• Nie Znaleziono Wyników

Contribution of proton leak to oxygen consumption in skeletal muscle during intense exercise is very low despite large contribution at rest

N/A
N/A
Protected

Academic year: 2022

Share "Contribution of proton leak to oxygen consumption in skeletal muscle during intense exercise is very low despite large contribution at rest"

Copied!
19
0
0

Pełen tekst

(1)

PLOSONE|https://doi.o r g/10.13 7 1/journal.p o ne.0185 9 9 1 Octobe r18,2017 1/14

2

RESEARCHARTICLE

Contributionofprotonleaktooxygenconsump tioninskeletalmuscleduringintenseexercisei sverylowdespitelargecontributionatrest

BernardKorzeniewski*

FacultyofBiochemistry,BiophysicsandBiotechnology,JagiellonianUniversity,Krako´w,Poland

*bernard. k orzeniewski @ gmail.com

Abstract

Acomputermodelwasusedtosimulatethedependenceofprotonmotiveforce(Δp),proton leakandphenomenological(involvingprotonleak)ATP/O2ratioonworkintensityinskeletal

muscle.Δp,NADHandprotonleakdecreasedwithworkintensity.Thecontributionofproton OPENACCESS

Citation:KorzeniewskiB(2017)Contributionofpro tonleaktooxygenconsumptioninskeletalmuscledu ringintenseexerciseisverylowdespitelargecontrib utionatrest.PLoSONE12(10):e0185991.https:// d oi.org/10.1371/ j ournal. pone.01859 9 1

Editor:AndrewPhilp,UniversityofBirmingham, UNITEDKINGDOM

Received:February27,2017 Accepted:September22,2017

leaktooxygenconsumption(V_O2)decreasedfromabout60%atresttoabout3and1%atmo derateandheavy/severeexercise,respectively,whiletheATP/O2ratioincreasedfrom2.1to 5.5and5.7.Atwo-foldincreaseinprotonleakactivityoritsdecreasetozero

decreased/increasedtheATP/O2ratiobyonlyabout3and1%duringmoderateandheavy/severeexer cise,respectively.ThelowcontributionofprotonleaktoV_O2inintensivelywork-

ingskeletalmusclewasmostlycausedbyahugeincreaseinATPusageintensityduringrest-to- worktransition,whileOXPHOS,andthusoxidativeATPsupplyandV_O2relatedtoit,wasmostlystimul atedbyhigheach-

stepactivation(ESA)ofOXPHOScomplexes.ThecontributionofprotonleaktoV_O2andATP/O2ratioi nisolatedmitochondriashouldnotbedirectlyextrapolatedtoworkingmuscle,asmitochondrialackES A,atleastintheabsence

Published:October18,2017 ofCa2+,andthereforeV_O cannotbeelevatedasmuchasinintactmuscle.

Copyright:©2017BernardKorzeniewski.Thisisa nopenaccessarticledistributedunderthetermsofth eCreativeCommons Attribut i onLicense ,whichper mitsunrestricteduse,distribution,andreproductioni nanymedium,providedtheoriginalauthorandsourc earecredited.

DataAvailabilityStatement:Alldataarepresented withinthemanuscript.

Funding:ThisstudywasfundedbytheKNOWprogr am,whichsupportstheFacultyofBiochemistry,Biop hysicsandBiotechnologyofJagiellonianUniversity.

Thefundershadnoroleinstudydesign,datacollectio nandanalysis,decisiontopublish,orpreparationofth emanuscript.

Competinginterests:Theauthorshavedeclaredth atnocompetinginterestsexist.

Introduction

Protonleakacrosstheinnermitochondrialmembrane[1–4]leadstodissipationoftheproto- nmotiveforce(Δp)thatisnotcoupledwithATPsynthesisorATP,ADPandPitransportacrossthisme mbrane.ThemechanismofH+ionsflowacrossthemembraneisstillnotfully

understood[1–4].Theintensityoftheprotonleakthroughtheinnermitochondrialmem- brane(vLK)dependssteeply(non-ohmicdependence)ontheprotonmotiveforceΔp[5–

9].Protonleakcanbeconstitutive(basalprotonconductance)andregulated(inducibleprotonco nductancecatalyzedbyuncouplingproteins,UCPs)[1–

4].Thyroidhormoneselevatetheconstitutiveprotonleak[10].BasalvLKisinverselyproportional tobodymass[11]andishigherinwarm-bloodedanimalsthanincold-

bloodedanimalsofthesamemass[12].Protonleakcanbeinducedbyreactiveoxygenspecies(R OS)actingthroughUCPs[2,13].

(2)

LK

Protonleakatrestandduringexerciseinskeletalmuscle

ThecontributionofprotonleaktoV_O2inperfusedrestingratskeletalmusclewasesti- matedbyRolfeandBrandtobeabout60%at37˚C[8].Ontheotherhand,Marcinekandco- workers[14]estimated,onthebasisofinvivospectroscopicmeasurements,thatthereisessen- tiallynoprotonleakinrestingskeletalmuscle.

Ithasbeenproposedthattheso-calledeach-

stepactivation(ESA)mechanismisamajormechanismoftheregulationofOXPHOSduringworktra nsitions[15–

21].Accordingtothismechanism,NADHsupply,glycolysisandallOXPHOScomplexes(complexI, complexIII,complexIV,ATPsynthase,ATP/ADPcarrierandPicarrier)aredirectlyactivatedbysome cytosolicfactor(s)/mechanism(s)inparallelwiththeactivationofATPusagebyCa2+.

ThepresentstudyisaimedtoinvestigateinthetheoreticalwaythecontributionofvLK-

relatedV_O2tototalV_O2andthephenomenological(involvingprotonleak)ATP/O2ratioatdifferentworki ntensitiesinskeletalmuscle.Theeffectoftheprotonleakactivityonthesevari-

ablevaluesisalsostudied.ThedependenceoftotalV_O2,ATPsynthesis- relatedV_O2,Δp,NADHandprotonleak-

relatedV_O2onworkintensityissimulated.ItishypothesizedthatthetotalV_O2andATPsupply-

relatedV_O2willriselinearlywithATPdemandactivity(workintensity),whileΔpand,consequently,leak- relatedV_O2willdrop.Asaresult,thecontribu-tionofvLK-

relatedV_O2tooveralloxygenconsumptionwilldecreaseverysignificantly,whilethephenomenologic alATP/O2ratiowillincrease.Itisalsoexpectedthatanincreaseinprotonleakactivity(rateconstant)willinc reasethecontributionofvLK-

relatedV_O2tototalV_O2,decreasethephenomenologicalATP/O2ratioandΔp,whilereductionofthepr otonleakactiv-itytozerowillhavetheoppositeeffect.Itisexpectedthatthepresenceofhigheach- stepactiva-

tion(ESA)ofOXPHOS,essentiallyincreasingitscapacityforATPsupplyandallowingtomatchthehighl yelevatedATPusageactivity,leadstoalowcontributionofvLK-

relatedV_O2tototalV_O2,muchlowerthanatrest,andthustoahighphenomenologicalATP/O2ratio(ver yclosetothemechanistic,notinvolvingprotonleak,ATP/O2ratio)inintensivelyworkingskeletalmuscle.

Theoreticalmethods

Thepreviously-

developedcomputermodelofthecellbioenergeticsysteminskeletalmuscle[22,23]wasusedfortheoreti calstudies.Thismodelcomprisesexplicitly:oxidativephosphoryla-

tioncomplexes(complexI,complexIII,complexIV,ATPsynthase,ATP/ADPcarrier,Picar-

rier),NADHsupplyblock,ATPusage,protonleak,creatinekinase(CK)system,adenylatekinase(AK),pro tonefflux/influxto/fromblood,

(anaerobic)glycolysis.Thismodelhasbeenwidelyvalidatedthroughcomparisonofcomputersimulation swithexperimentalresults[15–23].

Theintensityofprotonleakinskeletalmuscleisdescribedbythefollowingkineticequa-tion:

v ¼k ·ðekLK2·Dp-1Þ ð1Þ wherekLK1=2.5μMmin-1andkLK2=0.038mV-

1.ThedependenceofprotonleakintensityonΔpisstronglynon- ohmicaspresentedinFig1.Thisdependencewasextractedfromdiffer- entexperimentaldata(seee.g.,[5–9])inordertorepresentthematleastsemi- quantitatively(anyway,thesedatadiffertosomeextentonefromanother).

InordertoproduceFig1,state4andstate3thatarepresentinisolatedmitochondria,butabsentininta ctskeletalmusclehadtobesimulated.Astatecorrespondingtostate4inisolatedmitochondriacanbein ducedinintactskeletalmusclebyoligomycin(inhibitorofATPsynthase)administration.Ontheotherha

(3)

Protonleakatrestandduringexerciseinskeletalmuscle

nd,state3andstate3.5(intheabsenceofESA)inintactskeletalmuscleareinasensehypothetical,becau setheywouldneedturningoffofESAto

(4)

Fig1.Dependenceofprotonleakintensity(vLK)onprotonmotiveforce(Δp).State4,state3,rest,moderateworkand heavy/severeworkinskeletalmuscleareindicated.vLKinallstatesisscaledforintactskeletalmuscle.Simulationswerema deusingthemodelversionforintactskeletalmuscle,asdescribedinthetext.

https://d o i.org/10.1371/ j ournal.pon e .0185991.g0 0 1

bereached.Atthepresentstateofknowledgewedonotknowhowtodothisinintactskeletalmuscle,becau seESAispresentinintactskeletalmuscle,butabsentinstate3andstate3.5iniso-

latedmitochondria(atleastintheabsenceofCa2+ions).Withinthemodelastatecorrespondingtostate4wa sreachedincomputersimulationsbyadecreaseintheactivity(rateconstant)ofATPusagetozero.Astate analogoustostate3inisolatedmitochondriawasreachedbyanincreaseinthisconstanttosaturating(for OXPHOS)valuesintheabsenceoftheeach-stepacti-

vation(ESA)ofOXPHOScomplexes.Inthesesimulations,CKandglycolysiswere‘switchedoff’[18]

(thisconcernsonlythesimulationspresentedinFig1).Theversionofthemodelforintactskeletalmusclera therthantheversionforisolatedmitochondria[18]wasusedinordertoscaletherespirationrateinparticula rstatestointactskeletalmusclerespiration.Themoderateworkstateandheavy/severeworkstateweresi mulatedasdescribedbelow.Generally,thetheoreticalpointsshowninFig1wereobtainedbysimulationo fparticularstatesandrecordingvLKandΔpinthem.ThelinecorrespondingtothegeneralvLK-

ΔpdependencerepresentssimplyEq1.

Thesimulationscarriedoutandpresentedinthisstudyconcernsteady-

statevariablevaluesandnottimecoursesofvariablevalues.Thebasalorinitialsteady-

stateforallsimulationswasreststatewith‘standard’parametervalues.Ineachsimulationoneorafewpa rametervalueswerechanged,asdescribedbelow,andthenthesystemwasallowedtoapproachanew steady-state,inwhichnewvariablevalueswererecorded.

Thesimulationsfordifferentworkintensities(Figs2–

5)weremadebyagradualincreaseinsubsequentsimulationsoftherateconstantofATPusage(hy drolysis)kUT.TherelativeincreaseinkUT(AUT,activationofATPusageinrelationtorest)variedfro mAUT=1timesatrest

(5)

2 -1

Fig 2. Dependenceoftotaloxygenconsumption(V_O2),V_O2relatedtoprotonleakandV_O2relatedtoATPsynthesi sonADPconcentration.

https://doi . org/10.1371/ j ournal.pon e .0185991.g0 0 2

(V_O2=0.27mMmin )toAUT=28timesformoderatework(resultinginV_O2 ofabout 3.5mMmin-1)andAUT=80timesforheavy/severework(resultinginV_O ofabout8.7 mMmin-1).Therefore,AUTwasthemeasureordeterminantoftheworkintensity,propor- tionaltoATPusageformechanicalwork.Atthesametimetheactivities(rateconstants)of0.35

allOXPHOScomplexesandNADHsupplywereelevatedAOX=AUT times.Forinstance, AOX=3.2formoderateexercise(AUT=28)andAOX=4.6forheavy/severeexercise(AUT=80).Thiscorres pondstotheeach-

stepactivation(ESA)mechanismoftheregulationofOXPHOSduringworktransitionspostulatedprevi ously[15–21]

(thepowercoefficientpisthemeasureofESAintensity;p=0.35meansmoderateESA).Or,moreprecis ely,thiscorre-spondstotheso-

calledmixedmechanism,whereallOXPHOScomplexesaredirectlyacti-

vated(ESA),buttoasmallerextentthanATPusage,andthereforetheregulationbythenegativefeedba ckthroughelevatedADPandPico-operateswiththeregulationbyESA

[19,24].Glycolysiswasactivated(itsrateconstantwaselevated)AGL=AUT0.7times[23].In the‘standard’modelversion(Figs2and3)thecontributionofprotonleaktoV_O2atrestequaled63%.

ItwasassumedthatESAconcernsOXPHOScomplexes,butnotprotonleak.ESAissupposedtobe aspecialmechanismthatelevatestheATPproductionrate,andapotentialactivationofprotonleakb yESAwouldbecounter-productive(protonleak

decreasesΔpandthusATPsynthesisrate).Protonleakisnotstimulatedinisolatedmito- chondriabyCa2+thatcanactivateabouttwiceallOXPHOScomplexes(theCa2+-

inducedelevatedstate4respirationwasduetoelevatedprotonmotiveforce,andnottodirectact iva-tionofprotonleak)[25].

(6)

Fig3.Dependenceoftotaloxygenconsumption(V_O

2),V_O

2relatedtoprotonleak,V_O

2relatedtoATPsynthesis,Δp,NADH(%oftotalNAD)andphen omenologicalATP/O2ratioonrelativeactivityofATPusage(relativerateconstant,kUT,oritsactivationinrelationtorest,AUT)inskeletalmusclefor‘stan dard’protonleakactivity.

https:// d oi.org/10.1371/ j ournal.po n e.0185991.g 0 03

TheparametervaluesinthesetofsimulationspresentedinFigs2and3representthe‘stan- dard’or‘reference’conditions.InthesetofsimulationsshowninFig4therateconstant(activ-

ity)ofprotonleakkLK1wasdoubledinrelationtothe‘standard’setofsimulations.Thisresultedinanincreas einthecontributionofprotonleaktoV_O2atrestto78%.InthesetofsimulationsshowninFig5theratecon stantofprotonleakkLK1wassettozero(noprotonleak).Therefore,thecontributionofprotonleaktoV_O2at restwasofcourse0%.

Atheavy/severeexerciseinskeletalmusclethe‘additional’ATPusagethatisamajorfactor underlyingtheslowcomponentoftheV_O2on-kinetics[20]wasomittedincomputersimula- tionsinordertoachieveasteady-state.

Generally,withinthemodeltheprotonleak-

relatedV_O2(orvLKexpressedinV_O2units)andATPsynthesis-

relatedV_O2(orvASexpressedinV_O2units)arerelatedtovLKandvASinsuchawaythat4electrons(e-)ar eusedforthereductionof1O2molecule,20H+ionsarepumpedfor4e-

flowingthroughtherespiratorychainand3.5cytosolicH+ionsareusedforsynthesisof1cytosolicATPmole cule(2.5H+ionsforsynthesisof1matrixATPmoleculeand1H+ionfortransportofATPtocytosolandofAD PandPitomitochondrialmatrix).Thus,vLK-relatedV_O2equalsvLK/20andvAS-

relatedV_O2equalsvAS*3.5/20.

(7)

2 2 2

Fig4.Dependenceoftotaloxygenconsumption(V_O),V_Orelatedtoprotonleak,V_OrelatedtoATPsynthesis,Δp,NADH(%oftotalNAD)andphenomeno logicalATP/O2ratioonrelativeactivityofATPusage(relativerateconstant,kUT,oritsactivationinrelationtorest,AUT)inskeletalmuscleforprotonleakactiv ity(rateconstant)elevatedtwiceinrelationtothe‘standard’value.

https://d o i.org/10.1371/ j ournal.pon e .0185991.g0 0 4

Theoreticalresults

Protonleak-Δpdependence

Thedependenceoftheprotonleakintensity(vLK)onΔpinintactskeletalmuscleusedinthemodel(seeE q1)ispresentedinFig1.Inaccordancewithexperimentaldatathisdependenceisstronglynon- linear(non-ohmic).Particularstatesinskeletalmusclemitochondriaareindi-

catedinthediagram:state4(Δp=195.4mV),state3(Δp=154.1mV),reststate(Δp=191.9mV),moderat eworkstate(Δp=177.5mV)andheavy/severeworkstate(Δp=169.0mV).Thedetailedrelationbetwee nthesestateswasdiscussedinarecentarticle[18].Itshouldbestressedthatstate4andstate3inintactsk eletalmuscleisnotthesameasstate4andstate3inisolatedmitochondria.First,vLKcanbelargerisisola tedmitochondriathaninskeletalmuscle(forthesamemitochondriavolume/amount),astheinnermito chondrialmembranecanbedamagedinsomefractionofmitochondriaduringmitochondriapreparatio n.Second,usuallyahighconstantPiconcentrationisusedintheisolatedmitochondriasystem,whilePilevelch angesbetweendifferentstatesinintactskeletalmuscle[18].

Δp,NADH,vLK-relatedV

_O2

,contributionofvLK-relatedV

_O2t

ototal V

_

O

2

andATP/O

2

atrest,moderateworkandheavy/severeworkinintact skeletalmuscle

ComputersimulationspredictthatwhenworkintensityincreasesinskeletalmuscleΔp,NADH,protonl eakintensity(vLK-relatedV_O2)anditscontributiontoV_O2decrease,while

(8)

Fig5.Dependenceoftotaloxygenconsumption(V_O2),V_O2relatedtoprotonleak,V_O2relatedtoATPsynthesis,ΔpandNADH(%oftotalNAD)andphen omenologicalATP/O2ratioonrelativeactivityofATPusage(relativerateconstant,kUT,oritsactivationinrelationtorest,AUT)inskeletalmuscleforprotonl eakactivity(rateconstant)settozero(noprotonleak).

https:/ / doi.org/10.13 7 1/journal.pone . 0185991.g005

thephenomenologicalATP/O2ratioincreases.Thisdecrease/increaseisgreater,thelargertheworkint ensity.ThiscanbeseeninFigs2and3.Atrest,protonleakaccountsfor63%ofV_O2.Thisisinagreement withtheprotonleakcontributiontoV_O2estimatedfor60%inratskeletalmuscle[8]

(seeTable1therein).ThecontributionofprotonleaktoV_O2decreasesdramati-

callywithanincreaseinworkintensity,asV_O2relatedtoATPproductionincreasessignifi- cantlyduetothehugeincreaseintheATPusageactivity.OXPHOScomplexesarestimulated

byESAaswellasbyanincreaseinADPandPi.Atthesametimetheabsoluteprotonleakintensitydecrea sesduetothedecreaseinΔp(compareEq1).Atmoderatework(ATPusageactivationAUT=28times)pro tonleakaccountsforonlyabout3%ofV_O2,whileatheavy/severework(AUT=80times)itaccountsforon lyabout1%ofV_O2.ThepresenceofprotonleakcausesthatthephenomenologicalATPsynthesis(vA S)-

ADPrelationshipissignificantlysteeper(ofhigherphenomenologicalorder)thanthephenomenologic alV_O2-ADPrelation-ship,ascanbeseeninFig2.

Withinthemodelthemechanistic(notinvolvingprotonleak)ATP/O2ratioequals5.71(=20/3.5:20 protonspumpedper4electronsor1O2,3.5protonsneededforATPsynthesisandtransport,seeabo ve).Thephenomenological(involvingprotonleak)ATP/O2ratioincreasesfromabout2.1atrest(AUT=

1)toabout5.5duringmoderateexercise(AUT=28)andabout

5.7duringheavy/severeexercise(AUT=80).ThisisdemonstratedinFig3.

FortheparametervaluesusedinthesimulationsshowninFig3NADHdecreaseswithanincrea seinworkintensity.However,NADHcaneitherdecreaseorincreaseduringrest-to-

(9)

worktransitiondependingonhowstronglyNADHsupplyisdirectlyactivatedor,morepre- cisely,whatisthebalanceofactivationoftheNADH-producingblockandNADH-

consumingblock(OXPHOS+ATPusage).NADHcanincreasewhentheNADH- producingblockisstimulatedtoagreaterextentthantheNADH-consumingblock[21].

TheestimationofthecontributionofprotonleaktoV_O2equalstoabout60%atrestinratskeletalmu scle[8].However,itismostprobablydifferentindifferentanimals,beinggreater

insmalleranimals.Itcanbepotentiallyaffectedbysomefactors,suchasthyroidhormones,ROSortemp erature.Finally,Marcinekandco-

workers[14]measuredessentiallynoprotonleakinrestingskeletalmuscle.Therefore,intwosubseque ntsimulationstheeffectofdoublingandreducingtozeroofthe‘standard’protonleakactivity(rateconsta nt)waschecked.

Atwo-

foldincreaseinprotonleakactivity(rateconstant)kLK1causesadecreaseinΔpandNADH,especiallyatrest ,whiletheprotonleakintensity(flux)vLK(vLK-

relatedV_O2)ofcourseincreases.Thecontributionofprotonleak(vLK-

relatedV_O2)tototalV_O2atrestincreasesto78%.ThiscanbeseeninFig4.However,theeffectonΔpan dNADHisrather

small,especiallyatwork.ThephenomenologicalATP/O2ratiodecreasessignificantlytoabout

1.3atrest,butonlybyabout3%and1%inrelationtothe‘standard’protonleakactivityduringmoderatean dheavy/severeexercise,respectively.

Aswitchingoffofprotonleak(decreaseofkLK1tozero)elevatesΔpandNADH,especiallyatrest.Thisi sdemonstratedinFig5.Ofcourse,inthiscasethecontributionofprotonleaktoV_O2atrestandworkis0%

andthephenomenologicalATP/O2ratioatallworkintensitiesisidenticalandequaltothemechanisticAT P/O2ratio(5.71).ThephenomenologicalATP/O2ratioincreasesbyonlyabout3%and1%inrelationtothe‘

standard’protonleakactivitydur-ingmoderateandheavyexercise,respectively.

Discussion

Inthepresentstudyacomputermodelofthemusclebioenergeticsystemwasusedtostudythedepend enceofΔp,NADH,protonleakintensity(vLK)(vLK-relatedV_O2),ATPsynthesisintensity(vAS) (vAS-relatedV_O2),contributionofvLK-relatedV_O2andvAS-

relatedV_O2tototalV_O2andphenomenologicalATP/O2ratioonworkintensityinskeletalmuscle.

ThesimulatedcontributionofvLKtoV_O2duringmoderateandheavy/severeexerciseinskeletalmuscl ewasverysmalldespitelargecontributionofvLKtoV_O2atrestandduringlowexercise.Thiswasmostlyc ausedbythehugeincreaseintheATPusageintensityduringrest-to-

worktransitionandthusinV_O2relatedtoATPsynthesis.OXPHOScomplexeswerestim-ulatedbyeach- stepactivation(ESA)andbyincreaseinADPandPi.Ontheotherhand,protonleakwasnotdirectlystimul atedanditsintensitydecreasedduetothedropinΔp.

ΔpandvLKindifferentstates

First,itwasshown,whatcouldbeintuitivelyexpectedandwhathasbeenalreadyatleastpartlydemonstr atedintheexperimentalway[8],thatthehighestΔpandvLKwereinstate4,thesmallest–

instate3,whileatrestandduringexercisetheyadoptedintermediatevalues(seeFig2).ΔpandvLKatres twereclosesttostate4,whileduringheavyexercise–tostate3.

V

_O2

-ADPdependencevs.vAS-ADPdependence

Theslopes(orders)ofthephenomenological(involvingESA)V_O2- ADPdependenceandthephenomenologicalvAS-

(10)

ADPdependencedifferedsignificantly,andthisdifferencewasduetoprotonleak.Thisisdemonstrate dinFig2.V_O2andvAS(expressedinoxygenconsumption

(11)

equivalents)divergedsignificantlyatlowADPpresentatrest,wherevLK(vLK-

relatedV_O2)wasrelativelyverysignificant,whiletheystartedtoconvergeathighADPconcentrationsp res-entduringwork,wherevLKdecreased.

ProtonleakcontributiontoV

_O2an

dphenomenologicalATP/O

2rati

oinskeletal muscle

ProtonleakcontributiontoV_O2.TheincreaseinthetotalV_O2andvAS- relatedV_O2aswellasthedecreaseinvLK-

relatedV_O2withanincreaseintheATPusageactivity(energydemand),proportionaltomechanicalw orkintensity,for‘standard’protonleakactivityisshowninFig3.Atrestprotonleakwasresponsiblefora bout63%ofV_O2.Ontheotherhand,

duringheavy/severeexercisetheabsolutevalueofvAS-relatedV_O2wastens-

foldgreater(duetoESAaswellasADPandPiincreaseinrelationtorest)thantheprotonleak-

relatedV_O2.Atthesametime,ΔpdecreasedsignificantlywiththeincreaseintheATPusageactivity(energy demand).ThiscausedadecreaseintheabsolutevalueofvLK(vLK-

relatedV_O2)atheavyworkinrelationtomoderateworkandthemoreinrelationtorest.

ChangesinΔpandNADH.BothΔpandNADHdecreasedwithanincreaseinworkintensi tyinthesimulationsshowninFigs3–

5.InskeletalmuscledifferentelementsoftheATPsupplysystemareactivatedbyESAtoalow erextentthanATPusage.Asaresult,

ADPandPialwaysincrease,whileΔpalwaysdecreasesduringrest-to- worktransition.ΔpisrelatedtothemitochondrialATP/

(ADP*Pi)ratio(throughATPsynthase)andcytosolicATP/

(ADP*Pi)ratio(throughATP/ADPcarrierandPicarrier).Therefore,thedecreasein(cytosolicandmitoc hondrial)ATP/(ADP*Pi)resultingfromtheincreaseinADPandPiimpliesthatΔpalsodecreases.

Ontheotherhand,NADHcaneitherincreaseordecreaseduringrest-to-

worktransitioninskeletalmuscle,dependingonthebalanceoftherelativedirectactivationoftheN ADH-sup-plyblockandNADH-consumingblock(OXPHOS+ATPusage)[21].WhentheNADH- pro-ducingblockisactivatedtoagreaterextentthantheNADH-

consumingblock,NADHincreasesduringrest-to-worktransition[21].

ProtonleakcontributiontoV_O2—Standardconditions.Ofcourse,thehugeincreasein vAS-relatedV_O2anddecreaseinthevLK-relatedV_O2withtheworkintensityincrease

resultedinadecreaseinthecontributionofvLK-relatedV_O2tototalV_O2.Whileitwasas highasabout60%atrest(inagoodagreementwithexperimentaldata[8]),itdroppedto

about3%duringmoderateexerciseandtoabout1%duringheavy/severeexercise.Thiswasassociate dwithanincreaseinthephenomenological(involvingprotonleak)ATP/O2ratio(themechanistic,notinvol vingprotonleak,ATP/O2ratioequals5.71withinthemodel).Itrisedfromabout2.1atresttoabout5.5durin gmoderateexerciseandabout5.7duringheavy/severeexercise(seeFig3).Therefore,themusclecou plingefficiency(theratioofthephenome-

nologicalATP/O2tothemechanisticATP/O2)increasedwiththeworkincrease(andappro- ached1),giventhatallotherfactorsremainedunchanged.AnincreaseintheATP/O2ratio

withanincreaseinV_O2wasobservedinskeletalmusclemitochondria[26],whereOXPHOS isactivatedbyanincreaseinADPbetweenstate4andstate3,whilevLKdecreasedduetoa

decreaseinΔp.Asimilareffectwasobservedinpermeabilizedskeletalmusclemyofibers:theATP/Orati o(whichisahalfoftheATP/O2ratio)waslessthanoneforlowADPconcentration

(15μM)andthuslowV_O2,butexceededtwoformoderate(200μM)andmaximal(2000μM) ADPconcentrationandV_O2[27].

TheverylowcontributionofprotonleaktoV_O2and,consequently,highphenomenologi- calATP/O2ratioinintensivelyworkingskeletalmusclewasmostlycausedbythehuge increaseintheATPusageactivitybetweenrestandmoderateandheavy/severeexerciseand

(12)

2

bythefactthatESAconcernedparticularOXPHOScomplexes,butnotprotonleak.ESAincreasedver ysignificantlytheabsolutevalueofthevAS-relatedV_O2,whileitdidnotaffectthevLK-

relatedV_O2.Additionally,thevAS-

relatedV_O2wasstimulatedbyelevatedADPandPi.Ontheotherhand,theabsolutevLK-

relatedV_O2decreasedinworkingskeletalmuscleinrelationtorestduetothedecreaseinΔp.Therefore,th ephenomenological(involvingproton

leak)ATP/O2ratioduringintensivemuscleworkwasveryclosetothemechanistic(notinvolvingprotonl eak)ATP/O2ratio,andthemusclecouplingefficiency(definedastheratioofthephenomenologicalATP/

O2ratiotothemechanisticATP/O2ratio)remainedveryhigh(verycloseto1).

Effectofprotonleakactivity(rateconstant).Elevatedthyroidhormoneslevel[10],mus- cletraining(increaseinUCPssensitivitytofattyacids[28]),increasedtemperature[29]and/orincrease dROSconcentration(activatingUCPs[13])canallelevatetheprotonleakinten-

sity.Therefore,theeffectofdoublingofprotonleakactivity(rateconstant)wassimulated.Thetheoretic alresultsarepresentedinFig4.Onecanseethattheincreaseintheprotonleakactiv-

ity(rateconstantkLK1)elevatedvLK-relatedV_O2andthetotalV_O2.Asaresult,thecontribu- tionofprotonleaktoV_O2atrestrisedto78%.Ontheotherhand,the2-foldactivationof protonleakdiminishedΔpandNADH,especiallyatrest.ThiswascausedbyacceleratedΔp

dissipation.Italsodecreasedmusclecouplingefficiency(relatedtothephenomenologicalATP/O2ratio) duringexercise.However,inthe‘standard’simulationwithoutprotonleakacti-

vation(Fig3)thecontributionofvLK-

relatedV_O2tototalV_O2wasverylow:about3%and1%duringmoderateandheavy/severeexercise,re spectively.Atwo-

foldactivationofprotonleakelevatedthesevaluesto6%and2%,respectively.Asaresult,evendoublin gofvLKdecreasedthephenomenologicalATP/O2ratioonlybyabout3%and1%,respectively.

Whenprotonleakwas‘switchedoff’(itsrateconstantkLK1wassettozero),thetotalV_O2 decreased,asitwasequalthentovAS-

relatedV_O2.ThiswasrelatedtoanincreaseinΔpandNADH,especiallyatrest,ascanbeseeninFig5.Inthi scase,thephenomenological(involvingpro-

tonleak)ATP/O2ratioincreased(inrelationtothecasewith‘standard’protonleakactivity)only byabout3%and1%duringmoderateandheavy/severeexercise,respectively.Thephenomenologi- calATP/O2ratiowasthesameatallworkintensitiesandequaledthemechanisticATP/O2ratio.

Generally,largechangesintheprotonleakactivity(rateconstantkLK1)seemedtohaveonly

aminorimpactonthephenomenologicalATP/O2ratioandmusclecouplingefficiencyduringintenseexe rcise.ThiswasvalidforsuchabroadrangeoftheprotonleakcontributiontoV_O2atrestasabout0–

80%.Therefore,theexactdeterminationofthiscontribution[8]isnotveryimportantinthiscontext,altho ughitisofcauseveryimportantinthecontextofthermogene-sisatrestandbasalmetabolicrate.

vLK-

relatedV

_O2contributio

ntototalV

_O2an

dATP/O

2i

nisolatedmitochondri avs.intactworkingmuscle

Isolatedmitochondria,atleastintheabsenceofCa2+,lackESA.Therefore,V_O cannotbeele- vatedhereasmuchasinintactskeletalmuscle.Additionally,theinnermitochondrialmem-

branecanbedamagedinsomefractionofmitochondriaduringtheisolationprocedure.Thiswouldelev atestate4respirationrelatedtoprotonleak.Forthesereasonsitcanbeexpectedthatthecontributionof vLK-

relatedV_O2tototalV_O2ismuchsmallerinintensivelyworkingmusclethaninisolatedmitochondriaa ndtheATP/O2ratioissomewhathigher.Forthisrea-

son,theexperimentalmeasurementsoftherelativeprotonleakintensity(e.g.,oftherespira-

(13)

torycontrolratio,RCR)andATP/O2inisolatedmitochondria,althoughveryvaluableformanypurpose s,cannotbedirectlyextrapolatedtointactworkingmuscle.

(14)

PhenomenologicalATP/O

2

ratioandATPsupplybyanaerobicglycolysis

Theterm‘

phenomenologicalATP/O2ratio’usedthroughoutthepresentarticlemeans‘involv- ingprotonleak’,asopposedto‘mechanisticATP/O2ratio’,notinvolvingprotonleak.How- ever,itshouldbestressedthattheterm‘phenomenologicalATP/O2ratio’meansinfact

‘oxidativephenomenologicalATP/O2ratio’.As,inintactmuscle,especiallyduringheavy/severeexercis e,whereATPsupplybybothaerobicandanaerobicglycolysisispresent,the‘overall’or‘observed’‘phen omenologicalATP/O2ratio’ishigherthanthe‘oxidativephenom-

enologicalATP/O2ratio’,relatedonlytoATPproductionbyOXPHOS.Theoverallphenome-

nologicalATP/O2ratiocanbeevenhigherthanthemechanisticATP/O2ratioforOXPHOS.Thisfactshoul dbealwayskeptinmindwhenspeakingabouttheATP/O2ratioanditshouldbealwaysspecifiedwhichAT P/O2ratioismeantinagivencase.Ontheotherhand,anynon-

mitochondrialoxygenconsumption(forinstancebytheantioxidantsystem)

(seeref.8)decreasestheoverallphenomenologicalATP/O2ratio.Itispostulatedheretodistinguishthree sortsoftheATP/O2ratio:1.mechanisticATP/O2ratioforOXPHOSwithoutprotonleak;2.oxidativepheno menologicalATP/O2ratioforoxidativeATPsupplyinvolvingofprotonleak;

3.overallphenomenologicalATP/O2ratioforoxidative(inthepresenceofprotonleak)and glycolytic(byaerobicandanaerobicglycolysis)ATPsupply,takingintoaccountthenon-mito- chondrialoxygenconsumption.

Studylimitations

Itmustbestressedthatevenawell-

testedcomputermodelcanbeonlyanapproximationofthecomplexreality.

ItislikelythattherelativecontributionofvLK-

relatedV_O2tototalV_O2atrestinbiggermammals(includinghumans)islowerthaninrats.Thisis becausetheprotonleakintensityis

inverselyproportionaltothemammalbodymass[11]andbiggermammalsneedlessthermo- genesisperbodymassinordertomaintainhighconstantbodytemperature.Protonleakintensitycanb eaffectedbyexercise-

inducedmuscletemperatureand/orcytosolicROSincrease.Therefore,thestrictlyquantitativetheore ticalpredictionsobtainedinthepresentstudyshouldbetreatedwithsomecaution.Nevertheless,these limitationsdonotaffectthegeneralconclusiondrawninthepresentstudy.

Conclusions

Computersimulationsdemonstratedthatwhilethecontributionoftheprotonleakthroughtheinner mitochondrialmembranetoVO2waslargeatrestandatlowwork,itdecreasedpro-

gressivelywithworkintensityandbecameverysmallatmoderateandheavy/severework.Theabs olutevalueoftheprotonleakflux(vLK)andvLK-

relatedVO2decreasedtogetherwithanincreaseinworkintensityinskeletalmuscle,whichwascause dbyadecreaseinΔp,giventhatsuchfactorsasROSorelevatedtemperaturedonotstimulateitsign ificantly.Ontheotherhand,theATPsynthesisrate(vAS)andvAS-

relatedVO2increasedlinearlywithworkintensity(ATPdemandactivity).Whileinrestingskeletalmus cleat‘standard’protonleakactivity

thecontributionofvLK-

relatedV_O2tototalV_O2amountedabout60%,thiscontributiondroppedtoabout3%duringmoderateexe rciseand1%duringheavy/severeexercise.Thiswas

duetoahugeincreaseintheATPusageactivityandthusintheATPsynthesis-

relatedV_O2.ThegreatincreaseinV_O2duringrest-to-worktransitionwasdirectlyrelatedtoeach- stepacti-

vation,ESA,ofOXPHOScomplexesandtoactivationofOXPHOSbyADPandPiincrease.Protonleakwas

(15)

notactivateddirectlyanditsabsolutevaluedecreasedduetothedecreaseinΔp.Asaresult,thecontribut ionofLK-relatedVO2tototalV_O2decreasedverysignificantly

(16)

duringrest-to-

intensiveworktransition.Thiswasassociatedwithasignificantincreaseinthephenomenological(inv olvingprotonleak)ATP/O2ratio.Atwo-

foldincreaseintheactivity(rateconstant)ofprotonleakincreasedthecontributionofvLK-

relatedV_O2tototalV_O2toabout80%atrest,about6%atmoderateexerciseandabout2%atheavy/se vereexercise.Aremovalofprotonleak(reductionofitsactivitytozero)wasassociatedwithanincreasei nthephenomenologicalATP/O2ratiobyabout3%duringmoderateexerciseand1%duringheavy/seve reexerciseinrelationto‘standard’protonleakactivity.Therefore,evenlargevariationsintheprotonlea kactivityhaveonlyasmallimpactonthesystempropertiesduringmoderateandheavy/severeexercis e(althoughtheyhaveabigeffectatrestandduringlowexercise).Inotherwords,whateverthe(realistic) contributionofprotonleaktoV_O2atrest,itissmalldur-ingintensework.

Acknowledgments

ThisstudywasfundedbytheKNOWprogram,whichsupportstheFacultyofBiochemistry,Biophysicsa ndBiotechnologyofJagiellonianUniversity.Thefundershadnoroleinstudydesign,datacollectionand analysis,decisiontopublish,orpreparationofthemanuscript.

AuthorContributions

Conceptualization:

BernardKorzeniewski.Datacuration:BernardK orzeniewski.

Formalanalysis:BernardKorzeniewski.Funding acquisition:BernardKorzeniewski.Investigation :BernardKorzeniewski.Methodology:BernardK orzeniewski.

Projectadministration:BernardKorzeniewski.

Resources:BernardKorzeniewski.Software :BernardKorzeniewski.Supervision:Bernar dKorzeniewski.Validation:BernardKorzenie wski.Visualization:BernardKorzeniewski.

Writing–originaldraft:BernardKorzeniewski.

Writing–review&editing:BernardKorzeniewski.

References

1. BrandMD,ChienL-

F,AinscowEK,RolfeDFS,PorterRK.Thecausesandfunctionsofmitochondrialprotonleak.BiochimBiop hysActa.1994;1187:132–139.PMID:8075107

2. BrookesPS.MitochondrialH+lea

kandROSgeneration:anoddcouple.FreeRadicBiolMed.2005;38:12 –23.https://doi.o r g/10.1016/j . freeradbi o med.2004 . 10.01 6 PMID :15589367

3. DivakaruniAS,BrandMD.Theregulationandphysiologyofmitochondrialprotonleak.Physiology.

2011;26:192–205.https://doi.o r g/10.11 5 2/physiol.0 0 046.201 0 PMID :21670 1 65

4. GarlidKD,BeavisAD,RatkjeSK.Onthenatureofionleaksinenergy-transducingmembranes.Bio- chimBiophysActa.1989;976:109–120.PMID:26759 8 0

5. BrownGC,Lakin-ThomasPL,BrandMD.Controlofrespirationandoxidativephosphorylationiniso- latedratlivercells.EurJBiochem.1990;192:355–362.PMID:2209591

(17)

6. KrishnamoorthyG,HinklePC.Non-ohmicprotonconductanceofmitochondriaandliposomes.Bio- chemistry.1984;23:1640–1645.PMID:6722116

7. NichollsDG.InfluenceofrespirationandATPhydrolysisonprotonelectrochemicalgradientacrossinnerm embraneofrat-livermitochondriaasdeterminedbyiondistribution.EurJBiochem.1974;50:305–

315.PMID:4452361

8. RolfeDFS,BrandMD.Protonleakandcontrolofoxidativephosphorylationinperfused,restingratskel- etalmuscle.BiochimBiophysActa.1996;1276:45–50.PMID:8764890

9. RolfeDFS,NewmanJMB,BuckinghamJA,ClarkMG,BrandMD.Contributionofmitochondrialprotonleakt orespirationrateinworkingskeletalmuscleandlivertoSMR.AmJPhysiolCellPhysiol.1999;276:C692–

C699.

10. HarperM-

E,BrandMD.ThequantitativecontributionofmitochondrialprotonleakandATPturnoverreactionstothe changedrespirationratesfromhepatocytesofdifferentthyroidstatus.JBiolChem.1993;268:14850–

14860.PMID:83920 6 0

11. PorterRK,BrandMD.BodymassdependenceofH+lea

kinmitochondriaanditsrelevancetometabolicrate.N ature.1993;362:628–630.https://doi.o r g/10.10 3 8/362628a 0 PMID :83852 7 4

12. BrandMD,CoutureP,ElsaPL,WithersKW,HulbertAJ.Evolutionofenergymetabolism.Protonper- meabilityoftheinnermembraneoflivermitochondriaisgreaterinamammalthaninareptile.BiochemJ.1991;

275:81–86.PMID:1850242 13. EchtayKS,RousselD,St-

PlerreJ,JekabsonsMB,CadenasS,StuartJA,etal.Superoxideactivatesmitochondrialuncouplingprotei ns.Nature.2002;415:96–99.https://doi.o r g/10.1038 / 415096 a PMID:

11780125

14. MarcinekDJ,SchenkmanKA,CiesielskiWA,ConleyKE.Mitochondrialcouplinginvivoinmouseskele- talmitochondria.AmJPhysiolCellPhysiol.2004;286:C457–

C463.https://doi.o r g/10.11 5 2/ajpcell. 00237.200 3 PMID :14522819

15. KorzeniewskiB.RegulationofATPsupplyduringmusclecontraction:theoreticalstudies.BiochemJ.

1998;330:1189–1195.PMID:94940 8 4

16. KorzeniewskiB.Regulationofoxidativephosphorylationindifferentmusclesandvariousexperimentalcon ditions.BiochemJ.2003;375:799–804.https:// d oi.org/10.10 4 2/BJ200 3 088 2 PMID :12901719 17. KorzeniewskiB.Regulationofoxidativephosphorylationthroughparallelactivation.BiophysChem.

2007;129:93–110.https://doi.o r g/10.10 1 6/j.bpc.20 0 7.05.01 3 PMID :17566 6 29

18. KorzeniewskiB.Regulationofoxidativephosphorylationduringworktransitionsresultsfromitskineticprop erties.JApplPhysiol.2014;116:83–94.https://d o i.org/10.115 2 /japplph y siol.00759. 2 01 3 PMID:

24157529

19. KorzeniewskiB.‘Idealized’state4andstate3inmitochondriavs.restandworkinskeletalmuscle.

PLoSOne.2015;10(2):e0117145.https://doi.o r g/10.1371/jo u rnal.pone.0 1 1714 5 PMID :25647 7 47 20. KorzeniewskiB,RossiterHB.Each-

stepactivationofoxidativephosphorylationisnecessarytoexplainmusclemetabolitekineticresponsestoe xerciseandrecoveryinhumans.JPhysiol.2015;593:5255–

5268.https:// d oi.org/10.11 1 3/JP271 2 9 9 PMID :26503399

21. KorzeniewskiB.Regulationofoxidativephosphorylationthrougheach-stepactivation(ESA):Evi- dencesfromcomputermodeling,ProgBiophysMolBio.2016;125:1–23.

22. KorzeniewskiB,ZoladzJA.Amodelofoxidativephosphorylationinmammalianskeletalmuscle.Bio- physChem.2001;92:17–34.PMID:11527576

23. KorzeniewskiB,LiguzinskiP.Theoreticalstudiesontheregulationofanaerobicglycolysisanditsinflu- enceonoxidativephosphorylationinskeletalmuscle.BiophysChem.2004;110:147–

169.https:/ / doi. org/10.1016 / j.bpc.2004 . 01.01 1 PMID :152231 5 1

24. LiguzinskiP,KorzeniewskiB.Metaboliccontrolovertheoxygenconsumptionfluxinintactskeletalmus- cle:insilicostudies.AmJPhysiolCellPhysiology.2006;291:C1213–C1224.

25. GlancyB,WillisWT,ChessDJ,BalabanRS.Effectofcalciumontheoxidativephosphorylationcas- cadeinskeletalmusclemitochondria.Biochemistry.2013;52:2793–

2809.https://doi.o r g/10.10 2 1/ bi3015983PMID:23547908

26. MogensenM,SahlinK.Mitochondrialefficiencyinratskeletalmuscle:influenceofrespirationrate,sub- strateandmuscletype.ActaPhysiolScand.2005;185:229–236.https://doi.o r g/10.11 1 1/j.1365- 20

1 X. 2005.0148 8 . x PMID :16218 9 28

27. LarkDS,TorresMJ,RyanTE,AndersonEJ,NeuferPD.Directreal-

timequantificationofmitochondrialoxidativephosphorylationefficiencyinpermeabilizedskeletalmusclemy ofibers.AmJPhysiolCellPhy-siol.2016;311:C239–

C245.https: / /doi.org/10.1 1 52/ajpce l l.00124.201 6 PMID :27335172

(18)

28. TonkonogiM,KrookA,WalshB,SahlinK.Endurancetrainingincreasesstimulationofuncouplingofskeleta lmusclemitochondriainhumansbynon-esterifiedfattyacids:anuncoupling-protein-mediatedeffect?

BiochemJ.2000;351:805–810.PMID:11042 1 37

29. JarmuszkiewiczW,Woyda-PloszczycaA,KozielA,MajerczakJ,ZoladzJA.Temperaturecontrolsoxi- dativephosphorylationandreactiveoxygenspeciesproductionthroughuncouplingInratskeletalmus- clemitochondria.FreeRadicalBiolMed.2015;83:12–20.

Cytaty

Powiązane dokumenty

Thus, the aim of this study is to explore and analyze the metabolic and perceptive responses of trained subjects during dynamic squat at relatively high intensity performed

Acta of Bioengineering and Biomechanics Vol. Consequently, the foot became an object of study in order to understand the discomfort and pain in the lower limb. The aims of the

na polu teologii moralnej łączy się ściśle z jego pracą w dziedzinie pedagogiki.. Zrywając ze ścieśnioną definicją

The main purpose of the present study was to compare the effects of three different set configurations (TT, CL1 and CL2) on percep- tual responses, physiological indicators

In addition, the results of the present study showed that running promoted higher VO 2 than cycling exercise when performed at the same relative intensity, and it should be

Evaluation of the gene expression after both intensive and low-intensity exercise revealed that some genes changed expression in an intensity-dependent man- ner, but others did

The important role of the mTOR pathway in andro- gen-induced skeletal muscle hypertrophy is supported by an in vivo study, in which a rapid increase in the phosphorylation of p70

After the 4 weeks of resistance exercise training, five proteins, apolipoprotein A-IV precursor, microtubule-actin cross linking factor 1, myosin light chain, growth