• Nie Znaleziono Wyników

The influence of oxazaphosphorine agents on kidney function in rats

N/A
N/A
Protected

Academic year: 2022

Share "The influence of oxazaphosphorine agents on kidney function in rats"

Copied!
11
0
0

Pełen tekst

(1)

Original Research Article

The influence of oxazaphosphorine agents on kidney function in rats

Łukasz Dobrek

a,

* , Beata Skowron

a

, Agnieszka Baranowska

a

, Klaudia P łoszaj

b

, Dorota B ądziul

c

, Piotr Thor

a,c

aDepartmentofPathophysiology,FacultyofMedicine,JagiellonianUniversityMedicalCollege,Krakow,Poland

bMedicalanalyticsgraduatestudent,JagiellonianUniversityMedicalCollege,Krakow,Poland

cDepartmentofHumanPhysiologyandPathophysiology,FacultyofMedicine,UniversityofRzeszów,Rzeszow,Poland

*Correspondingauthorat:DepartmentofPathophysiology,FacultyofMedicine,JagiellonianUniversityMedicalCollege,Czysta18,31-121 Krakow,Poland.

E-mailaddress:lukaszd@mp.pl(Ł.Dobrek).

article info Articlehistory:

Received20October2016 Receivedinrevisedform 10April2017

Accepted2May2017 Availableonline2July2017

Keywords:

Cyclophosphamide Ifosfamide Kidney Nephrotoxicity Rats

abstract

Backgroundandobjective: Theapplicationofcytostaticoxazaphosphorinessuchascyclo- phosphamide(CP)andifosfamide(IF)isassociatedwiththeriskofkidneydamagethat, dependingonthetypeofdrug,doseandrouteofadministration,adoptsadifferentclinical entityandseverity.TheaimofourstudywastoassesstheinfluenceofCPandIFonthekidney histologyandfunctioninratsintraperitoneallytreatedwithfourdosesofeitherCPorIF.

Materialsandmethods:Atotalof30ratsweredividedintothreegroups(10ineachgroup):

group1(control),shamtreatedwithsalinesolution,group2(treatedwith75mg/kgb.w.of CP),andgroup3(treatedwith60mg/kgb.w.ofIF).Afterthetreatmentratsweresacrificed, bloodwascollectedandnephrectomyandcystectomywereperformed.Qualitativeand quantitativeparameters(includingneutrophilgelatinase-associatedlipocalin-1,NGAL-1)of kidneyfunctionwereassayedinurineandplasma.

Results:CP-treatedratswerecharacterizedbyasignificantpolyuria,decreasedurinepHand bydecreaseddailyurinaryexcretionofsodium,potassium,ureaanduricacidaccompanied byincreasedNGAL-1excretion.Asignificantdecreaseoftheplasmauricacidconcentration wasalsoobserved.IF-treatedanimalswerealsocharacterizedbydecreasedurinepHbut withnormaldailyurinaryexcretionofassessedsubstances(exceptforreduceduricacid excretion).

BothCPandIFtreatedratsdidnotshowanyhistopathologicalabnormalitiesintheir kidneys.

Conclusions: CPcausedmoreadvancedkidneydysfunctionandsomeindicessuggestedthe developmentofprerenalacutekidneyinjury.IntheCP-treatedgroupsomeparticularly markedurinaryandplasmauricaciddisturbancessuggestedcompensationofincreased oxidativestressasuricacidisconsideredtoexertalsoantioxidantproperties.

©2017TheLithuanianUniversityofHealthSciences.ProductionandhostingbyElsevier Sp.zo.o.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense(http://creative- commons.org/licenses/by-nc-nd/4.0/).

Availableonlineatwww.sciencedirect.com

ScienceDirect

journal homepage:http://www.elsevier.com/locate/medici

http://dx.doi.org/10.1016/j.medici.2017.05.004

1010-660X/©2017TheLithuanianUniversityofHealthSciences.ProductionandhostingbyElsevierSp.zo.o.Thisisanopenaccess articleundertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

(2)

1. Introduction

Nephrotoxicity is defined asa structural and/or functional kidneydamageresultingfromexposuretoanynoxiousfactor of toxic or ischemic character. Drugs are one of kidney- affecting agents, therefore the incidence of drug-induced nephrotoxicity has been continuously increasing [1]. Some general issues determining drug-induced kidney disease include glomerular or tubular dysfunction, impairment of renal blood flow or disturbances of kidney metabolic and endocrine function,accompanied by microscopicstructural lesionsorgrossmorphologicalchanges[2].Thebackgroundfor nephrotoxicityaredetailedpathomechanisms,affectingrenal vasculature(e.g.hemodynamicacutekidneyinjuryorthrom- botic microangiopathy), glomeruli (e.g. minimal change disease, focalsegmental glomerulosclerosis) ortubulointer- stitium(acutetubularnecrosis,[ATN],crystalnephropathyor tubulopathies such as Fanconi syndrome, salt wasting, nephrogenic diabetes insipidus, syndromeof inappropriate antidiuresis)[3,4].

Nephrotoxicityremainsanimportantadversedrugreac- tion (ADR) in case of administration of many classes of pharmacologicalagents,includingparticularly:contrastme- dia,immunosuppressants(mostlycyclosporineA),aminogly- cosides,sulphonamides,amphotericinB,non-steroidalanti- inflammatorydrugs,goldandD-penicillamine,antihyperten- sives,withspecialattentiontoangiotensinconvertingenzyme inhibitors or diuretics [1]. Also, many cytostatic drugs are characterized by a significant nephrotoxicity. Therefore, despitetheimprovementineffectivenessof chemotherapy, drug-inducedkidneydamageremainsacomplicationentan- glingtheentiretreatment[3].

Amongthechemotherapeuticsendowedwithnephrotoxi- city, oxazaphosphorine alkylating agents should be men- tioned. These compounds include cyclophosphamide (CP), ifosfamideandlessfrequentlyusedtrofosfamide.CPisusedin chemotherapyofbothsolidtumorsandacuteleukemiaandis usedasan immunosuppressantinnonneoplasticdisorders (systemic lupus erythematosus and rheumatoid arthritis).

Ifosfamide(IF)isalsoaneffectiveagentusedintreatmentof solidtumors,includingtesticularcancer,rhabdomyosarcoma, Wilms'tumor,Ewing'ssarcoma,bonesarcomas,osteosarco- maandneuroblastomaaswellassomeformsoflymphoma [3,5].ThemainADRofCPishemorrhagiccystitis,inducedby acrolein–atoxicproductreleasedduringCPbiotransforma- tion.Ifosfamideshareswithcyclophosphamideatoxicprofile characterizedbyurotoxicity.Moreover,IFisconsideredtobe morenephrotoxiccomparedtoCP[2,3,5].Thatisduetothefact that biotransformationof IF leadsto aprincipal release of chloroacetaldehydethatisattributedtoexertamorepowerful nephrotoxic effect compared to acrolein [6]. To sum up, nephrotoxicityofoxazaphosphorine agentsdependsonthe type of drug (CP vs. IF), the applied dose, the route of administration,thetotaltimeoftreatment,thepresenceof otherco-existingfactorspredisposingtonephrotoxicity[2,4].

That multitude of nephrotoxicity-determining factors also results in a varied clinical description of kidney damage evokedbyuseofthoseagents.Moreover,publishedreportsof kidneydamageevokedbyoxazaphosphorineadministration

are only partial, based on the different nature of the assessment (imagingstudies, selectedbiochemicalparame- ters),soanymorecomplexlaboratoryanalysisoftheissueis stillmissing.

Therefore,theaimofourstudywastoassesstheinfluence oftwooxazaphosphorines(CPandIF)ontherenalhistology and function,estimated by panelof laboratoryparameters assessed in urine and plasma, in rats treated with four successivedosesofeitherCPorIF.

2. Materials and methods

Themedicalexperimentdescribedinthispaperwasapproved bytheILocalEthicalCommitteeinKrakow.Theexperiment wascarriedoutinaccordancewithboththeDirective2010/63/

EUontheprotectionofanimalsusedforscientificpurposes andwiththePolishActof15January2015ontheprotectionof animals used for scientific or educational purposes (JL, February26,2015,Pos.266).

2.1. Examinedgroupsofanimalsandageneralplanofthe experiment

Theexperimentincluded3010-week-oldalbinoWistarrats,in equalquantitiesofmalesandfemales.Animalswereobtained fromtheCentralAnimalHouseoftheFacultyofPharmacyof theUJCMinKrakow.

UponarrivaltothelocalAnimalHouseoftheDepartment ofPathophysiologyoftheUJCM,theywerekeptduringthefirst sevendaysinanisolatedroominordertoacclimatizetothe new living conditions. After that period, the rats were randomlyassignedtothestudygroupsofthesamesize(10 ineachgroup;5malesand5females):group1(controlrats), group2(ratswithCP-inducedchroniccystitis), andgroup3 (ratswithIF-inducedchroniccystitis).

All animals survived till the end of the experiment, although theoverall conditionof the animalsfrom groups 2 and 3 was deteriorating with subsequent CP/IF doses, respectively.

Duringtheexperiment(exceptwhenratswerehousedin individualmetaboliccages),animalswerekeptinsingle-sex cagesseparateforthestudygroups,withunlimitedaccessto waterandstandardfeed(Labofeed,Kcynia,Poland),intheair- conditionedroomwithaconstanttemperatureandhumidity, maintaininga12/12-hday/nightcycle.

Theplanoftheexperimentassumedinitialassessmentof vitalsigns,dailydiuresis,feedandwaterconsumptionofall studyanimalsperformedinindividualcages.Urinesamples werecollectedover24h forsubsequent laboratoryanalysis and for qualitativeand semi-quantitative analysis of urine withurinedipsticks.Then,animalsingroups2and3received CPorIFtreatment,respectively,toinducechroniccystitisin7 days.Controlindividualsweregivennormalsaline.Afterthe lastCP/IF/salinedoseallanimalswereoncemoremonitored during24hinmetaboliccages,withassessmentofthesame parametersasthosebeforethetreatmentandurinesamples werecollectedagain.Afterthesecondstayinmetaboliccages, blood samples for further biochemical assay were also collected.Finally,theanimalsweresacrificedandcystectomy

(3)

andnephrectomywereperformedforsubsequenthistopath- ologicalevaluationofurinarybladdersandkidneys.

2.2. Chroniccystitisinducedbycyclophosphamide(group 2)orifosfamide(group3)

Ratsinthegroup2weregivenCP(CPmonohydrate;Sigma Aldrich) intraperitoneally in the amount of 75mg/kg b.w., dissolvedin0.5mLofnormalsaline.Thedosewasadminis- tratedfourtimes,everytwodays,aftertheinitialmonitoring inmetaboliccagesonthefirstdayoftheexperiment.Afterthe last CP dose, animals were once again placed in separate metaboliccages. Accordingtoliterature data,the approved dosing schedule can induce chronic cystitis [7,8]. Besides administrationofCPanimalswerenotsubjectedtoanyother treatment.

In the group 3, the procedure was identical, but rats received60mg/kgb.w.ofifosfamide.ThechoiceofIFdosewas alsobasedonliteraturereports–therearestudiesreporting ifosfamide-inducednephrotoxicityinratsusing80mg/kgb.w.

for three days [9] or 50mg/kg b.w. for five days [10,11].

AccordingtoSpringateandVanLiew[12],therecommended urotoxicdoseofIFis40–80mg/kgb.w.Therefore,wedecidedto applythe doseof 60mg/kg b.w.of ifosfamideasasuitable dosage(thedosageregimenprovidedthesameglobalIFdose asintheabovecitedpapers).Controlanimals(group1)were subjectedtothesameprocedureasindividualsofgroups1and 2, but instead of using CP/IF, rats were sham-treated with normal saline, in accordance with the regimen, and the volumesusedingroups1and2.

2.3. Monitoringinmetaboliccages

Inthebeginning(beforereceivingthefirstdose)andintheend oftheexperiment(afterthelast,fourthdoseofCP/IFingroups 2/3orsalineingroup1,respectively)animalswereplacedin isolated metabolic cages over 24h to measure daily urine outputandwaterandfeedconsumption.Duringthestaythey had a free, yet monitored access to water and food. Vital parameterswereassessed:bodyweight(g),bodytemperature (8C),dailywaterintake(mL/24h),dailyfoodconsumption(g/24h) anddailydiuresis(mL/24h).Bodytemperaturewasmeasured usingadigitalrectalthermometerforrodents(Vivari,UK).

2.4. Urinedipstickcontrol

Afterrecordingthevolumeofurine,samplesweresubjectedto generaltests.Dipstickswereusedfor thatpurpose(Insight, ACONLaboratories,REFU031-105),allowingassessmentofpH andspecificgravity(SG)ofurine,presenceofblood,leukocytes (whitebloodcells;WBC),protein,glucose,bilirubin,urobilino- gen, ketones, nitrates. The analysis was performed strictly accordingtomanufacturer'sguidelines.

2.5. Laboratoryparametersestimatedinurineandplasma

After dailyurineoutput wasmeasured, urinesampleswas subsequentlycentrifuged(2000rpm/5min),anddividedinto portions. Resulting samples were stored at 208C until laboratory determinations completed with the ADVIA 1200

SIEMENSanalyzer.Initially,sodium,potassium,urea,creati- nine (Cr), uricacid and protein concentrations weredeter- mined. Moreover, blood urea nitrogen (BUN) and BUN/

creatinineratiowerecalculated:

BUN¼urea ðmg=dLÞ 2:1428

Urinaryconcentration (ng/mL)ofnovelbiomarkerof kidney damage–neutrophilgelatinase-associatedlipocalin-1(NGAL- 1),using acommercially availableELISA kit(BioPortoDiag- nostics, Denmark), strictlyaccording tothe manufacturer's instructions,wasalsoassessed.

Then,havingresultsofdailydiuresis,24-heliminationof sodium, potassium, urea (mmol/24h), uric acid, creatinine (mmol/24h),protein(mg/24h)andNGAL-1(ng/24h)withurine was calculated. Creatinine clearance was also estimated, accordingtotheformula

CLcr¼Crurine ðmmol=LÞdiuresis ðmL=minÞ Crplasmaðmmol=LÞ

Fractional sodiumeliminationwascalculatedusingthefor- mula:

FENa¼½ðNaurine ðmmol=LÞCrplasmaðmmol=LÞÞ100

½ðNaplasma ðmmol=LÞCrurine ðmmol=LÞÞ

and the renal failure index (RFI) was calculated with the formula:

RFI¼½ðNaurineðmmol=LÞCrplasma ðmmol=LÞÞ

Crurine ðmmol=LÞ

Similarlytourine,collectedbloodwascentrifugedandresult- ingplasmasampleswerekeptfrozenuntilthetimeoflabora- torydeterminations.Plasmasodium,potassium(mmol/L)and creatinineanduricacid(mmol/L)levelsweredeterminedusing thesameanalyzerastheoneusedforurinesamples.Plasma proteinwasnotassayed.

2.6. Sacrificinganimalsandcollectingkidneysand bladdersforhistopathologicalanalysis

Afterthesecondstayinmetaboliccages,animalswerekilled by intraperitoneal injection of a lethal dose of sodium pentobarbital(Morbital;Biowet,Pulawy;200mg/kgb.w.).After confirmedcessationofvitalsigns,cystectomyandnephrec- tomywereperformedinordertoobtaintissueformicroscopic specimensnecessaryforhistopathologicalevaluation.

2.7. Histologicalevaluationofcollectedbladdersand kidneys

Bladdersandkidneysobtainedduringautopsywerestoredina formalinsolutionuntilpreparationofmicroscopicslides.The histopathologicalassessment wasperformedat theDepart- ment of Anatomopathology of the non-public healthcare institution ‘‘Prosmed’’in Krakow.Thesections werecut at preselected thickness of 4 microns using LEICA RM2135 microtome. In order to assess the severity of histological

(4)

inflammation,thepreparationswerestainedwithhematoxy- lin–eosin(HE).Adetaileddescriptionofthehistopathological technique is described in one of our previously published paper[13].

2.8. Statisticalanalysis

Resultsofthequantitativeanalysisofurineperformedwith urinedipstickswereanalyzedusingthenonparametrictestof signs, examining changes in the direction of the assessed parameter, separately for each study group in the paired comparison(pre-andposttreatment).

Resultsofthevitalparametersanddailywaterand feed intakewereanalyzedbothforintragroup(atthebeginningand the end of the experiment) and intergroup differences, comparinggroups1and2aswellasgroups1and3.

Differences concerning results of plasma and urine laboratoryparameterswereestimated forintergroupdiffer- ences,comparinggroups1and2aswellasgroups1and3.

Inthestatisticalanalysisofvitalparametersandlaboratory parametersestimatedinplasmaorurine,inthefirststep,a distribution of obtained results was analyzed using the Shapiro–Wilk test.If resultswere notnormally distributed, thefurtheranalysiswasperformedusingtheMann–Whitney test,andiftestedresultsdemonstratedanormaldistribution, theStudentttestwasused.Thelevelofstatisticalsignificance wassetatP≤0.05.

3. Results

3.1. Resultsofvitalparametersobtainedfrommonitoring inmetaboliccages

Consideringchangesofthestudyparametersinthebeginning andintheendofthestudy,controlanimalswerecharacter- izedbyasignificantincreaseoftheirbodyweight.Thebody temperatureanddailywaterandfeedintakewerecomparable throughout the experiment. Contrary to control ones, CP- treated animals demonstrated a statistically significant decrease of their body weight with a parallel reduction of theamountofdailyfeedintakeintheendofthestudy.Other parameters demonstrated no statistically significant differ- encesbetweenthebeginningandtheendoftheexperiment.

IF-treated animals were characterized by a significant decrease of their body temperature after the last IF dose and,similarlytoCP-treatedones,demonstratedadecreased final24-hfeedintake.Theirbodyweightanddailywaterintake didnotchangeoverthetime.

Consideringintergroup differences,no significant,initial differences were revealed between control and animals randomized to both groups 2and 3,thus showinglack of differences between individuals in the beginning of the experiment.Intheendofthestudy,CP-treatedratsdiffered withrespecttoallparameterscomparedtothecontrolones, whereas IF-treated animals demonstrated some significant differencesconcerningtheirfinalbodytemperatureanddaily feedintakecomparedtothecontrol.

Detailed results of parameters mentioned above are

presentedinTables1and2. Table1–Parametersoftheanimalstreatedwithfourdosesofcyclophosphamide(CP):intra-andintergroupanalysis. MetaboliccagemeasurementP BeginningoftheexperimentEndoftheexperiment BodyBody24-hwater weight,gtemperature,8Cintake, mL/24h 24-hfeed intake, g/24h Body weight,gBody temperature,8C24-hwater intake, mL/24h

24-hfeed intake, g/24h ABCDEFGH Control(group1)226.6644.8937.430.9326.384.0723.756.16257.4563.1937.930.2630.003.2720.382.39Evs.A,0.0001 Fvs.B,NS Gvs.C,NS Hvs.D,NS CP-treated animals(group2)240.0365.2737.220.2729.256.5921.132.36209.7374.8437.450.6022.0011.719.637.67Evs.A,0.0002 Fvs.B,NS Gvs.C,NS Hvs.D,0.002 PNSNSNSNS0.050.030.050.002 ValuesaremeanSD.NS,notsignificant.

(5)

3.2. Resultsofthequalitativeandsemi-quantitative analysisofurineusingdipsticks

ResultsofurinepHandSGindicatedbythedipstickstestare presentedinTable4.

Inthe controlgroup,presence ofblood andglucosewas demonstratedinnoneofurinesamplesinbothtests,inthe beginningandintheendofthestudy.Inthefirsttestinthat group,leukocyteswereassessedat(15(WBC/mL))in88%of casesandat+(70(WBC/mL))in12%,nitratesassessedat+in 50% and they were not detected in the remaining 50% of samples, urobilinogen was measured at 0.2 (mg/dl) in all samples,proteinwasdeterminedat+(30(mg/dL))in50%of cases and ++ (100(mg/dL)) inother 50%, ketoneswerenot foundin88%samplesandwereassayedat(5(mg/dL))and bilirubinwasassessedat+(1(mg/dL))in88%andat++(2(mg/dL)) in12%.

Inthesecondtestperformedaftertheshamtreatmentwith normalsaline, the findingsregarding urobilinogen,protein, blood, bilirubin and glucose were identical to the initial assessment. Thepresenceof leukocytesinurinedecreased, and the analysis demonstrated no leukocytes in 63% of samplesandtheparameterwasassessedat(15(WBC/mL)) in25%andat+(70(WBC/mL))in13%.Inallsamplesnitrates presence estimated at + was confirmed. Ketones werenot detectedin50%andintheremaininghalfofthesamplesthey were measured at  (5 (mg/dL)). Only changes in urine leukocyte,nitrateandketoneswerefoundtobestatistically significant.

Ingroup2,nobloodandglucoseweredemonstratedinthe beginning of the study. In all samples urobilinogen was assessedat0.2(mg/dL).Leukocyteswerenotshownin50%of samplesandwereestimatedat(15(WBC/mL))in25%andat+ (70 (WBC/mL)) in 25%. The presence of nitrates was not confirmedin75%,andintheremaining25%itwasestimated at+.Theurineproteinwasmeasuredat(15(mg/dL))in38%, at + (30(mg/dL)) in12%and at ++ (100(mg/dL))in50%. In assessmentofketones,in12%ofcasestheywereestimatedat

(5(mg/dL))andotherurinesamplescontainednoketones.

Bilirubinwasassessedat+(1(mg/dL))in88%andat++(2(mg/

dL))in12%.Nosamplescontainedglucose.

InthesecondanalysisperformedinCP-treatedanimals,a presenceofurobilinogenassessedat+(1(mg/dL))andbilirubin assessedon+(1(mg/dL))wasfoundinallcases,andglucose andketoneswereabsent.In25%ofsamples,leukocyteswere estimatedat(15(WBC/mL)andin50%at+(70(WBC/mL))and theywerenodemonstratedin25%ofsamples.Nitratesmarked as+werepresentin88%,whereas12%ofsampleswerefree fromnitrates.Presenceoftheurinaryproteinwassimilartothe firstassessment–itwasestimatedat(15(mg/dL))in38%,at+ (30(mg/dL))in25%andat++(100(mg/dL))in38%ofcases.There wasnobloodfoundinhalfofurinesamplesandin12%ofthem itwasestimatedat+andat++in38%.Consideringdifferences intheurinedipsticksanalysisobservedbeforeandafterthe treatmentwith CP,only changesrelatedtothenitrates and bloodwereconsideredtobestatisticallysignificant.

BeforetheIFtreatment,allurinesamplesfromratsinthe group3werecharacterizedbyabsenceoftheglucose,ketones, bloodandleukocytesin70%ofcases.In30%,leukocyteswere estimatedat+(70(WBC/mL)).Nitrateswerefoundin12%and Table2–Parametersoftheanimalstreatedwithfourdosesofifosfamide(IF):intra-andintergroupanalysis. MetaboliccagemeasurementP BeginningoftheexperimentEndoftheexperiment Body weight,gBody temperature,8C24-hwater intake, mL/24h

24-hfeed intake, g/24h Body weight,gBody temperature,8C24-hwater intake, mL/24h

24-hfeed intake, g/24h ABCDEFGH Control(group1)226.6644.8937.430.9326.384.0723.756.16257.4563.1937.930.2630.003.2720.382.39Evs.A,0.001 Fvs.B,NS Gvs.C,NS Hvs.D,NS IF-treated animals(group3)254.3551.4937.440.3726.008.5422.003.13251.5362.6236.980.3821.7015.2911.703.59Evs.A,NS Fvs.B,0.03 Gvs.C,NS Hvs.D,0.001 PNSNSNSNSNS0.001NS0.001 ValuesaremeanSD.NS,notsignificant.

(6)

alltheotherurinesamplesweredeprivedofthesubstance.

Urobilinogenwasassessedat0.2(mg/dL)andbilirubinat+ (1(mg/dL))inallcases.Urineproteininratsinthegroup3was notdetectedin80%ofcasesandestimatedat(15(mg/dL)) in10%andat++(100(mg/dL))in10%,beforethetreatment withIF.

TheIFtreatmentresultedinincreasedurineproteinlevelof

(15(mg/dL))in90%ofcasesandof++(100(mg/dL))inthe remaining10%ofthecases.Moreover,in25%ofsamples,blood was alsodetected. All of theother parameters(leukocytes, urobilinogen, bilirubin, ketones, nitrates, glucose) were assessed inthe samemanner asin theinitial assessment.

However,theperformedstatisticalanalysisindicatedthatthe abovediscusseddifferenceswerenotstatisticallysignificant.

3.3. Resultsoftheassayedplasmaparameters

AdministrationoffourdosesofCPresultedbothinsignificant decrease of the plasma uric acid and increase in plasma creatininelevels.However,BUNandBUN/creatininerationdid not differ significantly in control and CP-treated animals.

Plasmasodium, urea,levels werecomparableinCP-treated andcontrolrats.

Similarly toadministration of CP, the treatmentwithIF causedasignificantincreaseinplasmacreatininelevel,which was accompaniedby ablood urea nitrogenvalue increase.

OtherparametersassessedinplasmaofIF-treatedanimalsdid notdiffersignificantlyfromthoseincontrolsubjects.

DetailedresultsarepresentedinTable3.

3.4. Resultsofassessedurineparameters

CP-treatedratsdifferedintermsofthemajorityofestimated urine parametersfrom control ones.First of all,they were characterizedbyahighervalueofdailydiuresis(bothtotaland minute)withasubstantialacidificationofurine.CPadminis- tration resulted also in a significant decrease in urinary excretionofsodium,potassium,ureaanduricacid.Incontrast, the daily urinary excretion of protein and creatinine was similarinCP-treatedanimalsandcontrolones.

TheIFtreatmentresultedonlyinasignificantdecreaseof urinepH,withsimultaneousincreaseof itsspecificgravity.

The daily urinary excretion of assayed substances didnot differsignificantlyfromvaluesofthoseparametersassessed in the control group, except for the uric acid, that was – similarlytoCP-treatedrats–foundintheurineindiminished amountcomparedtocontrolgroup.

Urinary NGAL-1 concentrations were not significantly differentinallstudiedgroups.

DetailedresultsarepresentedinTable4.

Thevalueofcalculatedcreatinineclearancewassimilarin both CP- and IF-treated rats (0.850.26 and 0.920.44, respectively)anddidnotdifferfrom thevaluefoundinthe control group (1.10.37). Moreover, animals receiving CP demonstratedasignificantdecreaseofcalculatedvaluesofthe fractionalsodiumexcretionandRFIcomparedtocontrolrats.

Table3–Plasmaparametersinratstreatedwithcyclophosphamide(CP)andifosfamide(IF).

Control (group1)

CP-treatedrats (group2)

IF-treatedrats (group3)

P

Group1vs.2 Group1vs.3

Na,mmol/L 142.061.79 143.801.9 142.571.21 NS NS

Urea,mmol/L 6.340.75 6.761.07 7.281.06 NS NS

BUN,mg/dL 17.762.10 18.953.00 19.972.87 NS 0.05

Uricacid,mmol/L 157.9635.14 106.157.56 189.8194.21 0.02 NS

Creatinine,mmol/L 27.951.77 31.992.81 34.193.5 0.05 0.001

BUN/creatinine,mg/dL 54.344.40 52.678.94 52.5210.37 NS NS

ValuesaremeanSD.BUN,bloodureanitrogen;NS,notsignificant.

Table4–Urineparametersinratstreatedwithcyclophosphamide(CP)andifosfamide(IF).

Control (group1)

CP-treatedrats (group2)

IF-treatedrats (group3)

P

Group1vs.2 Group1vs.3

Diuresis,mL/24h 5.721.31 11.944.14 8.275.31 0.005 NS

Diuresis,mL/min 0.0040.001 0.0080.003 0.0060.004 0.001 NS

SG 1.0090.001 1.0080.006 1.0130.006 NS 0.05

pH 9.00.00 8.131.03 8.250.86 0.02 0.01

Protein,mg/24h 5.714.15 3.942.47 5.294.61 NS NS

Na,mmol/24h 0.760.25 0.480.19 0.630.37 0.04 NS

K,mmol/24h 2.080.55 1.020.66 1.680.85 0.005 NS

Urea,mmol/24h 5.931.28 4.451.14 5.052.36 0.02 NS

Uricacid,mmol/24h 9.032.85 6.071.25 5.262.99 0.02 0.01

Creatinine,mmol/24h 45.5614.14 39.3812.52 44.7019.92 NS NS

NGAL-1,ng/mL 1.530.80 3.342.42 1.020.90 NS NS

ValuesaremeanSD.SG,specificgravity;NGAL-1,neutrophilgelatinase-associatedlipocalin-1;NS,notsignificant.

(7)

Dependencies concerning some significant intergroup differencesforabovementionedparametersofFENaandRFI arepresentedinFigs.1and2.

Moreover, CP-treated rats were characterized by signifi- cantly greater 24-h urinary NGAL-1 excretion (ng/24h)

compared to control (41.4435.32 vs. 8.644.36). In the IF-treatedgroup,dailyNGAL-1urinaryexcretionwassimilar tothevalue foundin thecontrol animals(6.245.45vs.

8.644.36).Theresultsdescribedabovearepresentedin Fig.3.

Fig.1–Fractionalexcretionofsodium(FENa)inCP-treated(left)andIF-treated(right)rats.P<0.05forCP-treatedrats;NS,not significantforIF-treatedrats.

Fig.2–Renalfailureindex(RFI)inCP-treated(left)andIF-treated(right)rats.P<0.05forCP-treatedrats;NS,notsignificantfor IF-treatedrats.

Fig.3–24-hurinaryexcretion(ng/24h)ofneutrophilgelatinase-associatedlipocalin-1(NGAL-1)inCP-treated(left)andIF- treated(right)rats.P<0.05forCP-treatedrats;NS,notsignificantforIF-treatedrats.

(8)

3.5. Descriptionofthehistopathologicalassessmentof bladdersandkidneys

SpecimensofurinarybladderscollectedfromCP-treatedrats hadalargelyhomogeneouspresentation.Reactiveprolifera- tionofurothelialepitheliumwithmultiplicationoflayersupto 6andsignsofdyskaryosis(nuclearpolymorphism),mostlyin the basallayer of the urotheliumwerefoundinthe entire group.Moreover, aninflammatoryinfiltrationwasfoundin stromainallspecimens.KidneysinallCP-treatedratswereat thelimitofanormalpresentation.

Specimens of urinary bladders collected from IF-treated animalspresentedaninflammatoryinfiltrationandfibrosisof thestroma.KidneysofIF-treatedanimalsappearednormal.

4. Discussion

Themainfindingsofthestudymaybesummarizedasfollows:

1. RatstreatedwithCPpresentedasignificantpolyuriaand acidificationofurine.TheadministrationofCPresultedalso indecreased24-hurinaryexcretionofsodium,potassium, ureaanduricacidwhichwasaccompaniedbyasignificant- lyhigherexcretionofNGAL-1.Disturbancesofparameters estimatedinurinewereaccompaniedbyasignificantand profoundreductionoftheplasmauricacidlevel.Moreover, thecalculatedFENaandRFIhadlowervaluesinCP-treated rats compared to control ones. An overall qualitative assessment of urine with dipsticks also demonstrated somemoreemphasizeddisturbancesinthegroupofrats treated with CP. The administration of CP was also associatedwithasignificantwastingofanimals,reflected byasignificantreductionoftheirfinalbodyweightandfood intake.

2. Ratstreatedwithifosfamide alsopresenteda significant urine acidification. However, in contrast to CP-treated animals,the24-hurinaryexcretionofmajorityofanalyzed substances (including NGAL-1) did not differ from that observedinthecontrolgroup–rats treatedwithIFwere characterized only by a reduced uric acid excretion. IF administrationwasalsoassociatedwithincreasedcreati- nineandBUNplasmalevel,butthecalculatedcreatinine clearanceandBUN/creatinineratioweresimilartothosein thecontrolgroup.Moreover,animalstreatedwithIFwere characterized by lesser abnormalities in the qualitative analysis of urine compared to CP-treated rats. Also, IF administration resulted in a much smaller cachexia compared to rats receiving CP (no final body weight decrease,lesslossofthedailyfeedintake).

AsalreadymentionedintheIntroduction,ifosfamidebeing themain source of chloroacetaldehyde,isregardedtobea compound associated with a significant nephrotoxicity.

Kidneys metabolize nephrotoxic chloroacetaldehyde into a less toxic chloroacetate and the rate of that detoxication determinesthedegreeofkidneydamage[14].Bothoxazapho- sphorineagents(CPandIF)arehydrophilic.Forthatreason theydonoteasilydiffusethroughcellmembranesandrequire apresenceofspecificcellcarriers–organicanion(OAT)and

cation(OCT)transporters[15].Inthekidney,aswellasinother tissues,OATisoforms1and3andOCTisoform2arelocatedin thebasolateralmembrane[16].BothCPandIFhaveaffinityfor OATs,butIFispreferablytransportedfurtherbyrenalOCT-2, whichexplains agreateraccumulationof thecompoundin kidneysandahighernephrotoxiceffect[15].

ThekidneydysfunctioncausedbytheuseofIF,describedin the literature, adopts a wide spectrum, ranging from the generalized proximal tubulopathy (Fanconi syndrome) to partial sodium, potassium, glucose,amino acids and other smallmoleculecompounds're-absorptiondefects[3,4,17]The CP-induced nephrotoxicityalso involves a variable tubular dysfunction[2–5].Moreover,theCP-inducedkidneydysfunc- tion results in reduction of tubular filtration rate and developmentofaninappropriateantidiuresissyndrome[18].

Resultsofourstudyindicatedanabnormaldailyurinary excretionofassessedsubstancesbyCP-treatedrats(including increasedNGAL-1excretion)andasignificanturineacidifica- tion.IF-treatedanimalsdemonstratedonlyanabnormallylow urinepHaturinaryNGAL-1excretionremainingatasimilar level as compared to control rats. Therefore, our study demonstrated asignificant nephrotoxicity potential for CP.

Which proves that acrolein, which is a unique compound releasedduring metabolic processingof CP,exertsnotonly mainlyurotoxiceffectsbutalsosignificantnephrotoxicones.

Themostlikelymechanismofthe acrolein-relatednephro- toxicityiscomplexandbasedonthesameissuescontributing to urotoxic properties of that compound, and includes a reduction of the kidney cellular glutathione dependent antioxidantsystemandanincreaseinfreeradicalgeneration, mostly peroxynitrite.Thecompoundisresponsibleforlipid peroxidation–adeleteriousdamageoftherenaltubularcells [19]. Moreover, asignificant drasticdecrease (insteadof an increase)intheactivitiesoflysosomalenzymeswasobserved inkidneysofCP-treated rats.Adecreaseintheactivitiesof lysosomalproteindigestiveenzymesmaycontributetoCYP- induced renal damage – the accumulation of abnormal amounts of the protein in kidneysmaybeat least inpart due to a defect in lysosomal enzyme activity and may contributetorenaldamage[20].Tosumup,thedosageand routeofadministrationappliedinourstudyshowedamore emphasizedkidneydysfunctioninCP-treatedrats,withthe absenceof anyrenalhistopathologicalabnormalities.More- over, resultsobtained for CP-treated animalssuggest some possibledisturbancesofproximaltubules(impairmentofre- absorption), as well as of distal ones (abnormal urine acidification).ItseemsthatIFaffectsonlythedistalnephron function,becausetheagentcausedonlyadropofurinepHand the analysis of NGAL-1 did not reveal any significant abnormalities.Thestatementofdysfunctionofdistaltubules issupportedbythefindingthatH+secretionintourineand, therefore,determinationofthefinalurinepH,takesplacejust in the distal tubules [21,22]. Taking into account data presentedinTables1and2,itshouldbeconcludedthatthe 24-hwaterandfoodintakeinbothCP-andIF-treatedanimals duringmonitoringinindividualmetaboliccageswasalmost identical (both in the beginning and in the end of the experiment).Therefore,inouropinion,itisunlikelythatthe finalpHdropobservedinthetreatedanimalsresultedfrom intergroupdifferencesinwaterorfeedconsumption.

(9)

Moreover, rats treated with CP, in addition to urine acidificationandabnormalNGAL-1excretion,developedalso a significant polyuria, which may be considered as an additional premise for the assumption of the distal tubule dysfunction.Polyuriademonstratedinourstudyiscontraryto literaturereportsindicatingdevelopmentofthe‘‘antidiuresis syndrome’’aftertheapplicationofCP.Thatdisorderwasdue totheincreased,CP-inducedexpressionofaquaporinsviathe vasopressin-independent mechanism [23,24]. On the other hand,however,developmentof IF-evokednephrogenicdia- betesinsipiduswasalsoreported[3].Thus,theinfluenceofthe oxazaphosphorine agents on diuresis is ambiguous and requiresfurtherresearch,butabovementionedstudies(also includingthecurrentlydiscussedone) suggestdisturbances withinthedistalnephronduetoCP/IFadministration.

Takingintoaccountalltheresultsobtainedinthegroupof animalstreatedwithCP,itisworthnotingthatsomeofthem (FENa,RFI)maysuggestdevelopmentofacutekidneyinjury (AKI).AKI,previouslyreferredtoasacuterenalfailure,canbe definedasanabruptdeteriorationof the all renalfunction (excretory,endocrine, metabolic). In other words, it means sudden lossof the ability of the kidneysto excrete waste, concentrateurine,conserveelectrolytes,andmaintainfluid balance[25].AKIisconditionedbyvariousfactorsofpre-,post- or toxic/inflammatory intra-renal origin that lead to acute kidneyfunctiondecompensation[25,26].Clinically,fractional excretion of sodium and renal failure index are regarded laboratory indices suggesting prerenal background of AKI [25,27].LowFENaisaneffectivemarkerofhypoperfusionof therenalartery[28].ThoseparametersobtainedinCP-treated rats achieved lowervalues compared tothe control group.

Therefore, an additional assumption may be set that CP administration also contributes to prerenal AKI features resultingfromkidneyhypoperfusion,asthatistheunderlying mechanismofthatformofAKI[26].Thepresenceofpolyuria demonstrated in CP-treated rats, although is not a typical finding,doesnotexcludethepossibilityofAKIdevelopment, asthedisorderparadoxicallymaybeassociatedwithpolyuria (althoughintheclassic formischaracterizedbyoliguriaor evenanuria)[25–27].

Anotherevidencesupportingkidneydamagedevelopment inCP-treatedanimalsistheanalysisofurinaryexcretionof novelbiomarkerof kidneydysfunction–NGAL-1.Whilethe urinaryconcentrationsofthebiomarkerwerecomparablein allgroups,the24-hexcretion ofthecompoundwassignifi- cantly higher in CP-treated animals. NGAL-1 is a protein synthesizedandreleasedinto theplasmabymanytissues:

kidneys, prostate, trachea, lung, stomach, large intestine, uterusandbonemarrow.Inaddition,itisreleasedingreater amountsfromneutrophilsandmacrophagesduringinflam- matory response and endothelial injury [29–31]. NGAL-1 exhibits pleiotropic biological properties: extracellularly, it bindsiron-complexedsiderophoresandregulatesintracellular metabolismoftheiron,enhancestheproteolyticactivityof matrix metalloproteinases (MMP-9), therebypreventing the degradation of these enzymes by tissue MMP-9 inhibitor (TIMP-1).Thisphenomenonisofparticularimportanceinthe processes of progression of carcinogenesis [29,32]. The augmentationofMMP-9activitybyNGAL-1isalsoimportant inthe developmentof acute coronarysyndromes resulting

from atherosclerotic plaque destabilization [29,33]. Plasma NGAL-1levelisalsoelevatedinpatientswithtype2diabetes, thussuggestingthepotentialroleofNGAL-1inthepathogen- esisofinsulinresistance[34].NGAL-1isfreelyfilteredinthe kidneysandreabsorbedinproximaltubules.Inaddition,this protein issynthesizedbyHenle'slobeand distaltubulesin responsetovariouskidneydamagingfactors[31,35].There- fore, theincreased24-hurinaryexcretionof NGAL-1inCP- treatedratscouldhaveresultedfromproximaltubulesfailure and reduced reabsorption of this protein and/or increased tubularsynthesis.Moreover,thehypothesisofamorepotent nephrotoxicityofCPcomparedtoifosfamideisalsoconsistent withtheresultsofoneofourotherexperiments.Inthatstudy, weassessedtheurinaryconcentrationand24-hexcretionof anothernovelbiomarker–kidneyinjurymolecule-1(KIM-1).

Similarresultswererevealed–again,CP-treatedanimalswere characterized bysignificantly higherurinaryKIM-1concen- trationandincreased24-hexcretionoftheproteinwiththe urine[13].KIM-1isaglycoproteinsecretedbytheproximal tubule cells inresponsetoanynoxiousfactors –therefore, playsaspecialroleofoneofthe‘‘renaltroponins’’usedfor earlyandreliabledetectionofkidneyinjury.Underphysiolog- icalconditions,urinedoesnotcontainKIM-1–soitspresence in the urine is regarded tobe a quantitative biomarker of kidneydamage,whichappearsrapidlyintheurineinresponse totheproximaltubulardamage[13].

Tosumup,theincreased 24-hurinaryexcretionofboth NGAL-1andKIM-1biomarkersisanotherproofofCP-induced nephrotoxicity.

Thenextcharacteristicdisturbancedemonstratedinour experimentwasareducedurinaryexcretionofuricacidthatin thecaseofCP-treatedanimalswasassociatedwithdecreased plasmalevelofthecompound.Thedecreaseofserumuricacid maycontributetothedevelopmentofpolyuria,resultingfrom abnormalities in cortico-medullary osmotic gradient and disturbances of the countercurrent amplifier mechanism [36,37]. Thereduction of serumuricacid level (and, conse- quently,reducedurinaryexcretionofthecompound)mayalso reflectacompensationofanexcessiveoxidativestress,which is, as mentioned above,an essential, potentialelement of pathomechanismoftheCP-inducednephrotoxicity.Uricacid isoneofthemostimportant,lowmolecularmasscompounds thatisnowbelievedtoexertstrongantioxidanteffect[38].In vitroexperimentsdemonstratedthaturicacidisapowerful scavengeroftheperoxylandhydroxylradicalsandofsinglet oxygen[39].Moreover,uricacidisthoughttobeaninhibitorof radicals generated by decomposition of peroxynitrite – a compoundalsogeneratedbytheactionofacrolein[40,41].An importantpremisefortheantioxidantroleofuricacidisthe observation that the loss of urate oxidase, resulting in increased plasma uric acid level, improves antioxidant defense[38].Therefore,itcanbeconcludedthattheadvanced oxidativestressinkidneysinducedbyacroleinreleasedduring biotransformation of peroxynitrite, causes secondary ‘‘ex- haustion’’ of the compensatory antioxidant mechanisms, including reduction of plasma uricacid level.The indirect confirmationoftheroleofuricacidasanantioxidantinthe course of kidney and bladder damage is provided also by clinicalobservations:anegativecorrelationbetweenplasma levelof uricacidandtheseverityofhemorrhagiccystitisin

(10)

childrentreatedwithCP[42].Thus,resultsofourstudyrelated to marked plasma uric acid decrease in CP-treated rats constituteone moreevidencefor arole of uricacid inthe pathogenesisofkidneyandbladderdamagecausedbyCP.

5. Conclusions

Tosumup,bothCPandifosfamideadministratedfourtimes intraperitoneally causedkidneydysfunctionthatwas more advancedinanimals treatedwithCPanddemonstrated by reduced24-hexcretionofsodium,potassium,ureaanduric acid,withamarkedacidificationofurineandincreasedNGAL- 1urinaryexcretion.Moreover,someindices(FENa,RFI)also suggestprerenaldevelopmentofacutekidneyinjury.

IF-treatedanimalswerecharacterizedonlybydecreased urinepHandreduceddailyuricacidexcretion.

DecreasedserumuricacidlevelsinratstreatedwithCPand decreaseddailyurinaryexcretionofthecompoundfoundin bothstudiedgroupsmayreflectparticipationofthatcompound intheantioxidantcompensationphenomenathataccompany renalfailureinducedbyoxazaphosphorinemetabolites.

Conflict of interest

All the authors herebydisclose thatthere isno conflict of interestamongtheauthors.

Funding

This work was supported by the Jagiellonian University MedicalCollege(UJCMstatutorygrantK/ZDS/006404).

references

[1] SinghNP,GanguliA,PrakashA.Drug-inducedkidney diseases.JAPI2003;51:970–9.

[2] SkinnerR.Nephrotoxicity–whatdoweknowandwhat don'tweknow?JPediatrHematolOncol2011;33:128–34.

[3] PerazellaMA.Onco-nephrology:renaltoxicitiesof chemiotherapeuticagents.ClinJAmSocNephrol 2012;7:1713–21.

[4] PerazallaMA.Nephrotoxicityfromchemiotherapeutic agents:clinicalmanifestations,pathobiologyand prevention/therapy.SeminNephrol2010;30:570–81.

[5] StefanowiczJ,Ruckemann-DziurdzińskaK,OwczukR, Iżycka-ŚwieszewskaE,BalcerskaA.Nefrotoksyczność pochodnychiperytuazotowego(ifosfamid,cyklofosfamid, trofosfamid)udzieci.NefrolDialPol2011;15:247–51.

[6] YaseenZ,MichoudetC,BaverelG,DubourgL.Invivomesna andamifostinedonotpreventchloroacetaldehyde nephrotoxicityinvitro.PediatrNephrol2008;23:611–8.

[7] ChuangYC,YoshimuraN,HuangCC,WuM,ChiangPH, ChancellorMB.IntravesicalbotulinumtoxinA

administrationinhibitsCOX-2andEP4expressionand suppressesbladderhyperactivityincyclophosphamide- inducedcystitisinrats.EurUrol2009;56:159–66.

[8] DinisP,CharruaA,AvelinoA,CruzF.Intravesical resiniferatoxindecreasesspinalc-fosexpressionand

increasesbladdervolumetoreflexmicturitioninratswith chronicinflamedurinarybladders.BJUInt2004;94:153–7.

[9] Garimella-KroviS,SpringateJE.Effectofglutathione depletiononifosfamidenephrotoxicityinrats.IntJBiomed Sci2008;4:171–4.

[10] SenerG,SehirliO,YegenBC,CetinelS,GedikN,SakarcanA.

Melatoninattenuatesifosfamide-inducedFanconi syndromeinrats.JPinealRes2004;37:17–25.

[11] ChenN,AleksaK,WoodlandC,RiederM,KorenG.N- acetylcysteinepreventsifosfamide-inducednephrotoxicity inrats.BrJPharmacol2008;153:1364–72.

[12] SpringateJE,VanLiewJB.Nephrotoxicityofifosfamidein rats.JApplToxicol1995;15:399–402.

[13] DobrekŁ,SkowronB,BaranowskaA,Malska-WoźniakA, ThorP.Urinarykidneyinjurymolecule-1(KIM-1)excretion inratsexperimentalcystitisinducedby

oxazaphosphorines.PrzeglLek2016;73:805–12.

[14] DubourgL,MichoudetC,CochatP,BaverelG.Human kidneytubulesdetoxifychloroacetaldehyde,apresumed nephrotoxicmetaboliteofifosfamide.JAmSocNephrol 2001;12:1615–23.

[15] CiarimboliG,HolleSK,VollenbrockerB,HagosY,Reuter S,BurckhardtG,etal.Newcluesfornephrotoxicity inducedbyifosfamide:preferentialrenaluptakeviathe humanorganiccationtransporter2.MolPharm 2010;8:270–9.

[16] RizwanAN,BurckhardtG.Organicaniontransportersofthe SLC22family:biopharmaceutical,physiologicaland pathologicalroles.PharmRes2007;24:450–70.

[17] ButtemerS,PaiM,LauKK.IfosfamideinducedFanconi syndrome.BMJCaseRep2011.http://dx.doi.org/10.1136/

brc.10.2011.4950

[18] PayneH,AdamsonA,BahlA,BorwellJ,DoddsD,HeathC, etal.Chemical-andradiation-inducedhaemorrhagic cystitis:currenttreatmentsandchallenges.BJUInt 2013;112:885–97.

[19] SinghM,KumarN,ShuaibM,GargVK,SharmaA.Areview onrenalprotectiveagentsforcyclophosphamideinduced nephrotoxicity.WJPPS2014;3:737–47.

[20] AbrahamP,IndiraniK,SugumarE.Effectof cyclophosphamidetreatmentonselectedlysosomal enzymesinthekidneyofrats.ExpToxicolPathol 2007;59:143–9.

[21] SorianoJR.Renaltubularacidosis:theclinicalentity.JAm SocNephrol2002;13:2160–70.

[22] BaggaA,SinhaA.Evaluationofrenaltubularacidosis.

IndianJPediatr2007;74:679–86.

[23] KimS,JoCH,ParkJS,HanHJ,KimGH.Theroleofproximal nephronincyclophosphamide-inducedwaterretention:

preliminarydata.ElectrolyteBloodPress2011;9:7–15.

[24] KimS,ChoiHJ,JoCH,ParkJS,KwonTH,KimGH.

Cyclophosphamide-inducedvasopressin-independent activationofaquaporin-2intheratkidney.AmJPhysiol RenalPhysiol2015;309:F474–83.

[25] SchrierRW,WangW,PooleB,MitraA.Acuterenalfailure:

definitions,diagnosis,pathogenesis,andtherapy.JClin Invest2004;114:5–14.

[26] BasileDP,AndersonMD,SuttonT.Pathophysiologyofacute kidneyinjury.ComprPhysiol2012;2:1303–53.

[27] Hurtarte-SandovalAR,Carlos-ZamoraR.Acutekidney injury:themoderntherapeuticapproach.SurgCurrRes 2014;4:155–9.

[28] OhashiN,TsujiN,NaitoY,IwakuraT,IsobeS,OnoM,etal.

Relationshipbetweenurinaryfractionalexcretionof sodiumandlifeprognosisinlivercirrhosispatients.

HepatolRes2013;43:1156–62.

[29] MakrisK,RizosD,KafkasN,HaliassosA.Neutrophil gelatinase-associatedlipocalinasanewbiomarkerin laboratorymedicine.ClinChem2012;50:1519–32.

(11)

[30] BolignanoD,DonatoV,CoppolinoG,CampoS,BuemiA, LacquanitiA,etal.Neutrophilgelatinase-associated lipocalin(NGAL)asamarkerofkidneydamage.AmJ KidneyDis2008;52:595–605.

[31] ClericoA,GalliC,FortunatoA,RoncoC.Neutrophil gelatinase-associatedlipocalin(NGAL)asbiomarkerof acutekidneyinjury:areviewofthelaboratory

characteristicsandclinicalevidences.ClinChemLabMed 2012;50:1505–17.

[32] LimR,AhmedN,BorregaardN,RileyC,WafaiR, ThompsonEW,etal.Neutrophilgelatinase-associated lipocalin(NGAL)anearly-screeningbiomarkerfor ovariancancer:NGALisassociatedwithepidermal growthfactor-inducedepithelio-mesenchymal transition.IntJCancer2007;120:2426–34.

[33] CruzDN,GaiaoS,MaiselA,RoneoC,DevarajanP.

Neutrophilgelatinase-associatedlipocalinasabiomarker ofcardiovasculardisease:asystematicreview.ClinChem LabMed2012;50:1533–45.

[34] WangY,LamKS,KraegenEW,SweeneyG,ZhangJ,TsoAW, etal.Lipocalin-2isaninflammatorymarkerclosely associatedwithobesity,insulinresistance,and hyperglycemiainhumans.ClinChem2007;53:34–41.

[35] HelanovaK,SpinarJ,ParenicaJ.Diagnosticandprognostic utilityofneutrophilgelatinase-associatedlipocalin(NGAL)

inpatientswithcardiovasculardiseases–review.Kidney BloodPressRes2014;39:623–9.

[36] SandsJM,LaytonHE.Thephysiologyofurinary

concentration:anupdate.SeminNephrol2009;29:178–95.

[37] AgabaEI,RohrscheibM,TzamaloukasAH.Therenal concentratingmechanismandtheclinicalconsequencesof itsloss.NigerMedJ2012;53:109–15.

[38] GlantzounisGK,TsimoyiannisEC,KappasAM,GalarisDA.

Uricacidandoxidativestress.CurrPharmDes 2005;11:4145–51.

[39] AmesBN,CathcartR,SchwiersE,HochsteinP.Uricacid providesanantioxidantdefenseinhumanagainstoxidant- andradical-causedagingandcancer:ahypothesis.Proc NatlAcadSciUSA1981;78:6858–62.

[40] SquadritoGL,CuetoR,SplenserAE,ValavanidisA,ZhangH, UppuRM,etal.Reactionofuricacidwithperoxynitriteand implicationsforthemechanismofneuroprotectionbyuric acid.ArchBiochemBiophys2000;376:333–7.

[41] WhitemanM,KetsawatsakulU,HalliwellB.Areassessment oftheperoxynitritescavengingactivityofuricacid.AnnN YAcadSci2002;962:242–59.

[42] WangCC,WengTI,LuMY,YangRS,LinKH,WuMH,etal.

Hemorrhagiccystitisinchildrentreatedwithalkylating agentcyclophosphamide:theexperienceofamedical centerinTaiwan.JFormosMedAssoc2015;114:691–7.

Cytaty

Powiązane dokumenty

Method validation was carried out on blank matrices: plasma and brain, liver, heart, kidney, lungs, and small intestine homogenates spiked with an appropriate amounts of 1-MP,

HC is a complex inflammatory response, induced by toxic oxazaphosphorines metabolite – acrolein with subsequ- ent immunocompetetive cells activation and release of many

Since TNFa has been correlated to cachexia and many metabolic abnor- malities associated with cancer and since Walker-256 cells produce TNFa [41] and increased levels of TNFa in

Induction of colitis by administration of DSS led to a statistically significant decrease in colonic mucosal blood flow by about 28%, when compared to a value observed in animals

Quercetin, as an antioxidant, can scavenge etoposide phenoxyl radicals, protecting normal bone marrow cells of rats against apoptotic death induced by oxidative stress..

The presence of citrullinated proteins in the inflamed synovium of arthri- tis-affected animals has previously been reported in dif- ferent animal models [74–76], and one

Progression of neurological deficit in AOM-treated mice suggested that ALF could affect and/or modify information processing in mice frontal cortex and prompted us to carry out

Amplitude(pA) 8.4±0.2 8.4±0.2 9.4±0.2 9.3±0.2 Rise(ms) 1.5±0.1 1.5±0.1 1.4±0.0 1.4±0.0 Tau(ms) 6.2±0.3 6.2±0.3 4.6±0.1 4.6±0.1.