• Nie Znaleziono Wyników

On abstract nonlocal Cauchy problem

N/A
N/A
Protected

Academic year: 2022

Share "On abstract nonlocal Cauchy problem"

Copied!
7
0
0

Pełen tekst

(1)

*  Ph.D.  Adam  Bednarz,  prof.  Ludwik  Byszewski,  Institute  of  Mathematics,  Faculty  of  Physics,  Mathematics and Computer Science, Cracow University of Technology.

ADAM BEDNARZ*, LUDWIK BYSZEWSKI*

ON ABSTRACT NONLOCAL CAUCHY PROBLEM O NIELOKALNYM ABSTRAKCYJNYM 

ZAGADNIENIU CAUCHY’EGO

A b s t r a c t

In this paper, we investigate the existence and uniqueness of the classical solution to an abstract  nonlocal Cauchy problem. For this purpose, we apply a notion of mild solution and the Banach  contraction theorem.

Keywords:  abstract Cauchy problem, nonlocal conditions, mild and classical solution S t r e s z c z e n i e

W artykule zbadano istnienie i jednoznaczność klasycznego rozwiązania abstrakcyjnego nielo- kalnego zagadnienia Cauchy’ego. W tym celu zastosowano rozwiązanie całkowe i twierdzenie  Banacha o kontrakcji.

Słowa  kluczowe:  abstrakcyjne  zagadnienie  Cauchy’ego,  warunki  nielokalne,  rozwiązania  całkowe i klasyczne

FUNDAMENTAL SCIENCES

1-NP/2013

NAUKI PODSTAWOWE

(2)

1. Introduction

We study the existence and uniqueness of the classical solution to a functional-differential  abstract nonlocal Cauchy problem.

The functional-differential nonlocal problem considered in this paper, is of the form

′ = ∈

u t( ) f t u t u a t( , ( ), ( ( )), , ( ( ))),1u a tr t I,  (1.1)

u t c u tk k x

k p

( )0 ( ) ,

1 0

+ =

= (1.2)

where  I: [ ,= t t T t0 0+ ], 0< <t1 <tp£t T T0+ , >0; :f I E× r+1E and a Ij: →I (j = 1, …, r) are given functions satisfying suitable assumptions; E is a Banach space with  norm ||·||, x0 ∈ E, ck ≠ 0, (k = 1, …, p) and p, r ∈ .

If  ck ≠  0,  (k  =  1,  …,  p),  then  the  results  of  the  paper  can  be  applied  in  kinematics  to  determine  the  evolution  t → u(t)  of  the  location  of  a  physical  object  for  which  we  do not know the positions u(t0), u(t1), …, u(tp), but we know that the nonlocal condition  (1.2) holds.

The paper bases on books [3–4] and on papers [1–2].

2. Theorems about the existence and uniqueness of a classical solution

By X we denote the Banach space C(I, E), where I = [t0, t0 + T] with the standard norm 

||·||X. So

w X w t w X

: sup ( ) ,= t I ∈ .

Assume that  ck

k p

≠ −

= 1 1

. A function u ∈ X, satisfying the integral equation

u t c x ck f u u a u a d

k p

r t

tk

( )=  − ( , ( ), ( ( )), , ( ( )))



∑ ∫

=

 0

1

1

0

τ τ τ τ τ



+

+

f u u a u ar d t I

t t

( , ( ), ( ( )), , ( ( ))) ,τ τ 1 τ τ τ ,

0

  (2.1)

where cdf ck

k p

= +





=

1

1 1

, is said to be a mild solution of the nonlocal problem (1.1) – (1.2).

A  function  u : I → E  is  said  to  be  a  classical solution of  the  nonlocal  problem  (1.1)–(1.2) if

(3)

(i)  u is continuous on I and continuously differentiable on I, (ii)  u'(t) = f(t, u(t), u(a1(t)), …, u(ar(t))) for t ∈ I,

(iii)  u t c u tk k x

k p

( )0 ( ) 0.

1

+ =

=

Theorem 2.1. Suppose that f : I × Er+1 → E, aj : I → I (j = 1, …, r) and  ck

t I p

≠ −

1.

If u is a classical solution of the nonlocal problem (1.1)–(1.2), then u is a mild solution of this  problem.

Proof. Let u be a classical solution of the nonlocal problem (1.1)–(1.2). Then u satisfies  equation (1.1) and consequently,

u t u t f u u a u a d t I

t t

( )= ( )0 +

( , ( ), ( ( )), , ( ( ))) ,1 r ∈ .

0

τ τ τ  τ τ   (2.2)

From (2.2),

u tk u t f u u a u ar d k p

t tk

( )= ( )0 + ( , ( ), ( ( )), , ( ( ))) , (1 =1, , ).

0

τ τ τ  τ τ 

∫∫

(2.3)

By (1.2) and (2.3),

u t c u tk f u u a u ar d

t tk

( )0 ( )0 ( , ( ), ( ( )), , ( ( )))1

0

+  +





τ τ τ τ τ ==

= x

k p

0 1

.  (2.4)

Since  ck

t I p

≠ −

1, then (2.4) implies

u t c x ck f u u a u ar d

t t k

p k

( )0 0 ( , ( ), ( ( )), , ( ( )))1

1 0

=  −



∑ ∫

=

 τ τ τ … τ τ

.  (2.5)

From  (2.2)  and  (2.5),  we  obtain  that  u  is  a  mild  solution  of  the  nonlocal  problem  (1.1)–(1.2). The proof of Theorem 2.1 is complete.

Theorem 2.2. Suppose that f ∈ C(I × Er+1), aj : I → I (j = 1, …, r) and  ck

k p

≠ −

= 1 1

. If  u  is  a  mild  solution  of  the  nonlocal  problem  (1.1)–(1.2),  then  u  is  a  classical  solution  of this problem.

Proof.  Let  u  be  a  mild  solution  of  the  nonlocal  problem  (1.1)–(1.2). Then  u  satisfies  equation (1.1) and, from the continuity of f, u ∈ C1(I, E). Now we will show that u satisfies  the nonlocal condition (1.2). For this purpose, observe that by (2.1),

(4)

u t c x ck f u u a u ar d

t t k

p k

( )0 0 ( , ( ), ( ( )), , ( ( )))1

1 0

=  −



∑ ∫

=

 τ τ τ … τ τ

  (2.6)

and

u ti c x ck f u u a u ar d

t t k

p k

( )=  − ( , ( ), ( ( )), , ( ( )))



∑ ∫

=

 0 1

1 0

τ τ τ τ τ

+

+

f u u a u ar d i= p

t ti

( , ( ), ( ( )), , ( ( )))τ τ 1 τ τ τ ( , , ).

0

… 1…

  (2.7)

From (2.6) and (2.7), and from some computations,

u t c u ti i x c f u u a u a d

i p

k r

t t

( )0 ( ) ( , ( ), ( ( )), , ( ( )))

1 0 1

0

+ = −

= kk τ τ τ τ τ k

p

i i

p

r t

c f u u a u a d

∑ ∫

=

=



+

+

1

1 1

0

( , ( ), ( ( )), , ( ( )))τ τ τ  τ τ

tti

=x0.

Therefore, the proof of Theorem 2.2 is complete.

As a consequence of Theorems 2.1 and 2.2, we obtain:

Theorem 2.3. Suppose that f ∈ C(I × Er+1, E), aj : I → I (j = 1, …, r) and  ck

k p

≠ −

= 1 1

. Then u is the unique classical solution to the nonlocal problem (1.1)–(1.2) if, and only if,  u is the unique mild solution to this problem.

Now, we will prove the main theorem of the paper.

Theorem 2.4. Assume that:

(i)  aj ∈ C(I, I) (j = 1, …, r), f : I × Er+1 → E is continuous with respect to the first variable  on I and there is L > 0 such that

f s z zr f s z zr L z zi i s I z z

i r

( , , ,1 1) ( , , ,1 1) , ,i

1 1

+  … +  

= +

£

foriiE i( =1, , r+1), (2.8) (ii)  ck

k p

≠ −

= 1 1

(iii)  (r )LT c ck .

k p

+  +



<

=

1 1 1

1

(5)

Then the nonlocal Cauchy problem (1.1)–(1.2) has a unique classical solution u. Moreover,  the successive approximations un (n = 0, 1, 2, …), defined by the formulas

u0(t) = x0        for        t ∈ I  (2.9) and

un t c x ck f u u a u a d

k p

n n n r

t t +

=

= −

1 0

1 1

0

( ) :  ( , ( ), ( ( )), , ( ( )))τ τ τ … τ τ

kk

i

f un u an u an r d for t I

t t



+

+ ( , ( ), ( ( )), , ( ( )))τ τ 1 τ τ τ ∈

0

… ((n = 0 1 2 …, , , ),

  (2.10)

converge uniformly on I to the unique classical solution u.

Proof. Introduce an operator A by the formula

(Aw t)( ) : c x ck f( , ( ), ( ( )), , ( ( )))w w a w a d

k p

r t

ti

=  −

∑ ∫

=

 0

1 1

0

τ τ τ τ τ





+

+

f w w a w ar d w X t I∈ ∈

t t

( , ( ), ( ( )), , ( ( ))) ,τ τ 1 τ τ τ , .

0

  (2.11)

It is easy to see that

A : X → X.  (2.12)

Now, we will show that A is a contraction on X. For this purpose observe that ( )( ) ( )( ) :

[ ( , ( ), ( ( )), , ( ( ))) ( Aw t Aw t

c ck f w w a w ar f

− =

= − −



 τ τ 1 τ … τ τ,, ( ), ( ( )), , ( ( )))]

[ ( , ( ), (

  … 

w w a w a d

f w w a

r t

t k

p k

τ τ τ τ

τ τ

1

1 0

+

+

∑ ∫

=

11 1

0

( )), , ( ( )))τ … w ar τ f( , ( ), ( ( )), , ( ( )))]τw τ w a τ … w ar τ dτ

t t

,, ,w w X t I ∈ , .

(2.13) From (2.13) and (2.8)

(Aw t)( ) (Aw t)( ) (r )LT c ck w w , w w X t, ,

k p

− +  + X



 − ∈ ∈

=

 £ 1 1   

1

II.  (2.14) Let

q r LT c ck

k p

: (= + )  + .





=

1 1

1

   (2.15)

(6)

Then, by (2.14), (2.15) and assumption (iii),

Aw Aw−  X £q w w−  X for w w X,∈   (2.16) with 0 < q < 1.

Consequently, by (2.12) and (2.16), operator A satisfies all the assumptions of the Banach  contraction theorem. Therefore, in space X there is only one fixed point u of A and this point  is the mild solution to the nonlocal problem (1.1)–(1.2). Consequently, from Theorem 2.3,  u is the unique classical solution to the nonlocal problem (1.1)–(1.2).

Now, we will prove the second part of the thesis of Theorem 2.4. To this end, observe  that by (2.10) and (2.9),

u u X u t u t c c f u u a u a

t I k r

10 = 100 0 1 0

sup ( ) ( ) £  ( , ( ), ( ( )), , ( (τ τ τ … ττ τ

τ τ τ τ

)))

sup ( , ( ), ( ( )), , ( ( )))

d

f u u a u a d

t t k

p

t I r

k

1 0

0 0 1 0

∑ ∫

=

+

+ … ττ

t t

k k

p

MT c c

0

1

+

1





=

£  ,

  (2.17)

where

M : sup=

{

f( , ( ), ( ( )), , ( ( ))) :τw τ w a1 τw ar τ w X∈ ,τI

}

. Next, assume that

un un X MT c ck r LT c c

k p

k k

p

−  +



⋅ +  +





= =

∑ ∑

1

1 1

1 1 1

£  ( ) 







n 1

  (2.18)

for some natural n ≥ 2.

Then, by (2.10), (2.9), (2.8) and (2.18),

u u u t u t

c c f u u a

n n X

t I n n

k k

p

n n

+ +

=

− = − =

= −

1 1

1 1

sup ( ) ( )

[ ( , ( ), ( (

 τ τ τ))), , ( ( )))… u an r τ −f u( ,τ n1( ),τ un1 1( ( )), ,a τ … un1( ( )))]ar τ dτ

tt t

t I n n n r n

k

f u u a u a f u

0

1 1

+

+ −

sup [ ( , ( ), ( ( )), , ( ( )))τ τ τ … τ ( ,τ (τ)), ( ( )), , ( ( )))]

( )

u a u a d

r LT c c

n n r

t t

k k

p

=

+  +

1 1 1

1

0

1 1

τ … τ τ



£

£ 

 −  +



⋅ +  +

+

= =

∑ ∑

u un n X MT c ck r LT c c

k p

k k

p 1

1 1

1 1 1

£  ( )  







n

. (2.19)

(7)

Therefore, from (2.17), (2.18), (2.19), and from induction argument,

un un X MT c ck r LT c c

k p

k k

p

−  +



⋅ +  +





= =

∑ ∑

1

1 1

1 1 1

£  ( ) 







n 1

  (2.20)

for all n = 1, 2, …

Inequalities (2.20) and assumption (iii) imply, by the Weierstrass theorem, the uniform  convergence of the series

u un un

n

1 1

1

+ +

=

( )

on the integral I and consequently, the uniform convergence of the sequence un on I.

Let u u t t I

n n

(t) : lim ( )= →∞ for ∈ .

Since un tends uniformly to u on I then, by (2.9), (2.10) and (2.8), u is a classical solution  to the nonlocal problem (1.1)–(1.2) on I. But, from the first part of the thesis of Theorem 2.4,  we know that there exists only one classical solution u to the nonlocal problem (1.1)–(1.2)  on I. So, u=u on I.

The proof of Theorem 2.4 is complete.

R e f e r e n c e s

[1]  Byszewski L., Lakshmikantham V., Theorem about the existence and uniqueness of a solution  of a nonlocal abstract Cauchy problem in a Banach space, Applic. Analysis 40, 1990, 11-19.

[2]  Byszewski L., Existence and uniqueness of a classical solution to a functional-differential abstract  nonlocal Cauchy problem, J. of Appl. Math. and Stoch. Anal. 12.1, 1999, 91-97.

[3]  Kołodziej W., Mathematical Analysis, PWN, Warszawa 1978 (in Polish).

[4]  Lakshmikantham V., Leela S., Nonlinear Differential Equations in Abstract Spaces, Pergamon  Press, Oxford, New York, Paris 1981.

Cytaty

Powiązane dokumenty

The convergence of difference schemes was proved first locally, next in the unbounded case for differential problems [2], and finally for differential-functional systems using a

Byszewski, Existence and uniqueness of mild and classical solutions of semi- linear functional-differential evolution of non-local Cauchy problem, in: ”Se- lected Problems

In this note, we show that the advantage of using Leray’s residue formula in hyperbolic Cauchy problems is that it facilitates the calculation of the representative integrals (i.e.

Recently, Sternin and Shatalov have given explicit solutions of the global Cauchy problem in the constant coefficient case with Cauchy data on an arbitrary analytic hy- persurface

This is a substantial generalization of the so called isosceles orthogonal ad- ditivity equation in normed spaces, corresponding to the case where tp = || • ||..

Theorems about the existence, uniqueness and stability of solutions of the abstract evolution Cauchy problem (1.3)–(1.4) in the differential ver- sion were studied by Bochenek

In this part of the paper, we shall study a continuous dependence of the mild solution, on initial nonlocal data (2), of the nonlocal semilinear functional-differential

[1] Byszewski L., Existence and uniqueness of mild and classical solutions of semilinear functional- differential evolution nonlocal Cauchy problem, Selected Problems of