω

μ

+

μ

)= (9.3.1)·105fromPDG[31].

9. Conclusions

We have measured the hadronic contribution to the running ofthe effectiveQEDcouplingconstant

α

(s) usingthe differential crosssectiond

σ

(e+e

μ

+

μ

γ

)/d

s intheregion0.6<s<

0.975 GeV,withthephotonemittedintheinitialstate.Ourresults show aclearcontributionofthe

ρ

ω

resonancestothephoton propagator, which results in a more than 5

σ

significance of the hadroniccontributiontotherunningof

α

(s).Thisisthestrongest directevidenceachievedinbothtime- andspace-likeregionsbya single experiment.Forthefirsttime therealandimaginaryparts of 

α

(s) havealso beenextracted. From a fitof therealpart of



α

(s) and assuming the lepton universality the branching ratio B R(

ω

μ

+

μ

)= (6.1.4stat±1.7syst)·105hasbeenobtained.

Acknowledgements

We thank F. Ignatov and C.M. Carloni Calame for useful dis- cussions. We warmly thank our former KLOE colleagues for the access to the data collected during the KLOE data taking cam- paign.We thanktheDANEteamfortheireffortsinmaintaining lowbackgroundrunningconditionsandtheir collaborationduring all data taking. We want to thank our technical staff: G.F. For- tugno andF. Sborzacchi for their dedication in ensuring efficient operation oftheKLOEcomputingfacilities; M.Anelli forhis con- tinuousattentionto the gassystemanddetectorsafety;A. Balla, M.Gatta, G. CorradiandG.Papalino forelectronicsmaintenance;

M. Santoni, G. Paoluzziand R.Rosellini for generaldetectorsup- port; C. Piscitelli for his help during major maintenance periods.

This work was supported in part by the EU Integrated Infras- tructure Initiative Hadron Physics Project under contract number RII3-CT-2004-506078;bytheEuropeanCommissionunderthe7th Framework Programme through the ‘Research Infrastructures’ ac- tion of the ‘Capacities’ Programme, Call: FP7-INFRASTRUCTURES- 2008-1, Grant Agreement No. 227431; by the Polish National Science Centre through the Grants No. 2011/03/N/ST2/02652, 2013/08/M/ST2/00323,2013/11/B/ST2/04245,2014/14/E/ST2/00262, 2014/12/S/ST2/00459.

References

[1]F.Jegerlehner,J.Phys.G29(2003)101.

[2]T.Aoyama,M.Hayakawa,T.Kinoshita,M.Nio,Phys.Rev.D77(2008)053012.

[3]F.Jegerlehner,TheAnomalousMagneticMomentoftheMuon,SpringerTracts Mod.Phys.,vol. 226,2008,p. 1.

[4]A.B.Arbuzov,D.Haidt,C.Matteuzzi,M.Paganoni,L.Trentadue,Eur.Phys.J.C 34(2004)267.

(8)

148.

[15]H.Czy ˙z,E.Nowak-Kubat,Phys.Lett.B634(2006)493;

H.Czy ˙z,E.Nowak,ActaPhys.Pol.B34(2003)5231.

[16]F.Ambrosino,etal.,Nucl.Instrum.MethodsA534(2004)403.

[17]G.Balossini,C.M.CarloniCalame,G.Montagna,O.Nicrosini,F.Piccinini,Nucl.

Phys.B758(2006)227;

C.M.CarloniCalame,C.Lunardini,G.Montagna,O.Nicrosini,F.Piccinini,Nucl.

Phys.B584(2000)459.

[26]S.Actis,etal.,Eur.Phys.J.C66(2010)585.

[27]S.Iwao,M.Shako,Lett.NuovoCimento9(1974)693.

[28]G.J.Gounaris,J.J.Sakurai,Phys.Rev.Lett.21(1968)244.

[29]R.R.Akhmetshin,etal.,CMD-2Collaboration,Phys.Lett.B527(2002)161.

[30]M.N.Achasov,etal.,Phys.Rev.D63(2001)072002.

[31]K.A.Olive,etal.,ParticleDataGroup,Chin.Phys.C38(2014)090001.

[32]G.Mandaglio,etal.,KLOE-2Collaboration,Nucl.Part.Phys.Proc.260(2015) 87.

Figure

Updating...

References

Related subjects :