• Nie Znaleziono Wyników

—+-j^<l, 0<4<aJ for exterior of an elliptic domain On the Diriclilet problem îor interior and

N/A
N/A
Protected

Academic year: 2021

Share "—+-j^<l, 0<4<aJ for exterior of an elliptic domain On the Diriclilet problem îor interior and"

Copied!
4
0
0

Pełen tekst

(1)

ANNALES SOCIETATIS MATHEMATICAE POLONAE Series I: COMMENTATIONES MATHEMATICAE X X (1978) ROCZNIKI POLSKIEQO TOWARZYSTWA MATEMATYCZNEGO

Séria I: PRACE MATEMATYCZNE X X (1978)

Jàn Gorowski (Krakôw)

O n the Diriclilet problem îor interior and for exterior of an elliptic domain

1. In the present paper we shall give a solution of the Diriehlte problem for the domain

( а?2 у г )

— +-j^<l, 0<4<aJ

and

_ [ x 2 y 2 I

Gz = CGX = |(®,y): — > 1, 0 < b < a j.

We shall construct

1° the function и such th at

(1) Au(x, y) = 0 for {x, y) e Gx

and

(2) ' и(я,У) = f ( x , y ) for (x , y ) e d G : 2° the function w such th at

(3) Aw(x, y) — 0 for (a?, y) e Gz,

(4) У) = 9(x, У) for ( x, y) e dGx

and w(x, y) is bounded in the domain Gz.

The given functions f, g are continuous on the boundary dGx and f{aco&<p, & sin99) is a function with of the bounded variation with respect

a e [ 0 , a 0] ,

<p e [0, 2n], where e > 0, a = ccosha0, b = csinha0.

to the variable <p (<p e [0, 2n]).

2. Let

x = ecoshacos<

y = csinliasinç (5)

(2)

338 J. Grôrowski

By the transform (5) we get

(6) AU =

c2(sinh2a + sill2*??) (■^ao U + U) — 0,

In the sequel we shall use method of separation of variables. We assume th a t

u = U M - U M , where U2e (72(0, 2n) is a periodic function.

Consequently we get the system of the equations (7) Ü Ï M + W ^ a ) = 0, U2 (<p)-AU2(<p) = 0 and we obtain À = —n 2 (n = 0 , 1 , 2 , . . . ) . Hence

(8) U " ( a ) - n 4 J x(a) = 0, U2 (<p) + n 2U2(<p) = 0. The functions

Ui (a) = Л 0+ В 0а (n = 0 ) ,

Z7“(a) = A wcoshw a+B wsinhwa (n — 1 ,2 , ...), U2{(p) = А'по,о%щ +B'nmin(p (n = 0 , 1 , 2 , . . . ) .

A 0, A'0, A n, A'n, B 0, B'0, B n, B'n being constant they are the solutions of system (8).

Consequently we get U ° = C 0+Doa (n = 0),

Un = СпеовтрсовЬпа+Впсовп<рвтЪ.па +

Л-Епsinmpcoshna + E ns in ^ s in h ^ a (n = 1 ,2, ...).

We assume th a t

(9) (grad U)2 < oo.

We have

(10) (grad U f =

c2(sinh2a + sin2ç>) and by (9) and (10) we obtain

Д) = 0, В n = E n = 0.

Hence the solution of equation (6) has the form

{ { B ^ f + ^ U f )

(11) U(a, <p) OlQ

~2

v i /coshna sinlma \

> — :---

апъовп(р-\-

-г-:--- ônsinwœ Z» = j1 \coshwa ' 0 n r sinhwa0V I

(3)

Dirichlet problem 339 Let

(12)

and

1 “n

an —— I f(t)cosntdt, n — 0 , 1 , 2 , . . . , n J0

1

bn = — f(t )si nntdt, n = 1,2, . . . ,

7C J

«о / cosh wa p . v ( « , ? ) = T + 2

П = 1

sinhwa . \ bnsmrup ,

sinhwa0 /

For the sequence y)} the asumptions of the Harnack theorem are fulfilled and consequently the function

an vh / coshna sinhna 7 . \

U{a,q>) = — + } ---- :--- ano,o%ncp + — ---

2 \coshwa0 sinhwa0 /

H = 1 is a solution of problem (1), (2).

By the Ham ack theorem we get

2тг

<l3> Р(“’^ = ^ / /(()[1+2Л

\H / coslma

coshwa0c o s nt C O S Щ)

smhwa . . \1 , -1--- smntsmmp) \dt

sinhna0 / J

and finally we get the following

T h e o r e m 1. The function defined by formula (13) is a solution of problem (1), (2).

3. Now we shall construct the solution of problem (3), (4). By the transform

x — ccoshacosç?, a e [a0,oo), y = csinhasinç?, <p e [0, 2л], (14)

we get equation (6).

Similarly as in the foregoing p art we get W°(a, q>) = A 0+ B 0a {n = 0),

wn(a, cp) = A ne~naeosncp + B nenaco$n<p +Cnenasinncp +Dne~nasinncp (n = 1, 2, ...)•

Assuming th a t the function w is bounded we obtain B o = 0, B n = = 0.

(4)

340 J. Grôrowski

Hence the solution of equation (6) for the domain 0 2 has the form (15)

Let

0 V—1 ô

w(a,<P) : p ^ ( cnCOS^ + dnsinw<p).

2rc

cn

= — I

g(t)co$ntdt

TZ J

0 1 27T

= — I

g(t)sinntdt TC J 0

( n = 0, 1,2, . . . ) ,

(w = 1» 2 » •••)•

I t follows from the uniform convergence of the series (15) in the set (a0, oo) x [0, 2tc] th at

2tc oo

w(a,<p) = -^—J 9(t)j^l + 2 en(a°~a)cosn(t —ç?)jd£.

0 «-1

By ([2], p. 50)]Jwe obtain (16) w (a , 99)

2jt

i / * ( , )

sinh(a — a0)

cosh(a —a0) —cos(<- dt

1 ? 1 — (ea°~a)2

«(Л ---dt.

2tc J yv ' l - 2eao~“c o s(* -9>) + (ea«-a)2

By ([!]? P- 259) the function defined by formula (16) satisfies the boun­

dary condition (4) and finally we get the following

Theorem 2. The function defined by formula (16) is a solution of problem (3), (4).

R e f e r e n c e s

[1] M. K r z y z a n s k i, Bownania rôzniczkowe czqstkowe rzçdu drugiego, tom I, War­

szawa 1957.

[2] I. M. R y z y k i I. S. G r a d s z te jn , Tablice calek sum szeregow i iloczynow, Warszawa 1964.

Cytaty

Powiązane dokumenty

[r]

We shall construct the Green function by the method of symmetric images for the half-plane x 2 &gt; 0... Let &lt;p(yx) be a function defined on the real axis

Series (3) is absolutely summable by the classical Abel method... The absolute and strong summability of orthogonal

In this paper, we shall investigate some properties of the summability methods of the Gôrowski type for a numerical series and the Fourier series.. Summability

In monograph [2] th e theorem concerning th e convergence of the Poisson integral for boundary continnons fonction is given.. In th e present paper we shall

In our work we give a complete proof of the fact that the optimal esti- mates for eigenfunctions can be obtained by the assumption that the preci- sion of the

We propose the Galerkin method with finite-dimensional spaces based on the Lagrangean finite element of degree k £ N (see Sec.. In the case of strong ellipticity

In the case of the Laplace equation we can transform the basic problem into an integral equation on the boundary of the domain by using the single or double