• Nie Znaleziono Wyników

Robust unit commitment with dispatchable wind power

N/A
N/A
Protected

Academic year: 2021

Share "Robust unit commitment with dispatchable wind power"

Copied!
10
0
0

Pełen tekst

(1)

Delft University of Technology

Robust unit commitment with dispatchable wind power

Morales-España, Germán; Lorca, Álvaro; de Weerdt, Mathijs M.

DOI

10.1016/j.epsr.2017.10.002

Publication date

2018

Document Version

Final published version

Published in

Electric Power Systems Research

Citation (APA)

Morales-España, G., Lorca, Á., & de Weerdt, M. M. (2018). Robust unit commitment with dispatchable wind

power. Electric Power Systems Research, 155, 58-66. https://doi.org/10.1016/j.epsr.2017.10.002

Important note

To cite this publication, please use the final published version (if applicable).

Please check the document version above.

Copyright

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons. Takedown policy

Please contact us and provide details if you believe this document breaches copyrights. We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.

(2)

ContentslistsavailableatScienceDirect

Electric

Power

Systems

Research

jou rn a l h om ep a g e :w w w . e l s e v i e r . c o m / l oc a t e / e p s r

Robust

unit

commitment

with

dispatchable

wind

power

Germán

Morales-Espa ˜

na

a,∗

,

Álvaro

Lorca

b

,

Mathijs

M.

de

Weerdt

a

aAlgorithmicsGroup,DepartmentofSoftwareTechnology,DelftUniversityofTechnology,2628CDDelft,TheNetherlands

bDepartmentofElectricalEngineering,DepartmentofIndustrialandSystemsEngineering,UCEnergyResearchCenter,PontificiaUniversidadCatólicade

Chile,Vicu˜naMackenna4860,Macul,Santiago,Chile

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received25January2017

Receivedinrevisedform4September2017 Accepted1October2017 Keywords: Stochasticoptimization Robustoptimization Dispatchablewind Windcurtailment Unitcommitment

a

b

s

t

r

a

c

t

Theincreasingpenetrationofuncertaingenerationsuchaswindandsolarinpowersystemsimposes newchallengestotheunitcommitment(UC)problem,oneofthemostcriticaltasksinpowersystems operations.Thetwomostcommonapproachestoaddressthesechallenges—stochasticandrobust opti-mization—havedrawbacksthatrestricttheirapplicationtoreal-worldsystems.Thispaperdemonstrates that,byconsideringdispatchablewindandaboxuncertaintysetforwindavailability,afullyadaptive two-stagerobustUCformulation,whichistypicallyabi-levelproblemwithoutermixed-integer pro-gram(MIP)andinnerbilinearprogram,canbetranslatedintoanequivalentsingle-levelMIP.Experiments ontheIEEE118-bustestsystemshowthatcomputationtime,windcurtailment,andoperationalcosts canbesignificantlyreducedintheproposedunifiedstochastic–robustapproachcomparedtobothpure stochasticapproachandpurerobustapproach,includingbudgetofuncertainty.

©2017TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Inrecentyears, higherpenetrationof variableanduncertain generation(e.g.,windandsolarpower)haschallengedindependent systemoperators(ISOs)tomaintainareliableandstilleconomical operationofpowersystems.Toachievethisandtobepreparedfor futuredemand,ISOsdecideaboutstartupandshutdownschedules ofgeneratingunitssometime(typicallyaday)upfrontbysolving theso-calledunitcommitment(UC)problem,whosemain objec-tiveistominimizeoperationalcostswhilemeetingpowersystem constraints.Theseoperationalcostsarecommitment-relatedcosts, and dispatchcosts ofboth thermal and wind generatingunits, wherethelattercanpresentnegativecost(orbids)[1].High lev-elsofvariableanduncertaingenerationsignificantlyincreasethe uncertaintyinthenetforecastedfuture demand,increasingthe differencebetweena fail-safesolutionandaneconomical solu-tion,andthisdilemmatherebyincreasesthecomplexityoftheUC optimizationproblem[2].

ThetwomainapproachesfordealingwiththeuncertaintyinUC problemsarestochasticandrobustoptimization.Stochastic opti-mization(SO)[2–5]typicallyconsistsofminimizingexpectedcosts overa setof possiblescenariosfor uncertainparameters. How-ever,SOcanbecomeimpracticalunderhigh-dimensionalproblems

∗ Correspondingauthor.

E-mailaddress:g.a.moralesespana@tudelft.nl(G.Morales-Espa ˜na).

mainlybecauseofaheavycomputationalburden[2].Additionally, themaingoalforISOsistoensureasafeoperationofthesystem,and SOdoesnotgivesufficientguaranteesonmeetingtheconstraints inrealizationsoftheuncertainty.Moreover,SOrequiresa large numberofscenariostobereliableandtheirassociatedprobability distributionishardtoobtain.

In robust optimization(RO) [6–10]the costsare minimized maintainingfeasibilityunderallpossiblerealizationsofuncertain parameterswithinsomespecifieduncertaintyset.Consequently, theresulting schedules couldturn out tobe over-conservative under a large uncertainty set: although the probability of the worst-caseevent is virtually nil, thechosen scheduleis robust forthisevent,andhencemuchmorecostlythanwhatisactually required.Onewaytoreduceover-conservatismistousea bud-getofuncertainty, whichmodelsa smalleruncertaintysetin a flexibleway[6].ArobustUC typicallyrequiressolvingabilevel optimizationproblem,where theouterlevelis amixed-integer linearprogram(MIP),andtheinnerlevelisusuallyabilinear pro-gram,whichisnon-deterministicpolynomial-timehard(NP-hard) [6].Findingoptimalrobustsolutionsintime forlarge-scale sys-temsisstillamajorchallenge;inparticular,solvingtherespective bilinearproblemsusuallyrequiressub-optimalheuristicmethods orcomputationallyexpensiveexact methods[6,11–14].Further, thisbilinearproblemistypicallysolvedmultipletimesaspartof aniterativealgorithmsuchascolumn-and-constraintgeneration [11],whichalsorequiressolvingadifficultmasterproblem

multi-https://doi.org/10.1016/j.epsr.2017.10.002

(3)

pletimes.Thiscomputationaldifficultyhighlightsthechallengeof creatingefficientmethodstofindeffectiverobustUCsolutions.

Recently,theso-calledunifiedstochastic–robust(SR) optimiza-tionapproach hasbeenproposedtostrike avery goodbalance betweenrobustnessandefficiency[7].Thisapproachincreasessafe operationofthesystemwhilemitigating theover-conservatism ofrobustoptimization.However,sincethisformulationcombines thestochasticformulation(whichrequiresoptimizationovermany scenarios)withthebilinearrobustformulation,thecomputational challengeisevenstronger.

Thispaperconsiderswinddispatchflexibilitybyallowing cur-tailmentintheUCformulation.Invariouspreviousworks,wind powerhasalsobeenmodeledasdispatchablebyallowingwind curtailmentinUCorexpansionplanningmodels[1,12,15–19].In thispaperwewillexploitsomeconsequencesthatareobtainedin therobustUCproblemwhenwindpowerisdispatchable,which willleadtoverycomputationallyefficientformulations.

ThispaperrisesuptovariouscurrentchallengesintheUC prob-lembyprovidingthefollowingcontributions:

1.Under thecase inwhich wind poweravailabilityis modeled throughaboxuncertaintyset,andassumingthatwindpower canbecurtailed,weprovethattheusuallynon-linearand NP-hard [6] secondstageof a fullyadaptive robust UC problem hasan equivalentlinear program (LP) representation, which solvesinpolynomialtime.Consequently,inthiscasethefully adaptive two-stage robust UC formulation can be translated intoanequivalentsingle-levelMIPproblem.Thisallowssolving realistically-sizedprobleminstancesveryclosetoglobal opti-malitysignificantlyfasterthanthetraditionalbi-levelrobustUC. Whencomparedwithatypicalrobustformulationbasedon bud-getofuncertainty,theproposedformulationprovidessimilar resultsbutsolvessignificantlyfaster.

2.Wealsoshowthatconsideringdispatchablewindcancontribute toefficientlysolvinga unifiedstochastic–robustoptimization problem[7]bylinkingthewinddispatchbetweenthestochastic andtherobustparts.Thus,theproposedSRformulationprovides acheaperoperation,higherrobustness,lesswindcurtailment, whilesimultaneouslyhavinglowercomputationalburdenthan atypicalROformulationbasedonbudgetofuncertainty.Also, theSRneedsveryfewscenariostoprovideverysimilarresults toascenario-richSO,hencenaturallyavoidingthehigh com-putationalburdenassociatedtoconsideringalargenumberof scenarios.

Theremainderofthispaperisorganizedasfollows.Section2 detailstheproposedrobustUCreformulationwithdispatchable wind,andshowshowtocomplementstochasticUCby incorporat-ingtherobustpart.Section3providesanddiscussesresultsfrom severalexperiments,whereacomparisonbetweenrobust, stochas-ticandunifiedUCformulationsismade.Finally,mainconclusions aredrawninSection4.

2. Mathematicalmodelsandstructuralresults

Thissectionformulatesthemathematicalmodelsandpresents asetofresultsthatexploitthestructureoftherobustUCwith dis-patchablewind.Section2.1definesthisproblem,andSection2.2 presentsageneralstructuralresultthatcharacterizesthesubsetof elementsoftheuncertaintysetthatcanachievetheworstcase. Sec-tion2.3studiesthisstructuralresultunderthewidelyusedbudget andboxuncertainty sets.Finally,Section2.4 studiesthe conse-quencesofthesestructuralresultsintheunifiedstochastic–robust UC.

2.1. RobustUCwithdispatchablewind

Weextendthe3-binarysettingUCformulation[20]toarobust UCwithdispatchablewind.ThecompactformofthisrobustUCis expressedas min x∈X



bx+max ∈ min (p,w)˝(x,)



cp+dw



(1) where X=



x∈{0,1}3|G||T|: Axa



(2) and ˝(x,)={(p,w): Ep+Fwg+Gx (3a) w}. (3b)

Here,xisavectoroffirst-stagedecisionsincludingthebinary on/off,start-upandshut-downdecisionsofconventional gener-ators.These decisionsare constrained throughset Xdefined in (2),whichincludesthelogicalrelationsbetweenon/off,start-up andshut-downvariables,aswellasminimumupanddowntimes. In(2),GisthesetofconventionalgeneratorsandTisthesetof time periods.Vector contains alluncertainparameters in the problem, correspondingtotheavailabilityof windpowerat all windfarmsandtimeperiods,i.e.,=



it:i∈W,t ∈T



,where itistheavailablewindpoweratbusiandtimet,andWisthe

setofbusescontainingwindproduction.Theclosedsetisan uncertaintyset thatdescribestherealizationsof. Vectorsp,w aresecond-stagepowerdispatchdecisionsforconventional gen-eratorsandwindfarms,respectively,i.e.,p=



pgt:g ∈G,t ∈T



andw= (wit:i∈W,t ∈T),wherepgtandwitarethepower

out-putofconventionalgeneratorgandofwindfarmsatbusi,attime t, respectively. These power dispatchdecisions are constrained through set˝(x,) definedin (3).In ˝(x, ),Eq. (3a)involves dispatch-relatedconstraintssuchaspoweroutputboundsfor con-ventionalgenerators,nonnegativityofpoweroutputatwindfarms, rampingconstraints, transmissionlinecapacity constraintsand energybalanceconstraints.Eq.(3b)representstheupperboundfor poweroutputatwindfarms,dependingonavailablewindpower, thatis,wit≤itforalli,t.Finally,theobjectivefunctionofproblem

(1)consistsofminimizingthesumofno-load,start-upand shut-downcosts,givenbybx,andworst-casedispatchcosts,givenby theinnermax-minproblem,whereccontainstheproductioncosts ofconventionalgeneratorsandwheredistheproductioncostsof windfarms,whichisusuallyzeroornegativerepresentingnegative bids(resultinginwindcurtailmentpenalization)[1].

TherobustUCproblem(1)isanadaptive robustoptimization problem[21].Inthisproblem,pandwareadaptivedecision vari-ableswhosevaluescandependontherealizationofthevectorof uncertainparameters,whilexisa“here-and-now”decisionthat istakenbeforeisrealized.Thisadaptiverobustframeworkforthe UCproblemwasfirstproposedin[6,22,23].Thissectionfocuseson studyingtheconsequencesofconsideringwindpowertobe dis-patchable,thatis,thatwindpoweroutputwitcantakeanyvalue

between0MWanditsavailabilityit.Inwhatfollows,weprovide

ageneralresultthatcharacterizesasubsetoftheuncertaintyset thatnecessarilycontainstheworst-caserealizationof.

2.2. Worst-caseisachievedinthesetofminimalelements Theinnermax–minproblemintherobustUC(1) max

∈ (p,w)min∈˝(x,)



cp+dw



(4) hasa specialstructure:theonly dependenceof ˝(x,) on is throughconstraint(3b),namely,w.Wecanusethisstructure

(4)

tocharacterizeasubsetofthatincludestheworst-case.Weneed thefollowingdefinition.Thesetofminimalelementsofisgiven by

ME()={ ∈: ∈ s.t. ϕandϕ=/} (5) thatis,ME()correspondstotheelementsofforwhichthere isnootherelementinthatislessthanorequaltoinall com-ponentsofthevector,andstrictlylessinatleastone.

AnimportantpropertyofME()thatweneedisgiveninthe followinglemma:

Lemma 1. Suppose that *\ME(), then there exists ˆ

ME()suchthat ˆ∗.

Proof. Define the subset S of all elements ϕ∈ suchthatϕ∗andϕ=/ ∗. This set is nonempty by defini-tionof*.Sinceisclosed,Sisalsoclosed,thusME()isalso

nonempty. Next, consider an element ˆ ∈ME(S). It thus holds that ˆ∗.Toshowthat ˆ ∈ME(),supposethereisanelement ϕ∈suchthatϕ≤ ˆandϕ= ˆ./ Thenϕ∈S,becauseϕ≤ ˆ∗. However,this contradictsthat ˆ ∈ME(S). Therefore,thereisno suchϕandthus ˆ ∈ME().䊐

Oneimportantresult thatleadstosignificantcomputational savingsisthattheworst-caseintherobustUCwithdispatchable wind(1)hastobewithinthesetofminimalelementsofthe uncer-taintyset.Belowweprovethismainstructuralresult:

Proposition2. Thefollowingequalityholds: max ∈ min (p,w)˝(x,)



cp+dw



= max ∈ME() min (p,w)˝(x,)



cp+dw



. (6) Proof. Definehere

f()= min

(p,w)˝(x,)



cp+dw



. (7a) SinceME()⊂itfollowsthat

max

∈f()∈maxME()f(). (7b)

Thus,weonlyneedtoshowthereverseinequality.Let*be

theoptimalsolutionof f(∗)=max

∈

f(). (7c)

If*ME()thenwehave

max

∈f()=f(

) max

∈ME()f(). (7d)

Otherwise,if*/ME(),byLemma1thereexists ˆME()such

that ˆ∗.Thisdirectlyimpliesthat˝(x, ˆ)˝(x,∗)duetothe definitionof˝(x,·).Consequentlygiventhedefinitionoff(·)we havethatf(ˆ)≥f(∗).Thus

max ∈

f()=f(∗)≤f(ˆ)≤ max ∈ME()

f() (7e)

whichcompletestheproof.䊐

2.3. Resultsforthebudgetandboxuncertaintysets

ThestructuralresultinProposition2isnotveryusefulifwe cannotcharacterizeME()inexplicitform.Fortunately,forthe

mostwidelyuseduncertaintyset,thebudgetuncertaintyset,this ispossible.Thebudgetuncertaintysetisdefinedas

bud







=



: ˜ it− ˆit≤it≤ ˜it+ ˆit

i∈W,t ∈T

i∈W |it− ˜it| ˆit ≤t

t ∈T

(8)

where ˜itisthenominalavailablewindpoweratbusi,timet, ˆit

isthealloweddeviationofavailablewindpowerfromitsnominal value,and t ∈[0,|W|]isthebudgetofuncertaintyattimet ∈T,

determiningthesizeoftheuncertaintysetandthusthe conserva-tivenessoftherobustUC(1).

Now,letusconsiderthefollowingset ˆbud,whichweshowis

exactlythesetofminimalelementsofbud:

ˆ bud







=



: ˜ it− ˆit≤it≤ ˜it

i∈W, t ∈T

i∈W it− ˜it ˆit =−t

t ∈T

. (9)

Thisisformallyshownasfollows.

Proposition3. Thefollowingholds:ME(bud)= ˆbud.

Proof. Let us first show that ˆbudME(bud). Consider 

ˆ

bud.Supposethatthereexistsϕbudsuchthatϕandϕ=/ .

Thatis,theremustbesomei ,t suchthatϕi t <i t .Then,wemust

have

i∈W ϕit − ˜it ˆit <

i∈W it − ˜it ˆit =−t (10a)

whichimpliesthat

i∈W

|ϕit − ˜it |

ˆit

>t (10b)

whichisacontradiction,sinceϕ∈bud.Therefore,thereisnoϕ

budsuchthatϕandϕ=/ ,whichmeansthatME(bud).

i∈W

it − ˜it

ˆit

>−t (10c)

• Case1:≤ ˜.Selecti suchthati t > ˜i t − ˆi t anddefine

=max

˜i t − ˆi t , ˜i t − ˆi t

t +

i=/i it − ˜it ˆit

. (10d) • Case2:= ˜./ Selecti suchthati t > ˜i t anddefine= ˜i t .

Lemma4. Thefollowingequalityholds: max ∈bud (p,w)min˝(x,)



cp+dw



= max ∈ ˆbud min (p,w)˝(x,)



cp+dw



. (11) Atthispoint,itisimportanttounderstandthecomputational consequencesoftheaboveLemma.Howmuch“simpler”is ˆbud

thanbud?Onewaytolookatthisisthroughthenumberof

vari-ablesandconstraintsrequiredtorepresentthesepolyhedralsets. Wecanfirstobservethattoformulate ˆbudwerequire|W|T

vari-ables,2|W|T inequalityconstraints,andTequalityconstraints.By removingequalityconstraints,wethenrequire|W|T−Tvariables, and 2|W|T inequality constraints.Now,torepresentthebudget

(5)

uncertaintysetbudwecanuseanextendedformulationto

han-dletheabsolutevalues.Infact,budistheprojectionofasetwith

2|W|Tvariablesand4|W|T+Tinequalityconstraints.Inshort,bud

requiresatotalof6|W|T+T variablesandinequalityconstraints, while ˆbudonlyrequiresatotalof3|W|TT .

Finally,animportantspecialcaseariseswhenthebudget uncer-taintysetcorrespondstoa“box”set,i.e.,t=|W|forallt.Inthis

case,thesetofminimalelementsofthebudgetuncertaintyset containsasingleelementandtheoverallmax-minproblem con-sequentlycollapsestoa singleminimization problem.The next theoremsummarizesthisresult.

Theorem5. Ift=|W|forallt,then ˆbud=



˜ − ˆ



andtherobust UCwithdispatchablewind(1)becomes

min x∈X



bx+ max ∈bud(|W|)(p,w)min∈˝(x,)



cp+dw



= min x∈X,(p,w)˝(x,˜−ˆ) bx+cp+dw. (12)

Proof. Theonly ∈ ˆbudsatisfying(9)when

t=|W|foralltis

givenby= ˜− ˆ.TherestfollowsdirectlyfromLemma4.䊐 Theimportanceofthisresultliesinthefactthatavery diffi-cultmin-max-minprobleminthegeneralcasebecomesamuch simplersingle-levelMIPproblemundertheassumptionsthat(i) windpowerisdispatchable,andthat(ii)theuncertaintysetisa boxset.Thismeansthatundertheseassumptions,itisnot neces-sarytoimplementcomputationallydifficultalgorithmstosolvethe robustUC,sinceitcanbedirectlysolvedbyMIPsolvers.

2.4. Consequencesfortheunifiedstochastic–robustUC

Theunifiedstochastic–robustUCapproachwasfirstproposedin [7].Inthispaper,weexploretheconsequencesofthespecial struc-tureofwinddispatchabilityintheproblem,toshowthatunderthis settingaverypowerfulandefficientstochastic–robustUCapproach isobtainedwithjustafewscenarios,exploitingthestructureof themax-minproblemrepresentingworst-casedispatchcosts.We thenproposeaconstraint thatrelatesthestochasticandrobust partscreatingaformulationwheretherobustpartprovides robust-nesstothedispatchscenariosofthestochasticpart.Althoughthis constraintcanincreasetherobustnessofaunifiedUCitcanalso increaseoperationalcosts.Section3.3.2discussestheeffectsofthis extraconstraintintheunifiedUCformulations.

Theunifiedstochastic–robustUCisdefinedhereas min x∈X {b x+(1˛)max ∈ min (p,w)˝(x,)



cp+dw



+˛ S

s=1 s min (ps,ws)∈˝(xs,s)



cps+dws



} (13)

wheretherearetwocharacterizationsofuncertaintyforavailable windpower:theuncertaintyset,asinproblem(1),andS sce-narioss,withrespectiveprobabilities

s.Now,forthestochastic

part,psandwsarethedispatchdecisionsofthermalandwindunits

forscenarios,respectively.Theobjectiveistominimizethesumof commitmentcostsbx,andaweightedcombinationofworst-case dispatchcost(withweight1−˛)andexpectedcost(withweight ˛),whereparameter˛∈ [0,1].

Motivatedbythefactthattheworst-casewinddispatchisin thesetofminimalelements,inthispaperweproposetorelatethe dispatchofthestochasticandworst-casescenariosas

ws≥w

s∈S (14)

which guarantees that all the wind dispatch scenarios for the stochasticpartaregreaterthanorequaltotheworst-casewind

dispatchoftherobustpart.Thepurposeofcombiningtherobust andstochasticcomponentsofthemodelinthiswayisensuringthat thestochasticsolutionisindeed“protected”bytherobustsolution. Withthisapproach,anyuncertainwindrealizationabovewis pro-tectedsince,intheworst-case,itcanbecurtailedtow.Thisrelation betweenthestochasticandrobustpartsthrough(14)can signifi-cantlyimprovetherobustnessofthemodel,asshowninSection 3.3.2.

3. Computationalexperiments

Tovalidatetheproposedformulations,wecomparethe perfor-manceofthefollowingnetwork-constrainedUCmodels:

RO:TherobustUCformulationunderboxuncertaintyset(see (12)inTheorem5)whereitslevelofconservatismisadjustedby shrinkingtheuncertaintyset.Forthis,weintroducetheparameter tocontrolthelevelofconservatism:[˜(ˆ), ˜+(ˆ)].Sincefor RO,theworst-casescenarioliesonthelowerboundofthe uncer-taintyset,thenbychangingfrom0to1theworst-casescenario changesfrom ˜ to(˜− ˆ).

ROB:TherobustUCformulation(1)includingbudgetof uncer-tainty(8).SimilarlytoRO,thelevelofconservatismiscontrolledby ∈ [0,1],thusexpressingthebudgetofuncertaintyast=|W|.

Thetwo-leveloptimizationproblemissolvedusinga column-and-constraintgenerationalgorithm[11]andthealternatingdirection method[13,14].See[13,11]forimplementationdetailsof these algorithms.

SO:ThestochasticUCformulation(equivalenttothesecondpart of(13)).

SR:Theproposedunifiedstochastic–robustUCformulation(13) and(14),whereROisusedfortherobustpart.

SRB:Theunifiedstochastic–robustUCformulation(13)and(14), whereROBisusedfortherobustpart.

Inthissection,SRandSRBinclude(14)sinceitimprovestheir robustness,asfurtherdiscussedinSection3.3.2.

Afterdetailingtheexperimentalsetup,thissectionstudiesthe impactofdifferentscenariosonthestochasticandunified formu-lations.ForSRandSRB,wethenestablishanoptimalweight˛in theobjectivefunction.Alsoweanalyzetheeffectofchangingthe penaltyforwindcurtailment.Finally,wecomparetheperformance oftherobustandunifiedformulationswhenchangingtheirlevel ofconservatism.

3.1. Experimentalsetup

Asacasestudy,weusetheIEEE118-bustestsystem,which wasadaptedtoconsiderstartupandshutdownpowertrajectories [24].Thissystemhas186transmissionlines,54thermalunits,91 loads,and threebuseswithwindproduction.The penaltycosts fordemand-balanceandtransmission-limitsviolationsaresetto 10000 $/MWhand 5000$/MWh [25], respectively. In addition, wind bidsaresettod=−300$/MWh,abouttentimes the aver-age wind bid in somemarkets[26,1], tosimulatecases where curtailmentisundesired.Althoughtheoptimizationproblemsare solvedusingdw,thefinalvaluesshownhereareobtainedusing d(w)toonlyreflectcurtailment(penalization)costs[1].

All experiments are solved using CPLEX 12.6.3with default parametersandarerunonanIntel-Xeon3.7-GHzpersonal com-puterwith16GBofRAMmemory.Allinstancesaresolveduntil theyreachanoptimalitytoleranceof5×10−4.

TocomparetheperformanceofthedifferentUCmodels,we make a clear distinction between the scheduling and (out-of-sample)evaluationstages.Theschedulingstagesolvesthedifferent UC modelsand obtains theircommitment policyusinga small representativenumberofwindscenarios(upto50)forthe

(6)

stochas-Fig.1.Windproductiononbus69.Exampleof30generatedscenariosforthe stochasticformulations.Uncertaintysetdefinedby98.8%confidencelevel.The1000 out-of-samplescenariosusedfortheevaluationstageareshownonthebackground.

ticformulations,anduncertaintysetsfortherobustformulations. Theevaluationstage,foreachfixedcommitmentpolicy,solvesa network-constrainedeconomicdispatchproblemrepetitivelyfora setof1000out-of-samplewindscenarios(seeFig.1),thus obtain-inganaccurateestimateoftheexpectedperformanceofeachUC policy.

Togeneratethescenarios,weassumethatwindproduction fol-lowsa multivariatenormal distribution, which istruncated for nonnegativevalues.FortherobustformulationsRO,ROB,SRand SRB, theuncertainty setis defined bya nominalvalue ˜ and a deviation ˆ correspondingto98.8%confidencelevel(2.5standard deviations).For thestochasticformulationsSO, SR andSRB, the scenariosaregeneratedfollowingapredictednominalvalueand volatilitymatrix.Tooptimallydistributethesamplesandexplore thewholeexperimentalregion,weemployLatinHypercube Sam-pling(LHS)[18].Thatis,agivennumberofscenariosisgenerated withminimalcorrelationandmaximalmutualdistance[27].Fig.1 showsanexampleofsuchasetofthescenariosgeneratedforone ofthethreebusescontainingwindproduction.

3.2. Robust,stochastic,andunified

Table1showsanoverviewoftheproblemsizeforRO,andfor SOandSRfor1,5and30scenarios.ThesizesofROBandSRBarenot listedinTable1sincetheyarenotconstant.Theystartwithaninitial sizesimilartoROandSR,respectively,buttheirmasterproblems increasethroughtheiterationsofthecolumn-and-constraint gen-erationalgorithm[11,13].Notethatforagivennumberofscenarios, SRisslightlylargerthanSObecauseSRaddsanextrascenario rep-resentingtheworst-casescenario(sincetheworst-casescenarioof SRisunique,asshowninTheorem5).Despitethenumberof scenar-ios,alltheUCshavethesamenumberofbinaryvariables,because theyallobtainthesamenumberofbinary(first-stage)decisions.

Inthissection,wesetthelevelofconservatism()ofRO,ROB, SRandSRBat0.6,0.5,0.6and0.4,respectively.Becausethe formu-lationsperformthebestatthesevaluesof,asdiscussedinSection 3.3.Similarly,wesettheweight˛ofSRandSRBat0.9,asdiscussed inSection3.2.3.

3.2.1. Stochastic(SO)vs.robust(ROandROB)formulations

InTable2,weassesstheperformanceofthedifferentUCpolicies onsizeaspects.Fortheschedulingstage:(1)thefixedproduction costs(FxdCost[k$]),which includesnon-load,startupand shut-downcosts,and(2)thetimerequiredtosolvetheUCproblem(CPU Time[s]).Fortheevaluationstagewerecord(3)theaverageofthe

totalproductioncostsincludingthewindcurtailmentpenalization (AvgTC[k$]);(4)themaximumtotalcostofthe1000out-of-sample scenarios,representingtheworst-casescenario(WorstTC);(5)the totalaccumulatednumberofviolationsinbothdemand-balance andtransmission-limitsconstraints(#Viol);and(6)theaverage percentageofwindthatwascurtailed(%WCurt).

Wecanclearlyobservethat,first,thehigherthenumberof sce-narios,thebettertheSOperformance(lowerAvgTCandViol),as expected.Second,ontheonehand,thestochasticformulationSO using30scenariosguaranteesrobustness(Viol=0),andaSOwith ahighernumberofscenariospresentsasmallimprovementatthe expenseofhighercomputationalcost:from30to50scenarios,SO improvesAvgTCinlessthan0.01%andtakesmorethan2×longer tosolve.Ontheotherhand,therobustformulationsROandROB guaranteerobustnessbyonlyoptimizingfortheworst-case sce-nario,buttheyscheduletoofewreserves(lowerFxdCost)hencenot ensuringthathigherwindproductionlevelscouldbedispatched (WCurtwasaround10×largerthanSO).Therobustformulations ignorethepossibilityof optimistic(highwind)scenarios hence nottakingadvantageofthem.However,comparedwithSOwith 30scenariosandROB,theformulationROproposedinthispaper solvesmorethananorderofmagnitudefaster(above71×and13×, respectively).Furthermore,sinceROonlyconsidersonescenario, itsolvesinsimilartimeasSOwithonescenario,butROreduces theviolationstozero,lowerstheAvgTCandWorstTCby20.5%and 83.4%,respectively,althoughincreaseWCurtbymorethantwice. 3.2.2. Stochastic(SO)vs.unifiedrobust–stochastic(SR)

formulations

Table2showshowtherobustpartofSRdrasticallyimproves theperformanceofthestochasticformulationsSOregardlessof thenumberofscenariosused.Evenwhenveryfewscenariosare considered,SRpresentsasignificantlybetterperformancethanSO: forthecaseofoneandfivescenarios,SRpresentsnoviolations, insteadof698and191,acostreductionofmorethan24%and4%, andaworst-case(WorstTC)reductionofmorethan84%and71%, respectively.

Themostimportantpart,however,isthat,comparedwithSO, addingtheworst-casescenariointoSRcomesatalmostnoextra costsintermsofruntime(evenlowerinsomecases).

3.2.3. Unifiedrobust–stochasticformulations,SRvs.SRB

Forfiveormorescenarios,SRandSRBperformsimilarlyinthe out-of-sampleevaluation.SRBpresentsviolationswhenonlyone (thenominal)scenarioisconsidered,becausethelevelof=0.4is toolowtoproviderobustnessforthisone-scenariocase;however, fora=0.5,SRBwithonescenarioachieves0violations,anAvgTCof 769.39k$,aWorstTCof890.41k$,andaWCurtof0.34%.Although SRandSRBperformsimilarlyintheout-of-sampleevaluation,SR solvesmorethan6.8×fasterbecauseitcanbesolveddirectlyas single-levelMIPproblem,insteadofrequiringad-hocalgorithmsto solvethetwo-levelMIPproblemincludingabilinearinnerproblem. NumberofscenariosneededbySRandSRB.Unlikethestochastic SOformulation,whichneedsalargenumberofscenariosto guar-anteerobustness,thestochastic–robustformulationsSRandSRB arerobustandfewscenarioscanbeusedtoobtainagood perfor-mance.AlthoughSRandSRBusingonescenariopresentalready abetterperformancethanSOusing25scenarios,henceforth,we use5scenariosforthestochasticpartofSRandSRBsinceit fur-therdecreasesAvgTC,WorstTCandWCurt,andtheystillsolvein lessthanoneandfourminutes,respectively.Moreover,considering morethan5scenariosaddsaverylittleperformanceimprovement atahighcomputationalcost,e.g.,using10,tookmorethan3×and 2.7×longer,respectively.

ObjectiveweightsforSRandSRB.Weaimtoestablishthe opti-malbalancebetweenthecostsoftheworst-casecomponentand

(7)

Table1

ProblemsizecomparisonofUCformulations.

UC SC# Constraints Continuousvariables Binaryvariables Nonzeroelements

SO 1 15855 7128 6390 305938 5 56367 35640 6390 1413190 30 309567 213833 6390 8332689 RO 1 15855 7128 6390 305938 SR 1 26055 14256 6390 582985 5 66855 42761 6390 1689430 30 321848 220954 6390 8614565 Table2

ComparisonbetweendifferentUCformulations.

UC SC# Scheduling Out-of-sampleevaluation

FxdCost[k$] CPUTime[s] AvgTC[k$] WorstTC[k$] Viol# WCurt%

SO 1 54.02 14.9 1023.88 5793.01 698 0.40 5 65.09 38.0 805.63 3075.12 171 0.22 10 63.20 184.8 782.10 1971.05 86 0.23 15 62.89 277.0 782.16 1972.61 86 0.25 20 66.33 266.8 780.13 1973.04 86 0.16 25 65.04 460.8 772.68 1577.55 50 0.20 30 64.52 980.6 763.82 875.10 0 0.16 50 64.56 1971.2 763.79 875.05 0 0.16 RO 1 59.22 13.8 813.16 961.93 0 1.05 ROB 1 63.22 184.4 816.78 959.83 0 1.11 SR 1 60.13 20.2 769.76 891.64 0 0.34 5 66.48 50.9 765.86 883.49 0 0.21 10 62.08 161.9 765.41 884.51 0 0.21 15 62.91 139.0 764.88 882.15 0 0.22 20 65.65 289.6 764.47 876.23 0 0.14 25 64.73 554.8 764.43 880.02 0 0.15 30 68.82 570.9 764.42 879.2 0 0.14 50 66.98 1932.5 764.17 879.71 0 0.17 SRB 1 62.95 239.4 771.95 1190.16 18 0.36 5 65.94 233.9 765.34 883.30 0 0.17 10 63.74 654.8 765.23 882.41 0 0.17 15 65.01 940.9 765.04 880.61 0 0.14 20 65.61 1388.4 764.76 880.08 0 0.15 25 66.64 2557.4 764.56 877.53 0 0.14 30 66.34 3359.3 764.17 880.55 0 0.17 50 66.47 8705.4 763.92 880.33 0 0.17

Fig.2. Differentlevelsof˛forSRandSRBusing5scenarios.Uppergraph: Aver-agetotalcostsoverthe1000out-of-samplescenarios.Lowergraph:Averagewind curtailmentofthe1000scenarios.

theotherscenariosintheobjectivefunctionoftheSRandSRB for-mulations.Fig.2presentstheresultsofSRandSRBusing5scenarios

forobjectiveweight˛rangingfrom0(allweighttorobust)to1(all weighttostochastic).

Weobservethatas˛increases,theaveragetotalcostsdecreases. Thisisbecausetheproblembecomeslessconservativewhenthe robustpartofSRhasasmallerweight.Thesamebehaviorwas pre-viouslyobservedin[7].Similarly,windcurtailmentdecreasesas ˛increases,andbothSRandSRBachievetheirlowestvaluewhen ˛=0.9.Wealsoobservethatresultsarenotverysensitiveto˛:in therange[0.2,1]weseeadifferenceintotalcostslowerthan1.5%. ItisimportanttohighlightthatnoneoftheSRandSRBcases presentanyviolations,evenwhentherobustpartisignoredinthe objectivefunction(˛=1).Thisisbecausetheworst-casescenario isstillinthesetofconstraints,henceguaranteeingrobustness.

3.2.4. Windpenalization

Theapproachweputforwardinthispaperisenabledbywind curtailment. In somepowersystems, wind curtailmentmay be undesirable;however, violationsof thedemandbalanceand of transmission-capacitylimitsareevenworse.Theobjectiveofthis experimentistostudytheeffectofdifferentpenaltiesonwind cur-tailment,whichisequivalenttodifferentnegativevaluesofwind bids[1].

Fig.3showstheperformanceofthefollowingformulationsfor differentpenaltiesonwindcurtailment:therobustformulationsRO andROB,thestochastic–robustformulationsRSandRSBwith5 sce-narios,andthestochasticformulationsSO.IngeneralforagivenUC formulation,asthewindcurtailmentpenalizationincreases,wind

(8)

Fig.3.Effectofpenalizationsofwindcurtailment.

curtailmentdecreases.Consequently,weneedtoschedulemore resources(upanddownreserves)tobetteraccommodate differ-entwindrealizations.This,inturn,alsoincreasestheaveragetotal costs.

Whenwindcurtailmentisnotpenalized(zeropenalization)the UCapproachesaccommodatetheleastquantityofwind,hencethey alsocarrytheleastquantityofdownwardsreserves.Consequently, SOwith30scenariosreportedviolationsforthecaseinwhichthe penalizationofwindcurtailmentwassettozero.Therefore,the leastquantityofreserveswasinsufficienttoavoidviolations in theout-of-sampleevaluationstage.Surprisingly,whenwind cur-tailmentpenaltyisequaltozero,ROandROBobtaincurtailment andaveragecostssimilartothestochasticandstochastic–robust formulations.

The robust formulations RO and ROB present very simi-lar performance, but RO solves 17× faster. The stochastic and stochastic–robustformulationsalsopresentsimilarperformance toeachother,whereSOpresentslightlylowercostsforpenalties differentthanzero;however,SRsolvestheproblemsmorethan7× fasterthanSRB,andmorethananorderofmagnitudefaster(20×) thanSO.

Fornon-zerowind-curtailmentpenalties,ROandROBpresent thehighestcurtailment.Thisisaresultoftheirconservativepolicy, whichavoidsinfeasiblesolutionsbutcannotguaranteethatahigh windproductionwillbedispatched.ThisalsoleadsROandROBto havehigheraveragetotalcostscomparedtoSR,SRBandSO. 3.3. Levelofconservatism:budgetandboxofuncertainty 3.3.1. Robustformulations,ROvs.ROB

Asdetailedatthebeginningofthissection,thelevelof conser-vatismoftherobustformulationsROandROBcanbecontrolled throughtheparameter ∈ [0,1].Fig.4showstheaveragetotal costsandtheworst-casescenarioofthe1000out-of-sample sce-nariosforROandROBwhenchangingthelevelofconservatism from0to1.Bearinmindthatbothformulationsareexactly equiv-alentwhenthebudgetofuncertaintyis0(nominalscenario)or 1(complete box).RO presentsviolations (non-servedenergy & transmissionlimits)forlevelsofconservatism(box-size)lowerand equalto0.5,whileROBpresentsviolations forlevelsof conser-vatism(budgetofuncertainty)below0.4.

Forlowvaluesof,below0.4,therobustnessofROBdominates presentingfewerviolations,henceloweraveragecostsandalso

Fig.4. Comparisonofrobustformulations.

lowerworst-casescenario(seelowergraphinFig.4).Thisisthe mainadvantageofROBwhichisprotectingagainstaworst-case scenarioevenwhenisverylow,consideringthefulllimitsofthe boxofuncertainty,insteadofreducingtheboxcompletelyasRO does.

Ontheotherhand,forlevelsofconservatismabove0.4,both formulations present similar average and worst-case costs. It is important to highlight that the ideal value of conservatism shouldbelowtoavoidexpensiveoperationcostsduetoan over-conservativepolicybuthighenoughtoavoidviolationscompletely. Thatiswhyweset=0.6forROand=0.5forROB,whicharethe valueswheretheaveragecostsarethelowestwhileavoidingany possibleviolation.

3.3.2. Unifiedstochastic-robustformulations

Apartfromtheprevioustwostochastic–robustformulationsSR andSRB,thefollowingtwoformulationsarealsoimplemented:

SRI:The sameas SR but disregarding constraint (14), hence makingtheset ofconstraints ofthe stochasticpartcompletely independentfromthoseoftherobustpart.

SRBI:ThesameasSRBbutdisregardingconstraint(14). Fig.5comparesthefourunifiedrobust–stochasticformulations. Thehighestaveragecostof thefourstochastic–robust formula-tions(782.29k$forSRIandSRBIat=0.3,seeupperpartofFig.5) islowerthanthelowestaveragecostofROandROB(792.12k$ forROat=0.1,seeupperpartofFig.4).Thisismainlybecause thestochasticpartoftheunifiedformulationshelpstominimize expectedcostbyalsoaccommodatingdifferentscenariosofwind (andnotjustminimalelementsoftheuncertaintyset),whichatthe endresultinlowerwindcurtailmentreducingoperatingcosts,as showninFig.6.Thatis,purerobustplanningleadstoconsiderably morecostlyoperation,evenwhenincludingbudgetofuncertainty, comparedwithstochastic–robust.Alsotherobustnessofthe solu-tionisconsiderablyimprovedwhenaddingtherobustparttothe stochasticpart:noticethatforanygivenlevelofconservatism,the highestworst-costscenariooftheunifiedformulations(lowerpart Fig.5)isalwayslowerthanthoseofthepurerobustformulations (lowerpartFig.4).

Similarlytothepurerobustformulations,allunified formula-tionsSR,SRB,SRIandSRBIpresentsimilaraveragecostsforlevelsof conservatismabove0.5;however,between0.4and0.5,thebudget ofuncertaintymakeSRBandSRBImorerobust.Ontheotherhand,

(9)

Fig.5.Comparisonofunifiedrobust–stochasticformulations.

Fig.6.Curtailmentcomparisonofdifferentformulations.

forvaluesbelow0.4,SRandSRBpresentfewerviolationsandlower worst-casecost(lowerpartFig.5)thanSRIandSRBI.

Whenadding(14)totheunifiedformulations,therobustness improvesconsiderablyforlowvalues of.Forhighervalues of (above0.5),SRandSRBareverysimilartoSRIandSRBI, respec-tively,because(14)becomesinactive.However,forvaluesbetween 0.4and 0.5,(14)startstodominateforcingthat theworst-case dispatchwindscenarioremainsbelowallthestochastic scenar-ioseventhoughthisworst-casescenariocouldbeverysimilarto themeanwindvalue.Forvaluesbelow0.4,thelowerelementsof thestochasticscenariosdominateincreasingtherobustnessofthe solutiondespitethelowvaluesof.Thatis,theunifiedformulation protectsitselfusingthelowerenvelopeofthewindscenariosofits ownstochasticpart.

Wesetthelevelsofconservatismto=0.6forSRandto=0.4 forSRB.Thesearethevalueswheretheaveragecostsarethelowest whileavoidinganypossibleviolations.

3.3.3. Computationalperformance

AlthoughthetwoformulationsROandROBsolvearobustUC, ROisasinglelevelMIPformulationcomparedwiththetwo-level MIPofROB,whichalsoincludeabilinearterm,henceROsolves morethan6×fasterthanROBonaverage.Moreover,theslowest caseofRO(=0.5)solvesin39.8s,isfasterthanthefastestcaseof ROB(=0.3),43.3s.Thesecomputationalcomparisonsaremade fordifferentthan0,sinceROandRSarecomputationally equiv-alenttoROBandRSB,respectively,when=0.Similarly,although SRandSRBpresentsimilarperformanceinaveragecosts,wind cur-tailmentandrobustness,SRsolves3.9×fasterwhereitsslowest

case(=0.5),85.9s,isfasterthanthefastestcaseofSRB(=0.2), 181.2s.

Asmentionedabove,therobustnessof thestochastic–robust formulationsimprovesbylinkingthestochasticandrobustparts using (14). However,this extraconstraint also brings an extra computationalburden,resulting,onaverage,in60%extra compu-tationalburdenforSRandSRB.

ItisinterestingtonotethatSRoutperformsROBinallaspects, averagecosts,robustnessandwindcurtailment,despitethevalue chosenfor,whilesimultaneouslySRsolvestheproblemsalways faster(1.6×onaverage).

4. Conclusionsandfuturework

This paper presentsa single-level mixed-integer linear pro-gramming formulation (MIP) for fully adaptive robust unit commitment (UC) with dispatchable wind. We show that this ispossiblebyallowingwindcurtailment andconsideringabox uncertaintysetforwindavailability.Consequently,theproposed formulationsolvesconsiderablyfasterthantraditionalrobust for-mulations,whichusuallyrequiretosolveaMIPbi-levelandbilinear problem.

Moreover,thelevelofconservatismcanbecontrolledby shrink-ing the box of uncertainty, providing similar robustness to a formulationconsideringabudgetofuncertainty,asshowninthe numericalexperiments.

We also show how to link the wind dispatch constraints between thestochastic and the robustparts further increasing therobustness oftheunified stochastic–robustUC formulation. Thisunifiedformulationovercomesthedisadvantagesofboththe stochasticandtherobustUCs.Itreducestheover-conservatismof purerobustUCbecauseanexpectedvalueisnowoptimizedonaset ofscenarios,anditdoesnotrequirethelargenumberofscenariosto guaranteefeasibilityaspurestochasticUCdoes.Moreimportantly, thecomputationalburdenoftheunifiedapproach remainslow, sincetheproposedrobustpartjustaddsasingleextrascenarioto thestochasticUC.Moreover,theproposedunifiedUCoutperforms atraditionalpurerobustUC,includingbudgetofuncertainty,inall aspects,averagecosts,robustnessandwindcurtailment,despite thelevelofconservatismchosen,whilealsosolvingsignificantly faster.

In short, by considering dispatchable wind, solving a stochastic–robust UC becomes computationally feasible and hasagoodperformancewithjustafewscenarios.

Astraightforwardapplicationoftheresultsinthispaperwould betoincorporatetheworst-casesolutiontoanydeterministicUC formulation,e.g.,basedonreserves,therebygreatlyimprovingits robustnesswithoutsignificantlyaffectingitscomputational bur-den.Anotherinterestingdirectionforfurtherresearchistoobtain computationally efficientrobust formulationsconsidering other typesofuncertaintysets,inparticularthosemodelingspacialand temporalcorrelations.

Acknowledgments

TheworkpresentedinthispaperisfundedbytheNetherlands OrganisationforScientificResearch(NWO),aspartofthe Uncer-taintyReductioninSmartEnergySystemsprogram.NWOhadno directinvolvementintheprocessleadingtothispaper.

References

[1]L.Deng,B.F.Hobbs,P.Renson,Whatisthecostofnegativebiddingbywind?A unitcommitmentanalysisofcostandemissions,IEEETrans.PowerSyst.30 (4)(2015)1805–1814.

(10)

[2]M.Tahanan,W.v.Ackooij,A.Frangioni,F.Lacalandra,Large-scaleunit commitmentunderuncertainty,4OR-Q.J.Oper.Res.(2015)1–57. [3]R.B.Hytowitz,K.W.Hedman,Managingsolaruncertaintyinmicrogrid

systemswithstochasticunitcommitment,Electr.PowerSyst.Res.119(2015) 111–118www.sciencedirect.com/science/article/pii/S0378779614003174. [4]M.Chazarra,J.García-González,J.I.Pérez-Díaz,M.Arteseros,Stochastic

optimizationmodelfortheweeklyschedulingofahydropowersystemin day-aheadandsecondaryregulationreservemarkets,Electr.PowerSyst.Res. 130(2016)67–77

www.sciencedirect.com/science/article/pii/S0378779615002515. [5]H.Sharifzadeh,N.Amjady,H.Zareipour,Multi-periodstochastic

security-constrainedOPFconsideringtheuncertaintysourcesofwindpower, loaddemandandequipmentunavailability,Electr.PowerSyst.Res.146 (2017)33–42

www.sciencedirect.com/science/article/pii/S0378779617300202. [6]D.Bertsimas,E.Litvinov,X.A.Sun,J.Zhao,T.Zheng,Adaptiverobust

optimizationforthesecurityconstrainedunitcommitmentproblem,IEEE Trans.PowerSyst.28(1)(2013)52–63.

[7]C.Zhao,Y.Guan,Unifiedstochasticandrobustunitcommitment,IEEETrans. PowerSyst.28(3)(2013)3353–3361.

[8]A.S.Korad,K.W.Hedman,Zonaldo-not-exceedlimitswithrobustcorrective topologycontrol,Electr.PowerSyst.Res.129(2015)235–242

www.sciencedirect.com/science/article/pii/S0378779615002321. [9]G.Liu,K.Tomsovic,Robustunitcommitmentconsideringuncertaindemand

response,Electr.PowerSyst.Res.119(2015)126–137

www.sciencedirect.com/science/article/pii/S0378779614003277. [10]Z.Hu,M.Zhang,X.Wang,C.Li,M.Hu,Bi-levelrobustdynamiceconomic

emissiondispatchconsideringwindpoweruncertainty,Electr.PowerSyst. Res.135(2016)35–47

www.sciencedirect.com/science/article/pii/S0378779616300578. [11]B.Zeng,L.Zhao,Solvingtwo-stagerobustoptimizationproblemsusinga

column-and-constraintgenerationmethod,Oper.Res.Lett.41(5)(2013) 457–461.

[12]R.A.Jabr,Robusttransmissionnetworkexpansionplanningwithuncertain renewablegenerationandloads,IEEETrans.PowerSyst.28(4)(2013) 4558–4567.

[13]A.Sun,A.Lorca,Adaptiverobustoptimizationfordailypowersystem operation,PowerSystemsComputationConference(PSCC),2014(2014)1–9.

[14]Á.Lorca,X.A.Sun,Adaptiverobustoptimizationwithdynamicuncertainty setsformulti-periodeconomicdispatchundersignificantwind,IEEETrans. PowerSyst.30(4)(2015)1702–1713.

[15]X.Tang,B.Fox,K.Li,Reservefromwindpowerpotentialinsystemeconomic loading,IETRenew.PowerGen.8(5)(2014)558–568.

[16]Y.Dvorkin,M.A.Ortega-Vazuqez,D.S.Kirschen,Windgenerationasareserve provider,Transm.Distrib.IETGen.9(8)(2015)779–787.

[17]Á.Lorca,X.A.Sun,Multistagerobustunitcommitmentwithdynamic uncertaintysetsandenergystorage,IEEETrans.PowerSyst.32(3)(2017) 1678–1688.

[18]G.Morales-Espa ˜na,R.Baldick,J.García-González,A.Ramos,Power-capacity andramp-capabilityreservesforwindintegrationinpower-basedUC,IEEE Trans.Sustain.Energy7(2)(2016)614–624.

[19]G.Morales-Espa ˜na,L.Ramírez-Elizondo,B.F.Hobbs,Hiddenpowersystem inflexibilitiesimposedbytraditionalunitcommitmentformulations,Appl. Energy191(2017)223–238https://www.sciencedirect.com/science/article/ pii/S0306261917301009.

[20]G.Morales-Espana,J.M.Latorre,A.Ramos,TightandcompactMILP formulationforthethermalunitcommitmentproblem,IEEETrans.Power Syst.28(4)(2013)4897–4908.

[21]A.Ben-Tal,A.Goryashko,E.Guslitzer,A.Nemirovski,Adjustablerobust solutionsofuncertainlinearprograms,Math.Program.Ser.A99(2)(2004) 351–376.

[22]R.Jiang,J.Wang,Y.Guan,Robustunitcommitmentwithwindpowerand pumpedstoragehydro,IEEETrans.PowerSyst.27(2)(2012)800–810. [23]L.Zhao,B.Zeng,Robustunitcommitmentproblemwithdemandresponse

andwindenergy,2012IEEEPowerandEnergySocietyGeneralMeeting (2012)1–8.

[24]G.Morales-Espa ˜na,UnitCommitment:ComputationalPerformance,System RepresentationandWindUncertaintyManagement(Ph.D.thesis),Pontifical ComillasUniversity,KTHRoyalInstituteofTechnology,andDelftUniversity ofTechnology,Spain,2014.

[25]FERC,RTOUnitCommitmentTestSystem,Tech.Rep.,FederalEnergyand RegulatoryCommission,Washington,DC,USA,2012.

[26]R.Baldick,Windandenergymarkets:acasestudyofTexas,IEEESyst.J.6(1) (2012)27–34.

[27]P.Glasserman,MonteCarloMethodsinFinancialEngineering,Springer,New York,2003.

Cytaty

Powiązane dokumenty

większość okien jest odrzucana w pierwszym drugim członie kaskady, wobec czego dla każdego okna wymagane jest obliczenie średnio około 20-30

There is however no doubt that the book itself presents a balanced view on the most important exegetical and historical problems related to the Dead Sea Scrolls, and as such

Liczba siedem, określająca ich ilość, jest typem doskonałości osoby Chrystusa; pochodzenie siedmiu braci od Abrahama – typem pochodzenia Chrystusa; kierowanie się przez

Roztropność znajduje u niego własny powód: nie chce prowokować prze- śladowców. Ta sama racja każe liczyć się z własną słabością i wziąć pod

Ostatnim prelegentem był gospodarz i główny organizator sympozjum ks. dr hab.  Leon  Nieścior,  prof.  UKSW.  Swoje  wystąpienie  zatytułował:  Zaślubiny

FINDS FROM THE SHAFT TOMBS The excavation of the filling of the shaft tombs brought over one hundred bigger and smaller decorated fragments, mostly from the walls and ceiling of

numerical model to improve design and efficiency of the machines will be presented. To ensure that the boundary conditions used are realistic, experimental

43. Wind generator kite system. Tethered Rotary Kite. Dynamics and control of single-line kites. Sarkar D., Modak J.M. Pareto-optimal solutions for multi-objective optimization