• Nie Znaleziono Wyników

A generalization oî the Riesz-Thorin Theorem

N/A
N/A
Protected

Academic year: 2021

Share "A generalization oî the Riesz-Thorin Theorem"

Copied!
10
0
0

Pełen tekst

(1)

A N N A L E S S O C I E T A T I S M A T H E M A T I C A E P O L O N A E S e r i e s I : C O M M E N T A T I O N E S M A T H E M A T I C A E X V I I ( 1 9 7 3 )

R O C Z N I K I P O L S K I E G O T O W A R Z Y S T W A M A T E M A T Y C Z N E G O S é r i a I : P R A C E M A T E M A T Y C Z N E X V I I ( 1 9 7 3 )

M agdalena J aroszewska (Poznan)

A generalization oî the Riesz-Thorin Theorem

1. Introduction, notation. The aim of this paper is to prove a gener­

alization of the Riesz-Thorin Theorem on interpolation of linear operators {for the Riesz-Thorin Theorem see [7]), where T is an operator from LP(Q) to L (q,X)(û) (both spaces with mixed norm). We also formulate here a theorem which gives an application of this generalization. The results contain those of Campanato and Murthy [4], and Benedek and Panzone [

1

].

The index i =

1

, n everywhere, unless otherwise stated. Let R be the set of real numbers, m{ >

0

, integer,

1

< pt- < со, 1 < < oo, p 1 > ... ^ p n, q 1 > ... > qn, 0 < < mi Jr p i . In the following we shall apply vector notations, i.e. p = (px, ..., p n), x = (x1} ..., xn) etc. Let Q{ be open, connected, bounded subsets of the real Euclidean space Rmi. By d(Qi) = $ we denote the diameter of Q{ and we write Ü = Pi=i &i, & = P rl=lQi . Let I (Xe-, q {) c= Rmi be the ball with centre at x°te Q{ and radius q ,-> 0 and let Sf = T(x\, gt) д(х0, g) = P?=

1

I(®?, &'), S = I (x0, g)nQ.

We suppose that the boundary дй{ of is of Lebesgue measure zero in Rmi and that satisfy condition (A) (see [5]). To simplify the notations, we shall write, for example:

\f(x)\dx = J . .. J I f(x)\dx1 . . . d x n,

/ \f(x)\»dx = H/|ÇÎ(S) = / 1 ... ( / I/ ( *)[”' .

Ъ $> Ьп

In this paper we use the definitions of L iP,X)(Q) and M^P,X)(Q) spaces from [5] and [

6

]. The definitions are slightly modified so that numbers Аг- related e.g. to M (P,X)(Q) should be substituted, in the definition and elsewhere, by numbers Яг-— P Again, if we refer to results of those papers,

Рг p n

we accept this modification. Then e.g. condition A* > —- mi should be substituted by Яг- > etc.

/

(2)

2. Definition. We shall denote by L^P,^(Q) the space of functions / locally integrable in Q, for which there exists a positive constant M depending on f such that for every x0, q with x\ eQ{) 0 < q { < there holds the inequality

( 1 ) Then

inf f Jf ( x ) - c \ pd x < M ( f ) П f= i

( 2 )

П

\\\f\\\L(p>*)(0) = sup { / 7 QihPn,n inf / \ f{x)-c\ pdccy/Pn = in f[iif(/)]1/J?«

*=1 ceRbS

0 <6{<еЧ

is a seminorm in l t p,^(Q). It is easy to show the fact: if / e L iP,^(Q)f then for every x 0 , q with e , 0 < q { < q *- there exists only one constant о depending on x0, g , f such that

(3) inf j \f { x ) - c \ pdx = J \ f ( x ) - c { x 0, Q,f,p)\pdx.

ctRbs ь«

The existence of the only one constant c follows from the uniform con­

vexity of the space I^(S). It follows from (2) and (3) that the seminorm in L M (D) can be expressed as:

(4) lll/llli(P,V) = su? { f j e î hPnlPi f I f { x ) - c { x Q, e J , p ) \ pd x y IPn.

x V e â i i=

1

bS

o

The space L (P,*](Q) is a normed space with three equivalent norms (6), (6) and (7):

(б) ||/|1ьМ,0, = { ll / f ô ( 0) + lll/lll2h>.4(fi)}lft’",

( 6 ) = Шта) + ШЯ 1 Ы ы,

(7) п

= \]f\\mQ) + sup { f ] Qï*ipnlpi J \f(x) - c { x ü, Q J , 2)1 pdx}llPn.

xi eûi i==1 0< Q i«ï\

The equivalence of norms (5) and (6) is obvious, but the equivalence of norms (6) and (7) we shall prove in Lemma 1, separately. Let %{x0, q ) be the characteristic function of the set S. Then we observe that X'C(x0, Q,f, 2) is the projection of %- f , f e L 2 (Q) on the line {%•<?: ceR}

c L 2 (Q) (where L 2 (Q) denotes the space LP(Q) with p = (p 19 . . . , p n)t р { = 2 ) and then, among others the correspondence f X'G(xoi

is linear and continuous from L 2 (Q) to {%'C\ ce R}.

(3)

Biesz-Thorin theorem 89

L emma 1. I f e L {p,^{Q), 2 < < oo and condition (A) is satisfied, then

(8) ll/llz,(p>A)(fl) II/II i ,( p * a )(/3) ^ cill/z,iP>A)(«)ll •

P roof. It is sufficient to prove the right-hand side of inequalities (

8

), because the left-hand side one is obvious. Let us fix x\e û i , 0 < < q

Let f e L iP^{Q), pi ^ 2 . It is easy to see from the Holder’s inequality that L (P,X){Q) <=. L(

2

,A)(i3). It is clear that

И^о, Q’f ’ P ) - c (xo? 2 )12

< 2 2|c(a?0, Q , f , p ) - f ( s o ) \ 2 -\-2*\c(x0, 6 , f , 2 )- f{x) \K Integrating both sides of this inequality with respect to x{ on St, succes­

sively, for i — 1 , n, applying condition (A) we get (9) 1 ф 0 , в , / , р ) - с ( ! 1 ; 1 „ в , / , 2 ) \ ^ 2 [ ] к Г 112 еТт* 12 У~

г'= 1

x{( J \c(x0, e , f , p ) - f ( x ) \ 2dx)ill2 + ( J \ f { x ) - C( x 0, Q,f,

2

)|

2

<L?)1/2}

bs . b$

П

2 / 7 K 112 Qimi'2 {( f \o{æ0, Q , f , p ) - f ( x ) \ 2d x y 2+ .

*=i

+ ( / \f(oo)-c{xQ, e , / , p ) |

2

<&r)1/2}

ft®

22f j K m Qrmil2{ j \Фо, Qj,p)-f(v)\Pdæ}llPn-fl[p(Si)fpi-2^

i —l bS i = l

n

C z f l

Next, it is also clear, that

\ f ( x ) - c ( x o, Q, f, 2)\Pl < 2pi \ f ( x ) - c ( x 0, Q, f , p ) l Pl +

+ 2р1 |с(я?о, Q, f , P ) - c ( x o , e , f , 2 ) Г . Integrating both sides of this inequality with respect to x{ on suc­

cessively, for i =

1

, ..., n and rising to the suitable powers, we obtain (10) { / \ f ( x ) - c { x 0, g , f , 2 ) \ pd x y IPn

bs

< 2 { f l f ( x ) - c ( x 0, f , p ) \ pdx}llPn +

b$ П

+ 2 \c(x0, Q , f , p ) - c { x 0, Q, f, 2 ) \ [ J [ p { S i ) f lpi.

(4)

From (9) and (10) we get

{ / 1 f ( x ) - c ( x 0, e J , W d x } llp« ^ C s f l & ' Vil \ m LiP’*Ha>,

foS i=

1

hence

n

sup { П QÏhPnlPi / If ( x ) ~ G(xo, Q,f, 2)1 pdxy,Pn < C 3 \\\f\\\L(p,x){Q)

i= 1 bS

о<в{<е\

and hence the thesis follows. _

We shall introduce the product space Ca(0) and we shall prove the isomorphism of L^P,X)(Q) and Ca{Q) under some assumptions, applying the method of Campanato [3].

D efinition . We shall denote by C(Q) the space of continuous func­

tions / in Q.

It is a Banach space with the norm ll/llc(5j =* sup //(я?) I.

xeSi

D efinition . We shall denote by Ca(Q) the space of functions / which, for every , yi e Qi , satisfy the Holder’s condition in Q with the exponent a = K , ..., a j

П

\ f ( v) - f ( y) \ < K [ ] \xi - V i \ ai,

0

< аг <

1

. г=1

The space Ca{Q) is a Banach space with the norm

(

11

)

The term

ll/llo»(5) sup \f{%)\ + sup xeü xi>VieSii

xi*Vi

\fix) - f { y ) \ n

П \xi-Vi\ai

is

11 l/l I lca(fi) sup xi,Vi‘Qi

\f(x ) - f ( y ) i n

П \xi-Vi\ai

г= 1

a seminorm in Ca{Q). It follows from Theorem 2 [5], that

_ } , __ /kb) ,

L (P,X){Ü) c= Ca{Q), where щ = —--- -.

Pi

T heorem 1. If condition (A) is satisfied, mt < A* < Щ + Ри

■at = (Аг- —т г-)/рг-, then spaces L(V,X)(Q) and Ca(Q) are isomorphic.

(5)

Biesz-Thorin theorem 91

Proof, (a) Let х г , у { е й { , let f e l S p,^( Q) . It is easily to find from (23) [5] that

sup 11 l/l 11ьОМ)(я) •

xi>Viepi /7 \x. — y.\ai 1 1 i=l

We have from (16) [

6

]

П

N®, eJ) < см\и»мт -[J ep-m‘)№ <

г=

1

n и гг-

^5ll/lli(P>A)(fl) j f j &i Pi ^ ll/llz,(P>A)(0)-*

Applying Lemma 3 [5] and Theorem 1 [5] we get Sup|/(a?)| Cfe||/Hi (p,A)(lî) ctiid W

6

deduce next

ZcQ

\ ~f ( qq \ _f {'ll} I

snp I/(x) I + sup_ —---< C 7 (||/||х(р,А)(Я) + M l/l I\ l № \ q )) xeQ х%уф U \ xi - y i \ ai

an<i 11/11^“ (^) < 11/11ь(г»>А)(Я) •

(b) Let fe Ca( ü ), х{, у{ e $ t- c It is clear that П

{inf j \ f ( x ) - c \ pdx y iPn < J

11

l/l I lca(«) • ] 7 l ^ -

2

/ilai

СеЛЬ«

i = 1

n n

< c.111Л ! /7 f>? / to < c10 ■ • 111/II ic.(Bj • /7 е.-л

» = l 51S i = l

hence

I I l/l I li(P»A)(fi) ^ ^10 I I l/l I ^ “(Й) and

||/|1х(г>.А)(0) ^ ^п11/11са(й)- Prom (a) and (b) the thesis follows.

3. We shall denote by I a linear operation defined for all simple functions / on X — Pi= 1 Rli into the class of measurable functions on Г = Р » =1ЕЧ Let 8 = Р г?=1#г- = Р£=

1

[

1

(жг-, д{) п й {] and let (7) denote the norm in the space L(P,X)(Q).

T heorem

2

. Let the linear operation T be continuous simultaneously

from L p 1 (Q) to l } ,l>’V){Q), where f = (p[, = («}, •••? £«)•

(6)

V = (А{, A^), j = 1 , 2 , such that for every fe L p7 (O) there holds the ine­

quality

hen for every 0 < t < 1, T is a linear operation from LP(Q) to where p , q, A are defined in the following way :

1 l - t t

H--- 2 » % = 1,

Pi p\ Pi

1 l —t t

—1 H--- if. г = 1,

9% 9i 9i

Af l - t t „

A + — AJ, i = 1,

«< 9 a 9i

and there holds the inequality (13)

Proof. We introduce the notations

Pj

=

(Pi, --- j PL)

=

P

=

(Pi, --',Pm)

=

' 1 i \

9j = (9i, ■ / 1

" V r

J 5

ii

' i i \ II ч / 1

, • ■- , — , ~ ( л ,

, «1 /

i =

1

,

2

. We define the functions:

at (z) = ( l —z)ai+za*j i = l , . . . , m , Pi(%) = ( 1 - * ) $ + * $ , i = 1, .. . , w,

? 4 {t)pi{t) =

( 1

—t)A}# + zA?/Sj, i = 1 , z = Ç + iy.

We have, in particular : a^tf) = аг-, /1г-(/) = /Зг-, а*(0) = aj, /?г-(0) = $•

аг(1) = < $ , Ш = fi , АЛО)А(О) = А}Д, A, (l)^(l) = AJ/?J.

Let ns fix 0 < t < 1. At first, we suppose that qi > 1. Let «я/c ,Q,

j / — measurable subset. We denote by the vector space of simple

functions on s/, which are finite, linear combinations of characteristic

functions of measurable subsets of We know from [1] that SF{sé)

is dense in Lp{s4) for p { > 1. It is sufficient to prove (13) for / е ^ ( ^ )

Let ns take z in the strip 0 < £ < 1. Let f e ^ r(Q), g € ^( S) and \\f\\jj>ia) = 1*

(7)

Biesz-Thorin theorem 93

ilflUii-fys) — 1* We define, as in [1], the functions:

Vi = Vi(xi+ 17 •••:> Я'то)

...7® to )II£(^ .... ÿ (pi

<pj = v A V i + i , ••• , У п )

/ i ! » l - f y + i(*) 1-^(в)

ii i— i FT T| ■,Iz^/(p|=1sfc)] 1-^+l 1-^'

1 < г < га — 1, 1 < j < n — 1,

ai+i(*) ai(z)

1 ° i+ l ai ,

“i W

Fz{xi, . . . , x m) = |/| “i signf - f j ip{,

i — 1 n — 1

1 - W

GziVi, - = \g\ -signg f j v j .

We see that for z = i!: Ft = / , ^ = g and we have (see [

1

])

= K ,!l (

4

-....,

ато(°))(Д)

1n j nLV(0)

|Я|ато(°)/ато =

1

= ii ? 1+,-, ii ( * ....

1

\

to O)/^) = =

1

and ||Gy _L_ = 1 , ll^l+ij - i - =

1

.

l ' - p H s ) Let ns consider the function

»(*,

0

,

2

) = / / f T F , - G , d y + f [ I F , - c ( x , e, TFS, 2)]G,dy.

i = l S S

Let ns fix x , q . The function h(x, q , z ) satisfies, in the strip

0

< £ <

1

,

* = £ + assumptions of the three-lines theorem (see [7], p. 93). If /€#"(£), TFZ is of the form

S т о -1

T F Z - V [ J é ÿ ^ I i x , ) , 7 = 1 »'=1

where ci;- are constants ^

0

, li} are linear expressions in z, Xj are character­

istic functions of some parallelepipeds. Simultaneously

S

то—1

Ф , e , t f

2

) = у f f 4 №-с(х, e , t x„

2

),

7 = 1 i = l

7

= 1 г=1

Substituting this in h(x, g, z ), we see that A (a?, g, г) is a finite linear

combination, with constant coefficients, of exponentials az with a >

0

.

Then we apply the Holder’s inequality to the function h(x, q , z ), when

(8)

0

= щ. From the previous assumptions and considerations, we get

n i i I

IЛ(®, e , » ) l ' < / 7 e V *| / TFin-Qin-dy\ + \ $ [TFirj — c(x, e , T F irj,2)]Giridy\

k = I S S

n 1 X

< 1 П e / * \\TFiv\\ + \ \ T I \ - c ( x , в, I F in, 2)11 . Ив,.,II -L .

L (l ( S ) ^ L 1~P {S

» 1 1 n l 1

= f ] e ^ { l |I ’J ’iJ i5l(s,+ [ J e l V 4 T F in- c ( x , в, TF^, 2 )IIl , !(J

k = 1 *=l

n , x W 1 1 n l l

< П ft— X < ft — П - x = п ft—

X

In an analogous way we deduce that

Щх, e, 1 +»4)l < f j e t l \\TF1+ij L i M m < f j а ¥ * - м , .

i =l &= 1

Applying the three-lines theorem we get for 0 < t < 1 П

(14) Ih(x, в, «)| < И ^ - м Щ е ^ к i= 1 From the definition of || • it follows that

П П

(15) f ] L m + П eT 4 fi\ \ Tf - c( x, e, Tf, 2)||i3(S)}

г'= 1 i — l

= sup \h(x, Qy t)l for g e ^ ( S ) and ||g|| _j_ = 1 .

9 l}~PV3)

From (14) and (15) for every x, g with x ^ ü ^ 0 < g{ < g% there hold»

the inequality

П

ll2ynW(sl+ / 7 еГ>лт - с ( х , e , T f , n \ L 4 m < M \ ~ ‘Ml г=1

and hence

т ы ^ х щ < м \- 'м \

for every f^ ^ { û ) with ||/||хд>(л> = 1- At last we get the thesis:

№f^Lq,k{Q) ^ M\ 1 M^jWjjp^Qy

If ft = 1, we set Fz as previously in the proof and Gs — g.

(9)

Riesz-Thorin theorem 9 5

We know from [

6

] and from 2. of this note the following facts:

(a) L^>X\Q ) = M M (Q), 1 < pi < o o , 0 < < mif

2 ,_ /yyi.

(b) L{P'X){Q) = Ca{Q), 1 < Pi < oo, щ < At <

1

- Pi Let T be a linear, continuous operation from LP(Q) to some space with the norm equivalent to the norm || 'llL{p,x)^Qy We shall denote by M ( p , A) the norm of the operation T. We shall formulate the next theorem, taking into consideration (a) and (b).

T

h e o r e m

3. Let condition (A) be satisfied, let the linear operation T be continuous, simultaneously, from Lp (Q) to L 9 (Ü) and from Lp (Ü) to C° 2 (0), 0 < af < 1, such that

\\Tf\\Lql(Q) < M , ( q \ 0)11Л1ьЛо),

\\тпс >ъ ^ м м , т \ \ ^ ау We set for

0

< t <

1

1 Pi ~

1 — t t

Pi + Pi ’ i = 1, •••, m, 1 1 — t t

! + 2 > ^ — 1) •

% 4i Ф • • , n ,

then

A = 4i

t - p A = t 4

1 2 , mA

Г + 1 Г ) , i = 1 , 2 , n,

Tïb • / (P

1 ° if 0 < i < —-—-—— -, then T is a linear operation from LP(Q)

a i + щ /О л

to L( 9 ,X\Q ) and there holds the inequality

m-jqf

if —^ —-——г < t < 1 , then T is a linear operation from LP(Q)T

<4 + q\

_ r¥Yb* 77Ъ’

to Ca(Q), = t ~ --- - = ta\ —

( 1

— t ) — and there holds the inequality

Q .% Q.i

w \ \ ^ B) = < ^ ; - v , о )M‘ 2 ( q \ m n m a y

References

[1] A. B e n e d e k and R. P a n z o n e , The spaces L p with m ixed norm , Duke M ath.

J. 28 (1961), p. 301-324.

[2] S. C a m p an a t o, Proprieta di H ôlderianita di alcune classi di fu n zio n i, Ann. Scuola.

Norm. Sup. di Pisa 17 (1963), p. 175-188.

(10)

{3] Proprieta di una fam iglia di spazi funzionali, ibidem 18, 1964, 137-160.

[4] —, M. К . V. M u r t h y , TJna generalizzazione del teorema di Riesz-Thorin, ibidem 19 (1965), 87-100.

[5] M. J a r o s z e w s k a , Holder's condition of some function spaces , Prace Mat. 15 (1971), p. 75-86.

(6] Przestrzenie L(p’X)(Q) i Pasc. Math. (1972), in print.

(7] A. Z y g m u n d , Trigonometric series, vol. II, Cambridge U niversity Press, 1959.

Cytaty

Powiązane dokumenty

Here we shall offer simplified proofs of these results by showing that the topology τ max is also complete and coincides with τ max LC on countable-dimensional spaces.. The author

Key words and phrases: functional inequality, subadditive functions, homogeneous functions, Banach functionals, convex functions, linear space, cones, measure space, inte- grable

As every plurisubharmonic function can be approximated by a de- creasing sequence of smooth plurisubharmonic functions, algebraic properties of the Monge–Amp` ere operator acting

Let Z, N, Q be the sets of integers, positive integers and rational numbers respectively.. In this note we prove the following

The statis- tical model for stochastic processes, defined by (1), is essentially more gen- eral than that considered in Magiera and Wilczy´ nski (1991) (it also contains some models

We study some properties of the maximal ideal space of the bounded holomorphic functions in several variables.. Two examples of bounded balanced domains are introduced, both

The Christensen measurable solutions of a generalization of the Go l¸ ab–Schinzel functional equation.. by Janusz Brzde ¸k

Indeed, a rather useful theorem of Kechris, Louveau and Woodin [6] states that a coanalytic σ-ideal of compact sets is either a true coanalytic set or a G δ set.. For each