• Nie Znaleziono Wyników

Linear combination of projections in von Neumann factors

N/A
N/A
Protected

Academic year: 2023

Share "Linear combination of projections in von Neumann factors"

Copied!
17
0
0

Pełen tekst

(1)

Contents lists available atScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

Linear combination of projections in von Neumann factors

Stanisław Goldstein, Adam Paszkiewicz

FacultyofMathematicsandComputerScience,UniversityofŁódź,Banacha22,90-238Łódź,Poland

a r t i cl e i n f o a b s t r a c t

Articlehistory:

Received31January2019 Availableonline9April2020 SubmittedbyD.Blecher

Keywords:

Projection Factor

Linearcombination

Itisshownthatanyself-adjointoperatorinafinitediscreteorinfinitevonNeumann factor canbewritten as areallinear combinationof 4projections. Ontheother hand,inanytypeII1algebraandinanytypeIIfactorthereexistsaself-adjoint operatorthatisnotalinearcombinationof3projections.

©2020TheAuthors.PublishedbyElsevierInc.Thisisanopenaccessarticle undertheCCBY-NC-NDlicense (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Weproveherefourresults,twopositive andtwonegative:

(1) Any self-adjoint operatorA acting ona finite-dimensional(complex) Hilbertspace canbe writtenas alinearcombination of 4 projections, with two of thecoefficients chosen arbitrarily from theinterval [2A,∞[.

(2) Anyself-adjoint operatorA in aninfinitevon Neumannfactorcanbe writtenas alinearcombination of4 projections,withtwo ofthecoefficientschosenarbitrarilyfromtheinterval]2A,∞[.

(3) Thereisaself-adjointoperatorinanytypeII1 algebrathatcannotbewrittenasalinearcombination of3 projections.

(4) Thereisaself-adjointoperatorinanytypeII factorthatcannotbewrittenas alinearcombination of3 projections.

Anyself-adjointoperatoractingina(complex)finite-dimensionalHilbertspacecanbewrittenasalinear combinationofafinitenumberofprojections—this followseasilyfromthespectraltheorem.Whatisnot immediately obvious is whether we canmake the number of projectionsindependent of the dimension of theHilbertspace. IsthisalsopossibleiftheHilbertspaceisinfinitedimensional?Thefirstpositive results

* Correspondingauthors.

E-mailaddresses:stanislaw.goldstein@wmii.uni.lodz.pl(S. Goldstein),adam.paszkiewicz@wmii.uni.lodz.pl(A. Paszkiewicz).

https://doi.org/10.1016/j.jmaa.2020.124135

0022-247X/©2020TheAuthors.PublishedbyElsevierInc. ThisisanopenaccessarticleundertheCCBY-NC-NDlicense (http://creativecommons.org/licenses/by-nc-nd/4.0/).

(2)

in this directionwere obtainedby Fillmore1967 (see [3]), who wasable to get downto 9 projections [4].

Pearcy and Topping[16] reducedit to 8 alreadyin1967, thenthe second-namedauthor to 6 in1980 (see [15]).Using theideasfrom[15], Matsumotoshowedin1984that5 isenough.Alsoin1984Nakamura [12]

provedthatanyHermitian matrixisalinearcombinationof4 projections.

In 1985 the second-named author proved that any self-adjoint operator in B(H) can be written as a linear combination of4 projections, both forfinite and infinite-dimensional HilbertspaceH, with aproof for HermitianmatricesdifferingfromthatofNakamura[12].Thepaper [14] withtheresultswassenttoa journal and gotapositive review, requiringonly minorimprovements, butforsomeinexplicable reasonit hasnotbeenresentto thejournal.Thisfactwentunnoticedbythefirst-named authorwhowascompiling thejointpublicationonlinearcombinationsofprojectionsinvonNeumannalgebras[5] whileonleavefrom his alma mater, and thepaper wasadvertised as acceptedfor publication.Evenworse,some resultsfrom thejointpublication dependontheunpublishedpaper, includingthecriterionforavon Neumannalgebra to beacomplexlinearspanofitsprojections.

In 2016,the first-namedauthor met ViacheslavRabanovichat theconference “Groupsand Operators”

in Gothenburg, Sweden. There he learned that [14] has never been published, and that Rabanovich [17]

himself proved that4 projections are sufficient in the caseof B(H) with aseparable infinite-dimensional HilbertspaceH.

We decided thatthere are good reasonsfor complementingour earlier paper[5] with this one,dealing with linearcombinations of projectionsin vonNeumann factors. BothNakamura’s [12] andRabanovich’s [17] proofsareelegant, andtheyshowclearlythat4projectionsareenoughforself-adjointoperatorsinH both infinite- andinfinite-dimensionalcases.However,thereareseveral reasonsforourpresentation:

(1) Theorem1.1(a)of[5] attributedto[14],andhencedidnotprove,adecompositionofself-adjointoper- atorsinatypeIn factoras linearcombinationsof4projections,withaspecificformofthecoefficients.

Thatform isnotavailablefrom Nakamura’s[12] but isrequiredtoobtaininTheorem2.1(a)of[5] the decompositionofself-adjointoperatorsinafinitediscretevonNeumannalgebraasalinearcombination of4projectionswith coefficientsinthecenterof thealgebra.Aproof basedontheunpublishedpaper [14] is presentedinTheorem 2.1below.

(2) Theorem 1.1 (a) of [5] attributed to [14] a decomposition of self-adjoint operators inan infinite von Neumannfactorasalinearcombinationof4projections.TheproofpresentedbyRabanovich[17] holds for aseparable Hilbertspace and cannot be easily adaptedto thecase of anarbitrary infinitefactor.

Anindependentproofbasedon[14] ispresentedinTheorem3.5.

(3) Given Theorem2.1andTheorem 3.5,alltheresultsfrom [5] are nowproved.Theresultshavealready been usedbyseveralauthorsthroughout theyears.

Theinterestinthisfieldofresearchcontinues(see,forexample,[7]),withmoreattentiondirectedrecently to asituationinC-algebras (see[10]).Nevertheless,asseenbelow,there aresomeopenquestionseven in thevon Neumannalgebracase(see‘Openproblems’attheend ofthepaper).

ForavonNeumannalgebraA wedenotebyAhitsself-adjointpartandbyProjA thelatticeofprojections in A. For a projection E, we denote by AE the reduced von Neumann algebra EAE acting in EH. For A∈ Ah,eA(·) denotesthespectralmeasureofA.TheunitofA isdenotedby1Aorsimply1,ifthereisno danger of confusion.For projectionsP,Q∈ A, we write P ∼ Q ifthere is apartial isometry U ∈ A such thatP = UU andQ= U U,and thenP  Q ifP ∼ R ≤ Q foraprojectionR∈ A, andP ≺ Q ifP  Q and P  Q.

(3)

2. Finitediscretefactors

LetA befactorof typeIn,n<∞,andτ the tracialstateonA.Weassume(forconvenience)thatA is representedonaHilbertspaceH insuchawaythatA= B(H).

Theorem2.1. [1.1(a)in[5]] LetA∈ Ahandα = τ (A).Foranyβ,γ≥ 2A,thereareprojectionsP,Q,R,S inA withP ∼ Q andR∼ S suchthat

A = (β + α)P − βQ + (γ + α)R − γS (1)

whenα≥ 0,and

A = βP − (β − α)Q + γR − (γ − α)S (2)

whenα≤ 0.

Proof. (2) followsfrom (1) appliedto−A.Weshow (1).IfA= α1, takeP = Q= 1,R = S = 0. Consider n ≥ 2 and A = α1.Assume thatA = 1, otherwise use (1/A)A. Put A = A˜ − α1. Then A˜ = 0. Let {e1,. . . ,en} bean orthonormal basisin H consistingof eigenvectors of A (andA),˜ and let α1,. . . ,αn be thecorrespondingeigenvaluesofA.˜ Weorder theeigenvalues(andthecorresponding eigenvectors)insuch awaythatforeachj,j = 1,. . . ,n, βj := α1+· · · + αj∈ [0,2].ByLemma1in[12] (orLemma3.4below), forany β,γ≥ 2,there existrankoneprojectionsPj,Qj inA withPj,Qj≤ Ej+ Ej+1,when Ej isarank 1 projectionontothesubspacegeneratedbyej,suchthat

βj(Ej− Ej+1) + αEj =



(β + α)Pj− βQj for j odd, (γ + α)Pj− γQj for j even.

Wehave(notingthatβn= 0 andαn =−βn−1)thatfor1≤ j ≤ n− 1

A = [β1(E1− E2) + αE1] +· · · + [βn−1(En−1− En) + αEn−1] + αEn

= (β + α)(

j odd

Pj)− β(

j odd

Qj) + (γ + α)( 

j even

Pj)− γ( 

j even

Qj) + αEn.

Ifn isodd,putP =

j oddPj+ En,Q=

j oddQj+ En,R =

j evenPj,S =

j evenQj;ifn iseven, addEn to thesumsovereven indices.(Forn= 2,putR = S = E2.) 

3. Infinitefactors

Thefollowinglemmabelongsto mathematicalfolklore.Wegivehereitsproofforcompleteness.

Lemma 3.1. Let A be a von Neumann factor, and let P,Q,R ∈ Proj A with P + Q = R, and R infinite.

ThenR P orR Q.

Proof. Let E,F ∈ Proj A besuch thatE + F = R,E ∼ F ∼ R (see Lemma6.3.3in[8]).Then P∧ E  Q∧ F or P ∧ E  Q∧ F . AssumeP ∧ E  Q∧ F ; then, using Kaplansky’s Parallelogram Law, we get R∼ E = P ∧ E + (E − P ∧ E) Q∧ F + (E ∨ P − P )≤ Q,soR Q.

TheproofinthecasewhenP∧ E  Q∧ F isobtainedbyexchangingtherolesofP andQ intheproof above. 

(4)

Thenextfourlemmas areessential.

Lemma 3.2. Let A bean infinite factor,and let A∈ Ah.There exists a∈ [−A,A] such that eA

 ]a− ε,a+ ε[

∼ 1 foreach ε> 0.

Proof. Assume there is no such a. Then, for each x ∈ [−A,A], there is εx > 0 such that eA

 ]x− εx,x+ εx[

≺ 1.Fromcompactnessof[−A,A],thereisafinitenumberofintervals]xn− εxn,xn+ εxn[ coveringtheinterval[−A,A].Hence,thereisafinitenumberofdisjointintervalsIn,eachcontainedin ]xn−εxn,xnxn[,withunion[−A,A],sothat1=

pnforpn= eA(In)≤ eA



]xn−εxn,xnxn[

≺ 1, whichcontradicts Lemma3.1. 

Notethata satisfiestheconditionsoftheLemmaifandonlyifitbelongstotheessentialspectrumofA with respecttothelargest closedidealofA (theonegeneratedbyalltheprojectionsnotequivalent to1).

Lemma 3.3. LetA bean infinite factor and letA∈ Ah.Assumethat for each δ > 0,eA(]− δ,δ[)∼ 1.For any ε> 0, there are:a sequence(εi),i∈ Z of positivenumbers satisfying ε0 =A and 

i=0εi ≤ ε, and a sequence(Ei),i∈ Z ofprojections fromA such that Ei ∼ 1 andEiA= AEi foralli,

i∈ZEi = 1 and

−εiEi≤ AEi≤ εiEi fori∈ Z.

Proof. Considerthefollowing cases:

I eA({0}) ∼ 1. Choose Ei,i ∈ Z\{0},E0 so that E0 ∼ Ei ∼ 1 and 

i=0Ei + E0 = eA({0}). Put E0= E0 + eA(R\{0}),ε0=A andεi= 0 for i∈ Z\{0}.

II eA {0}

 1. First observe that we can replace the set of indices Z by any other countable set.

Define, for a sequence n),n = 0,1,. . . with ε0 = A,ε1 = ε/2 and εn+1 ≤ εn/2 for n ≥ 2, sets In = [−εn,−εn+1[∪]εn+1n] andDn = eA(In). Since

n=0Dn ∼ 1 (byLemma3.1),we canchooseεn so thatDn = 0 foreachn,byassumptionandagainLemma3.1.There areagaintwocases:

(a) Forinfinitelymanyn,sayn∈ M ⊆ N,Dn∼ 1.ThenwecanusethemforformingEi,withE0obtained as 1

i=0Ei.

(b) IfDn ∼ 1 forfinitelymany(or none)ofindices n,wecanassumethatDn 1 for eachn = 0.

Now,if1 isσ-finite,wearenecessarilyinasemifinitefactor(allnon-zeroprojectionsinaσ-finitetype III factor are equivalent to 1), and we can use a faithful normal semifinite trace τ on A. We have



n=1τ (Dn) = τ eA

]− ε11[\{0}

= τ (1) = +∞, by assumption and Lemma 3.1. Now we can find infinitely many disjoint infinite sets Mi ⊆ N such that 

n∈Miτ (Dn) = +∞. Thus we cantake Ei=

n∈MiDn,i = 0,with(asbefore)E0= 1

i=0Ei.

If1 isnotσ-finite,wemayassumethatallprojectionsDn(n = 0) areinfinite(and≺ 1).Foraprojection F ∈ A,denote by#F thelargest cardinalnumberofamaximalorthogonalfamilyofnon-zeroσ-finite projectionsmajorizedbyF (thiscorresponds directlytothegeneralizeddimensionfunctionofTomiyama inthefactorialcase(see[19]).ByLemma3.1,eA

]− ε11[\{0}

∼ 1.SinceA isafactor,wehave,by Tomiyama[19,Theorem 4anditscorollary] (see alsoBlackadar[1,III.1.7.1])

 n=1

#Dn= #

 n=1

Dn= #eA

]− ε1, ε1[\{0}

= #1.

This means thatthere isno cardinalκ< λ= #1 such that#Dn ≤ κ for n= 1,2,. . . . Hence,λ is a limitcardinalof countablecofinality(see, forexample,[11]),andwecanform asubsequence(Dmn) of

(5)

(Dn) suchthat#Dmn  λ.Weusethesubsequenceto build countablymanysets Mi ⊆ N suchthat



n∈Mi#Dmn= #1 foreachκ.Wefinishtheproof asintheσ-finite case. 

Lemma3.4.LetA beavonNeumannalgebra,E,F ∈ Proj A,E⊥ F ,E = UU ,F = U UforsomeU ∈ A (so thatE ∼ F ).Forany α,β ≥ 0 and D∈ A+ satisfying D≤ βE, thereexistP,Q∈ Proj A with P ∼ Q suchthat

(α + β)P− βQ = αE + D − UDU andthat P,Q≤ E + F .

Proof. If β = 0,thenD = 0 andonecantakeP = Q= E.Hence,we canassumethatβ > 0.Weuse the standardmaterialontherelativeposition oftwoprojectionsinavon Neumannalgebra(see Halmos[6] or Takesaki[18,pp.306–308]).WeconstructP,Q∈ Proj A insuchawaythatP,Q≤ E + F andP ∼ E ∼ Q (inAE+F).Morespecifically,we representtheoperators as2× 2 matricesoverAE,sothat

A11 A12 A21 A22



= A11+ U A22U+ A12U+ U A21

forAij ∈ AE (notethat1AE = E).Then

E =

1 0 0 0



, P =

C2 CS CS S2



and Q =

 C 2 CS CS S 2



forsuitablychosenC,S,C,S with0≤ C,S≤ 1,0≤ C,S ≤ 1 andC2+ S2= 1,C 2+ S 2 = 1.

Define firstH ∈ AE byH := (2D + α1)−1(D + α1) for α > 0 and H := (1/2)1E forα = 0. Checkthat 0≤ (α + β)−1[D + (α + β)1]H ≤ 1 and 0≤ β−1(β1− D)H ≤ 1.Let C andC be thesquare rootsof the two operators,respectively, and letS = (1− C2)12,S = (1− C 2)12. Note thatC,S,C andS belong to theabelianvonNeumannalgebrageneratedbyD andE.Wecheckthat

(α + β)P− βQ =



α1 + D 0

0 −D

 ,

whichendstheproof. 

Theorem 3.5.[1.3(a) in [5]] Let A be aninfinite factor, andlet A∈ Ah.For any β,γ > 2A,there exist α∈ R with|α|≤ A and projectionsP,Q,R,S∈ A suchthat, depending onα,(1) or(2) ofTheorem2.1 holds.

Proof. ThecaseA= 0 istrivial.WemayassumethatA= 1,otherwiseuse(1/A)A insteadofA. Let α besuch thateA



]α− ε,α + ε[

∼ 1 foranyε> 0.Itisenoughto consider thecaseα≥ 0:ifα < 0, use

−A insteadofA. Put A = A˜ − α1. Takeε> 0 satisfying2(1+ ε)< β,γ.Let(Ei)i∈Z andi)i∈Z beas in Lemma3.3,forA and˜ ε.

Let Uj ∈ A be any partial isometry satisfyingUjUj = Ej,UjUj = Ej+1. Put U =

j∈ZUj andlet h denotethemappingX → UXU onA.Note thatU isunitaryandh−1 exists andmapsX toUXU .Let Aj = EjAE˜ j and B0 = (1− α + ε)E0. Use therecurrencerelation Aj = Bj − hBj−1 to define Bj for all j = 0.Then

(−1 − α)E0≤ A0≤ (1 − α)E0;

(6)

forj ∈ Z,j = 0,

−εjEj≤ Aj ≤ εjEj; finally,

0≤ Bj≤ 2(1 + ε)Ej. ApplyLemma3.4toobtain

αEj+ Bj− hBj =

(β + α)Pj− βQj for j odd, (γ + α)Rj− γSj for j even.

Then put

P = 

j odd

Pj, Q = 

j odd

Qj, R = 

j even

Rj, S = 

j even

Sj.

Note that

A = ˜A + α1 =

j∈Z

(Aj+ αEj) =

j∈Z

(Bj− hBj+ αEj)

to endtheproof.  4. TypeII1algebras

LetA beaσ-finitetypeII1algebraandletτ0beafixedfaithfulnormaltracialstateonA.Inthissection τ denotesafixed tracethatisascalarmultipleofτ0.

WewillbeconstructinganoperatorA∈ A+ withthepropertythatwhateverα,β ∈ R+ andγ∈ R,and whatever projectionsP,Q,R∈ A,

A + γR = αP + βQ. (3)

Weshallfirstdescribethepropertiesoftheright-handsideof(3),introducingconvenientterminology.

Definition4.1.Adistributionfunction isanon-decreasing,left-continuousfunctionF : R→ [0,∞[ suchthat limt→−∞F (t) = 0.Foradistribution functionF we denote by F+ itsright-continuousvariant: F+(t):=

limstF (s),andbyF(δ)andF(δ)+,foranyδ∈ R,thefunctionsF(δ)(t):= F (t)+F+(δ−t) andF(δ)+(t):=

F+(t)+ F (δ− t),respectively.

Forany A∈ Ah,thefunctionFA givenbyFA(t):= τ (eA(]− ∞,t[) isadistributionfunction,calledthe distributionfunctionofA w.r.t.thetraceτ .Notethatlimt→+∞FA(t)= τ (1) andFA+(t)= τ (eA(]− ∞,t])).

Definition 4.2.A distribution functionF iscalled (α,β)-symmetric (with 0≤ α ≤ β)if it is constanton eachoftheintervals]− ∞,0],]α,β],]α + β,∞[ and F(α+β)isconstanton]0,α]∪]β,α + β].

F issymmetric ifitis(α,β)-symmetric forsome0≤ α ≤ β.

It is clearthatthenotionsof symmetryjust defineddonotdepend onthechoiceof thetraceτ (being alwaysa scalarmultipleofτ0).Similarly,ifthedistributionfunctionofanoperatorissymmetric,thenthe distributionfunctionofapositivemultipleofthisoperatorissymmetricaswell.

(7)

Remark 4.3.If the distribution function FA (w.r.t. τ ) of an operator A ∈ Ah is (α,β)-symmetric, then A∈ A+ and

FA(0) = 0 (4)

FA+(α + β) = τ (1) (5)

FA+(α) = FA(β), (6)

and

FA(α+β)takes on at most three different values. (7) Infact,positivityofA and(4) followfromthedistributionFAbeingconstanton]− ∞,0[.Then(5) and (6) followfrom FA being constanton]α + β,∞[ and]α,β],respectively.Thedefinitionof(α,β)-symmetry alsoimpliesthatF(α+β) isconstantandequaltoτ (1) on]− ∞,0]∪]α + β,∞[,andthatF(α+β)isconstant (andequalto2FA(β))on]α,β],whichyields (7).

We will now investigateproperties of the distribution function of alinear combination A = αP + βQ of two projections P,Q ∈ A with α,β ≥ 0. Thestructure of such an operator A was described (for real coefficients) byNishio [13]. The symmetry of thespectrum of A follows immediately from Corollary 3of [13],asobservedbyRabanovich,whoaddsafewmorefactsonthesymmetrypropertiesofA insection2of [17].Nevertheless,wehavenotspottedany proof(orevenstatement)ofthemoregeneralfactgivenbelow andconcerningsymmetryof thespectral measureofA, aresultcrucialforthesequel.

Lemma 4.4.Let A be anarbitrary vonNeumann algebra and letP,Q∈ A be twoprojections in ageneric position (i.e. P ∧ Q = P ∧ Q = P ∧ Q = P ∧ Q = 0). Then, for any α,β ≥ 0 and any Borel Z ⊆ [0,α + β],

eαP +βQ(Z)∼ eαP +βQ(α + β− Z).

Proof. Weuse2× 2 matrixrepresentationofA over AP (cf. referencesintheproofofLemma3.4).Then

P =

 1 0 0 0



and Q =



C2 CS CS S2



forsome0≤ C,S≤ 1,C2+ S2= 1.LetV =



0 1

−1 0

 . Then

V(αP + βQ)V = αP+ βQ= (α + β)1− (αP + βQ), hencethespectralprojections

eαP +βQ(Z) and eαP +βQ(α + β− Z) = e(α+β)1−(αP +βQ)(Z) areunitarilyequivalent. 

Corollary 4.5. Let A be an arbitrary von Neumann algebra, and let P,Q∈ Proj A,α,β ∈ R,0 ≤ α ≤ β.

Then

eαP +βQ(]0, α[)∼ eαP +βQ(]β, α + β[) and eαP +βQ(]α, β[) = 0. (8)

(8)

Moreover, if 0< α≤ β,then

eαP +βQ({0}) = P∧ Q and eαP +βQ({α + β}) = P ∧ Q.

If, additionally,α < β,then

eαP +βQ({α}) = P ∧ Q and eαP +βQ({β}) = P∧ Q, while ifα = β,

eαP +βQ({α}) = P ∧ Q+ P∧ Q.

(Trivially, for 0 = α < β we have eαP +βQ({0}) = Q and eαP +βQ({β}) = Q, and for α = β = 0, eαP +βQ({0})= 1.)

Proof. Let A= αP + βQ.Put(cf. Takesaki[18, pp.306–308)])

P0= P − P ∧ Q − P ∧ Q, Q0= Q− P ∧ Q − P∧ Q, (9) and

A0= αP0+ βQ0. (10)

IfP Q= QP ,thenP0= Q0= 0.IfP andQ donotcommute,thenP0and Q0 arebothnon-zeroand in agenericpositioninAP0∨Q0.Note that

1 = P0∨ Q0+ P∧ Q + P ∧ Q+ P∧ Q + P∧ Q.

As observed byRabanovichinthefirst paragraphof section 2of[17], itfollows from Halmos [6] that the only partsofP andQ that contributeto thepossiblynon-zerovaluesofthespectral measureeA(·) atthe one-point sets {0},{α},{β} and{α + β} are the ‘commuting’ ones, that is P ∧ Q,P ∧ Q,P∧ Q and P∧Q.Bytheabove,eA(]0,α[)= eA0(]0,α[), eA(]α,β[)= eA0(]α,β[) andeA(]β,α+β[)= eA0(]β,α+β[).

Note thateA0(]α,β[)= 0.This follows,for example,fromtheformula inCorollary 3inNishio [13].Hence also eA(]α,β[)= 0.Therest followsfromLemma4.4. 

WereturntoourassumptionthatA isaσ-finitealgebraoftypeII1,andτ isascalarmultipleofafinite tracial stateonthealgebra.The followingresult iswell known(see,for example,theproof or Lemma2.5 (iii) in[2]),butwe givehereasimpleproofforcompleteness.

Lemma 4.6.For0≤ B ≤ A and λ∈ R wehave FA(λ)≤ FB(λ).

Proof. Assume that FA(λ) > FB(λ) for someλ. This means that τ

eB([λ,∞[)

> τ

eA([λ,∞[

, so that there isanon-zeroξ∈

eB([λ,∞[)∧ eA(]− ∞,λ[)

(H),forwhichAξ,ξ< λξ2 andAξ,ξ≥ Bξ,ξ≥ λξ2,acontradiction. 

Lemma 4.7. For any P,Q ∈ Proj A in generic position and any 0 ≤ α ≤ β, the distribution function F := FαP +βQ (w.r.t. τ )satisfies

(9)

F (0) = 0, (11) F (t) = 1

2τ (1) for t∈]α, β], (12)

F+(α + β) = τ (1), (13)

F(α+β)(t) = τ (1) for t∈ R. (14)

In particular,F is(α,β)-symmetric.

Proof. Since P and Q are in a generic position, also P and Q are in a generic position, which implies Q ∼ P ∼ Q, so thatτ (Q) = (1/2)τ (1).By Lemma4.6, wehave FαP +βQ(0) ≤ F0(0) = 0,which yields (11),andFαP +βQ(β)≤ FβQ(β)= τ (1)− τ(Q)= (1/2)τ (1).ApplyingLemma4.4 withZ =]− ∞,t[ gives

F (t) = τ (eαP +βQ(]− ∞, t[))

= τ (eαP +βQ(]α + β− t, ∞[)) = τ(1) − F+(α + β− t) (15) forall t∈ R.Hence(14) and,by(11), F+(α + β)= τ (1)− F (0)= τ (1),which shows(13). For(12) note thatby(15) wehaveF+(α)= τ (1)− F (β)≥ τ(1)− (1/2)τ(1)= (1/2)τ (1). 

Lemma4.8. Forany commuting P,Q∈ Proj A and any 0≤ α ≤ β,thedistributionfunctionF := FαP +βQ

isconstant oneach of theintervals]− ∞,0],]0,α], ]α,β],]β,α + β] and]α + β,∞[. Moreover,

F(α+β)(t) = 2τ (1)− τ(P ) − τ(Q) for t ∈]0, α]∪]β, α + β]. (16) In particular,F is(α,β)-symmetric.

Proof. Notethat for commutingP and Q, αP + βQ= αP ∧ Q+ βP∧ Q+ (α + β)P ∧ Q isa linear combination ofthreemutually orthogonalprojections,whichshowsthatthedistributionfunctionFαP +βQ

hastobe constantoneachoftheintervals]− ∞,0],]0,α],]α,β],]β,α + β] and]α + β,∞[.Inparticular,

τ (P∧ Q) =

F (t) for t∈]0, α], F+(α + β− t) for t ∈]β, α + β]

and

τ ((P∧ Q)) =

F (t) for t∈]β, α + β], F+(α + β− t) for t ∈]0, α].

Asimplecalculationgivesnow(16). 

Theworkdoneso farcanbe summedupinthefollowing:

Theorem 4.9. Let P,Q be projections from A, and let 0 ≤ α ≤ β. Then the distribution function F of A= αP + βQ (w.r.t. τ ) is(α,β)-symmetric,and

F(α+β)(t) = 2τ (1)− τ(P ) − τ(Q) for t ∈]0, α]∪]β, α + β]. (17)

(10)

Proof. Let usfirstextractcommutingandgenericparts ofP andQ.Weput Pc:= P∧ Q + P ∧ Q, Qc := P∧ Q + P∧ Q;

P0:= P− Pc, Q0:= Q− Qc.

We consider P0 and Q0 in the reduced von Neumann algebra AP0∨Q0. Similarly, we treat Pc and Qc as elements ofA(P0∨Q0).Put F0:= FαP0+βQ0 andFc := FαPc+βQc.ByLemmas4.7and4.8,bothF0andFc are (α,β)-symmetric,andtheysatisfy,fort∈]0,α]∪]β,α + β],

F0(α+β)(t) = τ (P0∨ Q0) = 2τ (P0∨ Q0)− τ(P0)− τ(Q0), Fc(α+β)(t) = 2τ ((P0∨ Q0))− τ(Pc)− τ(Qc).

HenceF = F0+ Fc isalso(α,β)-symmetricandF satisfies(17). 

Thenextfewlemmas showtheexistenceofapositive operatorA suchthatthedistributionfunctionof A+ γR isnotsymmetric,whateverthechoiceofγ∈ R andprojectionR∈ A.

Lemma 4.10.Choose arbitrary λ > 0 and 0 ≤ Λ < τ (1). If A = B + C,B,C ∈ A+,B < λ and τ (supp C) ≤ Λ, then FA(λ) ≥ τ(1)− Λ. Consequently, if A = B1 +· · · + Bm + C1+· · · + Cn with Bi,Cj ∈ A+,B1+· · · + Bm< λ andτ (supp C1)+· · · + τ(supp Cn)≤ Λ,thenFA(λ)≥ τ(1)− Λ.

Proof. Suppose that FA(λ) < τ (1)− Λ. Then τ (eA(] − ∞,λ[)∨ supp C) < (τ (1)− Λ)+ Λ = τ (1), so that eA([λ,∞[) ∧ (supp C) = (eA(] − ∞,λ[) ∨ supp C) = 0, and there is a non-zero vector ξ

eA([λ,∞[)∧ (supp C)

(H). Hence Aξ,ξ =Bξ,ξ ≤ Bξ2 < λξ2, while at the same time

Aξ,ξ≥ λeA([λ,∞[)ξ,ξ= λξ2,acontradiction. 

In therestof thissection weassumethat thetrace τ satisfiesτ (1)≥ 1071.

Remark4.11.Belowyouwillfindafewtechnicallemmasthatleadtotheconstructionofanoperatorthat cannot be written as alinearcombination of three projections. To this aim, webuild in 4.19anoperator A such thatthe distribution function F of A+ γR is not symmetric, whatever the values of γ ∈ R and R∈ Proj A.Thisshows,accordingtoTheorem4.9,thatA+γR isnotalinearcombinationoftwoprojections with positivecoefficients.ThecaseofarbitraryrealcoefficientsisthenobtainedeasilyinTheorem4.20.

Note thattheoperatorA:= B + C + 4E1+ 21E2 constructedinLemma4.19isalinearcombination of 9 projections, withB (constructed inLemma4.15and Corollary4.16)alinearcombinationof 4 mutually orthogonal projections,sayEB0,. . . ,EB3, thenC (builtinLemma4.17andCorollary 4.18)of 3 mutually orthogonalprojections,sayEC1,EC2,EC3,andfinallywithE1 andE2mutuallyorthogonal.Theconstruc- tionsofB,C andthepairE1,E2areindependentofeachother.Specificvaluesofτ ontheprojectionswill be usedinprovingCorollary4.22,dealingwithafactoroftypeIn.

Only the values of the trace on the 9 projections (and, of course, the values of the coefficients of the linearcombinations) matterforthevalidityofthelemmas mentionedabove.Thechoiceofallowedvalues, used in Lemmas 4.15and 4.17, wasmade to avoidcomplicated fractions.Theassumption τ (1) ≥ 1701 is needed tomakeroomfortheconstructionoftheseprojections.

Lemma 4.12. LetB,C ∈ A+,B < 1,τ (supp C) < 1, andlet E1,E2,R ∈ Proj A withE1 ⊥ E2. Denote Λi:= τ (Ei),c:= τ (R) andassumethat c> 0,Λ1> Λ2 andthat

A = B + C + λ1E1+ λ2E2+ γR

(11)

forsome0< λ1< λ2< γ.Thenthedistribution functionF ofA satisfies:

1. F (t)+ F+(γ + λ1− t)≤ 2τ(1)− c− Λ1− Λ2 fort∈]0,λ1];

2. F (t)+ F+(γ + λ2− t)≤ 2τ(1)− c− Λ2 fort∈]0,λ2];

3. F (γ)≤ τ(1)− c;

4. F (1)> τ (1)− (c+ 1+ Λ1+ Λ2);

5. F (γ + 1)> τ (1)− (1+ Λ1+ Λ2);

6. F (λ1+ 1)> τ (1)− (c+ 1+ Λ2);

7. F (γ + λ1+ 1)> τ (1)− (1+ Λ2);

8. F (λ2+ 1)> τ (1)− (c+ 1);

9. F (γ + λ2+ 1)> τ (1)− 1.

Proof. For3.,useA≥ γR andLemma4.6.For1.and2.,userespectivelyA≥ λ1(E1+ E2)+ γR andA≥ λ2E2+γR,Lemma4.6and(17) inTheorem4.9.TheothersresultfromLemma4.10,andrepresentations:4.

A= B+(C +λ1E12E2+γR);5.A= (B+γR)+(C +λ1E12E2);6.A= (B+λ1E1)+(C +λ2E2+γR);7.

A= (B+λ1E1+γR)+(C+λ2E2);8.A= (B+λ1E12E2)+(C+γR);9.A= (B+λ1E12E2+γR)+C.  Corollary4.13.LetB,C∈ A+, B< 1,τ (supp C)< 1,andletE1,E2,R∈ Proj A,withE1⊥ E2,τ (E1)= 16,τ (E2)= 4 and c:= τ (R)> 0.Let

A = B + C + 4E1+ 21E2+ γR with γ > 21.

ThenthedistributionfunctionF of A satisfies:

1. F (t)+ F+(γ + 4− t)≤ 2τ(1)− c− 20 for t∈]0,4];in particular F (t)≤ τ(1)− c− 10 or F+(γ + 4− t)≤ τ (1)− 10 for anyt∈]0,4];

2. F (t)+ F+(γ + 21− t)≤ 2τ(1)− c− 4 fort∈]0,21];inparticularF (t)≤ τ(1)− c− 2 orF+(γ + 21− t)≤ τ (1)− 2 for any t∈]0,21];

3. F (γ)≤ τ(1)− c;

4. F (1)> τ (1)− c− 21;

5. F (γ + 1)> τ (1)− 21;

6. F (5)> τ (1)− c− 5;

7. F (γ + 5)> τ (1)− 5;

8. F (22)> τ (1)− c− 1;

9. F (γ + 22)> τ (1)− 1.

Proof. Putλ1= 4,λ2= 21, Λ1= 16,Λ2= 4 andγ > 21 inLemma4.12. 

Lemma4.14.If F isadistributionfunctionsatisfying 1.− 9.ofCorollary4.13forγ > 44 andc> 42,then F isnot symmetric.

Proof. AssumeF is symmetric. Weshall consider four cases,oneof whichwould necessarilytakeplace if thefunctionF weresymmetricwithrespect tosome(α,β).

Iβ ∈ [γ,γ + 1[).By4.13.8,

F (β)≥ F (γ) ≥ F (22) > τ(1) − c − 1.

Hence,by4.13.2witht= 11+ γ− β,(5) and(6),either

(12)

F+(10)≤ F (11 + γ − β) ≤ τ(1) − c − 2 < F (β) = F+(α) or

F+(β + 10)≤ τ(1) − 2 < τ(1) = F+(β + α).

Thus α≥ 10,andby4.13.6and4.13.7,

F (5) + F+(α + β− 5) ≥ F (5) + F (γ + 5) > 2τ(1) − c − 10. (18) Notethatα + β− γ − 2≤ 2β − γ − 2< 2(γ + 1)− γ − 2= γ.Hence,by4.13.1witht= 2,(5) and4.13.3, we haveeither

F (2) + F+(α + β− 2) ≤ (τ(1) − c − 10) + τ(1) = 2τ(1) − c − 10 (19) or

F+(γ + 2) + F (α + β− γ − 2) ≤ (τ(1) − 10) + (τ(1) − c) = 2τ(1) − c − 10. (20) ByDefinition4.2,thelefthandsidesof(18),(19) and(20) areallequaltothevalueofF(α+β)on]0,α]∪]β,α+

β],whichyieldsacontradiction.

II β≥ γ + 1. By(6) and4.13.5,F+(α)= F (β)> τ (1)− 21> τ (1)− c.By4.13.3,α≥ γ.

By4.13.5,(5) andthe definitionofsymmetry 4.2,we haveas well21> τ (1)− F (γ + 1)≥ F (α + β)− F+(β) = F (α)− F+(0); by 4.13.3 and 4.13.5, F (γ + 1)− F+(0) ≥ F (γ + 1)− F (γ) ≥ 21. This implies α < γ + 1.

Sinceα≥ γ,wehaveF (α + β− 22)≥ F (2γ − 22)≥ F (γ + 22)> τ (1)− 1,by4.13.9.Thisimplies,again bysymmetryofF and4.13.8,F (2)+ F+(α + β−2)= F (22)+ F+(α + β−22)> (τ (1)−c−1)+ (τ (1)−1)= 2τ (1)− c− 2,hence

F+(2) > τ (1)− c − 2. (21)

In particular, F (3)> τ (1)− c− 10,and by (6) with 4.13.1, F (β)= F+(α) ≤ F+(γ + 1)≤ τ(1)− 10,so that,by4.13.7,β < γ + 5.

The inequality(21) yieldsalso F (11) > τ (1)− c− 2, so that,by 4.13.2,F+(γ + 10)≤ τ(1)− 2. Since γ≤ α < γ +1 andγ + 1≤ β < γ +5,wehaveγ + 10= α + β−t forsomet∈]0,α] witht< γ.Consequently, F (t)+ F+(γ + 10)= F (22)+ F+(α + β− 22), so thatF+(γ + 10)= F (22)+ F+(α + β− 22)− F (t)>

(τ (1)− c− 1)+ (τ (1)− 1)− (τ(1)− c)= τ (1)− 2,from 4.13.8and4.13.3.Weobtainedacontradiction.

III β∈ [0,γ/2[ Wehaveα≤ β < γ/2,so thatγ > α + β andF (γ)= τ (1),whichcontradicts4.13.3.

IVβ ∈ [γ/2,γ[ Wehaveα + β≥ γ, sinceby(5) F+(α + β)= τ (1) and F (γ)≤ τ(1)− c,by 4.13.3.By 4.13.4, there is a0< < 1 satisfying F ( ) > τ (1)− c− 21.Suppose α + β > γ + 1+ . Choose γ with β < γ < γ. Wehaveγ + 1= α + β− t1 = α + β− t2 for some < ti < α,i= 1,2.Usingα≤ β < γ, 4.13.3andthechoiceof ,wehaveF (ti)∈]τ(1)− c− 21,τ (1)− c] fori= 1,2.Ontheotherhand,by4.13.3, F+(α + β−t2)= F+)≤ τ(1)−c,andF+(α + β−t1)= F+(γ + 1)> τ (1)−21,by4.13.5.Thiscontradicts c > 42 andthe equalityF (t1)+ F+(α + β− t1)= F (t2)+ F+(α + β− t2),satisfied fort1,t2 ∈]0,α]. We showedthatα + β≤ γ + 1+ < γ + 2,inparticular,by(5),F (γ + 2)= τ (1).

SinceF+(γ + 10)= τ (1),by4.13.2witht= 11 wehaveF (11)≤ τ(1)− c− 2.By4.13.8and(6),wehave F+(α)= F (β)≥ F (γ/2)≥ F (22)≥ τ(1)− c− 1,so thatα≥ 11.Consequently, F (2)+ F+(α + β− 2)= F (5)+ F+(α + β− 5).Since γ≤ α + β < γ + 2,wehaveα + β− 2,α + β− 5∈ [γ − 5,γ[⊆]22,γ[,and it followsfrom4.13.3and4.13.8thatF+(α + β− 2)− F+(α + β− 5)< 1 andF (5)− F (2)< 1.By4.13.6this

(13)

impliesF (2)> τ (1)− c− 6,henceF+(γ + 2)≤ τ(1)− 10 by4.13.1with t= 2.Wegotcontradictionwith theequalityF (γ + 2)= τ (1),whichends theproof. 

Lemma4.15.Letτ beamultipleofτ0suchthatτ(1)> 17.ThereisanoperatorB∈ A+satisfyingB< 1 andthefollowingcondition: forany operatorC∈ Ah with τ(supp C)≤ 1,thedistribution functionFB+C

(w.r.t. τ) isnotsymmetric.

Proof. IfthedistributionfunctionF ofanoperator(w.r.t.τ)satisfies,forsome0= λ0< λ1< λ2< λ3/2, the inequalitiesF+i)− F (λi)≥ 4 for i= 0,1,2,F+2)≥ τ(1)− 3,F (λ3)< τ(1), then F cannotbe symmetric.Infact,supposethatF is(α,β)−symmetricforsome0≤ α ≤ β,andputδ := α + β.Forδ < λ3 onehasF+(δ)≤ F (λ3)< τ(1), contradicting(5).Ontheotherhand,ifδ≥ λ3,then

F(δ)+i)− F(δ)+i−1) =

F+i)− F+i−1) +

F (δ− λi)− F (δ − λi−1)

F+i)− F (λi) +

F (δ− λi)− F (δ − λi−1)

≥ 4 + F (δ − λ2)− τ(1)

≥ 4 + F+2)− τ(1)≥ 1,

fori= 0,1,2 and anyλ−1< 0.Consequently,F(δ)hasatleastthreejumps,soittakesonmorethanthree values,contradicting(7).ThusF isnot(α,β)-symmetric.

Putnow B :=3

i=0λiEi,where Ei aremutuallyorthogonalprojectionsfrom A withsum1Asuchthat τ(E0),τ(E1),τ(E2) ≥ 5 and τ(E3) = 2, with λi as above, and assume additionally that λ3 < 1, so thatB < 1.The operatorB + C haseigenspaces Ei(H) for eigenvalues λi, with Ei ≥ Ei∧ (supp C), for i = 0,1,2,3. Hence τ(E0),τ(E1),τ(E2) ≥ 4,τ(E3) ≥ 1 and FB+C+ i)− FB+Ci) ≥ 4 for i = 0,1,2,FB+C+ 3)− FB+C3)> 0.Moreover,byLemma4.10appliedtoτ, FB+C+ 2)≥ τ(1)− (τ(E3)+ τ(supp C)) ≥ τ(1)− 3, so thatthe first partof the proof applies and, consequently, B has the desired properties. 

Corollary 4.16.There existsan operator B ∈ A+ satisfying B< 1 and thefollowing condition: forany operatorC∈ Ah with τ (supp C)≤ 63, thedistributionfunctionof B + C (w.r.t.τ ) isnotsymmetric.

Proof. Putτ = (1/63)τ and build B forτ as inLemma4.15. Forany C with τ (supp C)≤ 63, we have τ(supp C)≤ 1,sothatFB+C is notsymmetric. 

Lemma 4.17.There is C ∈ A+ satisfying τ (supp C) < 1 and the following condition: for any operator B ∈ Ah with− · 1A≤ B≤ (1− )· 1A forsome ∈ [0,1],thedistributionfunctionF ofB+ C (w.r.t.

τ ) isnotsymmetric.

Proof. Define C :=3

i=0λiEi, where λ0 = 0,λ1 = 2, λ2 = 4 and λ3 = 11, and where Ei are mutually orthogonal projections from A with sum 1A satisfying τ (E1+ E2+ E3)< 1 and τ (Ei)> τ (E3)> 0 for i = 0,1,2. ByLemma4.10, for any B ∈ A+ with B≤ 1, the distributionfunction F := FB+C of the operatorB + CsatisfiesF+i+ 1)≥ τ(1)−τ(Ei+1+· · ·+E3)= τ (E0+· · ·+Ei) fori= 0,1,2,3 (anempty sumisthezerooperator).ByLemma4.6,itsatisfiesF (λi)≤ τ(E0+· · · + Ei−1) fori= 0,1,2,3.Hence,for anoperatorB as inthestatementofourlemma, wecantakeB := B+ · 1A, andthen thedistribution functionFsatisfiesF(t)= F (t+ ),sothatF +i+1− )≥ τ(E0+· · ·+Ei),Fi− )≤ τ(E0+· · ·+Ei−1) fori= 0,1,2,3.Thuswehave

(14)

F(t) =

⎧⎪

⎪⎪

⎪⎪

⎪⎪

⎪⎪

⎪⎩

0 for t∈] − ∞, − ] τ (E0) for t∈]1 − , 2 − ], τ (E0+ E1) for t∈]3 − , 4 − ], τ (1)− τ(E3) for t∈]5 − , 11 − ], τ (1) for t∈]12 − , ∞[.

(22)

SupposethatF is(α,β)-symmetricforsome0≤ α ≤ β,andletδ := α + β.Ifδ < 11− ,thenF +(δ)≤ F(11− )< τ (1).Ifδ≥ 11− ,then,foranyt≤ 6,F (δ)(t)= F(t)+F +(δ−t)∈ [F(t)+F +(5− ),F(t)+ τ (1)]⊆ [F(t)+ τ (1)− τ(E3),F(t)+ τ (1)]. Wehavegot F (δ)(t0)< F (δ)(t1)< F (δ)(t2)< F (δ)(t3) for arbitrarily chosen t0 ≤ − ,1 < t1 ≤ 2− ,3 < t2≤ 4− ,5− < t3 ≤ 6, using τ (E3)< τ (Ei) for i= 0,1,2.Thus,foranyδ∈ R,eitherF +(δ)< τ (1) orF (δ)takesonmorethan3 values,whichcontradicts (7). 

Corollary 4.18.ThereisanoperatorC∈ A+ satisfying τ (supp C)< 1 and thefollowingcondition:forany operator B∈ Ah with −1· 1A≤ B ≤ 66· 1A,thedistribution functionofB + C is notsymmetric.

Proof. Take C := 67C, where C is the operator from Lemma 4.17, used with = 1/67. Then, for any B ∈ Ahwith−1· 1A≤ B ≤ 66· 1A,wehaveforB := (1/67)B thatFB+C isnotsymmetric,sothatFB+C is notsymmetric,either. 

Lemma 4.19.Put A:= B + C + 4E1+ 21E2,where E1,E2∈ Proj A with E1⊥ E2,τ (E1)= 16,τ (E2)= 4, and where B and C are operators from Corollaries 4.16 and 4.18, respectively. Whatever the choice of projection R∈ A andγ∈ R, thedistributionfunctionof A+ γR is notsymmetric.

Proof. IForR suchthatτ (R)≤ 42 (andanyγ∈ R)wehaveτ (supp(C + 4E1+ 21E2+ γR))≤ τ(supp C)+ τ (E1)+ τ (E2)+ τ (R)< 1+ 16+ 4+ 42= 63,andCorollary 4.16togetherwith thedefinitionofB imply thatthedistributionfunctionof A+ γR isnotsymmetric.

II For −1 < γ≤ 44, we have−1A ≤ B + 4E1+ 21E2+ γR≤ 66· 1A. Corollary 4.18implies thatthe distributionfunctionofA+ γR = C + (B + 4E1+ 21E2+ γR) isnotsymmetric.

IIIForγ≤ −1 andτ (R)> 42 theoperatorA+ γR isnotpositive.Infact,τ (supp(C + 4E1+ 21E2)) τ (supp C)+ τ (E1)+ τ (E2)= 1+ 4+ 16< τ (R).Hence,for 0 = ξ ∈ (R ∧ (supp(C + 4E1+ 21E2)))(H), we have(A+ γR)ξ,ξ=Bξ,ξ+ γξ2≤ (B+ γ)ξ2< (1+ γ)ξ2< 0.

ThusFA+γR(0)> 0,whichbyRemark4.3(4) meansthatA+ γR isnotsymmetric.

IVForγ > 44 andτ (R)> 42,thedistributionfunctionoftheoperatorA+ γR isnotsymmetric.Infact, itsatisfies theassumptionsofCorollary4.13,sowe canuseLemma4.14. 

It should be noted that if aself-adjoint operator A cannotbe written as a real linear combination of three projections,itcannotbewrittenas acomplexlinearcombinationofthreeprojections,either.Infact, if A = αP + βQ+ γR with α,β,γ ∈ C, then A = (1/2)(A+ A) = (α)P + (β)Q+ (γ)R. Hence, Theorem 4.20, Corollaries 4.21 and 4.22, as well as Theorem 5.3 of the next section, hold for arbitrary combinations ofprojections.

Theorem4.20.LetA beaσ-finitetypeII1 algebrawithafaithfulnormaltracialstateτ0.Forany 0< δ ≤ 1 there exists anoperator A∈ A+ with τ0(supp A)≤ δ such that A isnot areal linear combination of three projections from A.

Proof. Put τ := (1071/δ)τ0. We will apply Lemma 4.19 with the trace τ , and show that the operator A defined there cannot be of the form αP + βQ+ γR, whatever α,β,γ ∈ R and choice of projections P,Q,R∈ A. Infact:

Cytaty

Powiązane dokumenty

Karol Cwalina and Tomasz Schoen [1] have recently proved the following conjecture of Andrzej Schinzel [4]: the number of solutions of the congruence.. a 1 x

Karol Cwalina and Tomasz Schoen [1] have recently proved the following conjecture of Andrzej Schinzel [4]: the number of solutions of the congruence.. a 1 x

Essentially we follow here the idea of lifting the strongly convergent Cher- noff approximation formula to operator-norm convergence [9, 11], whereas majority of results concerning

In this paper a horizontal lift V of a linear connection V on a manifold M into the total space FM ot the bundle of linear frames JT : FM —» M, in a way.similar to that of K.Yano,

In this subsection we are going to show that in the radix case it suffices to present the best possible upper bound of the order of f for obtaining the best possible order of

This note contains the representation theorem of a bounded linear functional in a subspace of a symmetric space made of functions with absolutely continuous

Similar result for linear regression and classification for any algorithm, which maintains its weight as a linear combination of instances [Warmuth &amp; Vishwanathan, 2005;

In the case of arbitrary ζ we use the same arguments based on the obvious relativization of Lemma 1.. General version of the Nadel’s theorem. We assume that the reader is familiar