• Nie Znaleziono Wyników

COLLOQUIUM MATHEMATICUM

N/A
N/A
Protected

Academic year: 2021

Share "COLLOQUIUM MATHEMATICUM"

Copied!
11
0
0

Pełen tekst

(1)

VOL. 84/85 2000 PART 2

A Z d GENERALIZATION OF THE DAVENPORT–ERD ˝ OS CONSTRUCTION OF NORMAL NUMBERS

BY

MORDECHAY B. L E V I N (RAMAT-GAN)

AND

MEIR S M O R O D I N S K Y (TEL-AVIV)

Dedicated to the memory of the late Anzelm Iwanik, a friend and fellow mathematician

Abstract. We extend the Davenport and Erd˝ os construction of normal numbers to the Z

d

case.

1. Introduction. A number α ∈ (0, 1) is said to be normal to the base b if in the b-ary expansion of α, α = .d 1 d 2 . . . (d i ∈ {0, 1, . . . , b − 1}, i = 1, 2, . . .), each fixed finite block of digits of length k appears with an asymptotic frequency of b −k along the sequence (d i ) i≥1 . Normal numbers were introduced by Borel [B]. Champernowne [C] gave an explicit construc- tion of such a number, namely

θ = .123456789101112 . . .

obtained by successively concatenating all the natural numbers written to base 10.

Let ϕ(x) = αx r1 x r−1 +. . .+α r−1 x+α r (α > 0, r ≥ 1) be a polynomial with integer coefficients such that ϕ(n) ≥ 0 (n = 1, 2, . . .). Davenport and Erd˝ os [DE] generalized Champernowne’s construction and proved that the number

.ϕ(1)ϕ(2) . . . ϕ(n) . . .

obtained by successively concatenating the b-expansions of the numbers ϕ(n) (n = 1, 2, . . .) is also normal. We refer the reader to other generalizations of Champernowne’s construction which appear in [AKS] and [SW].

In [LeSm] we extend Champernowne’s construction to Z d , d > 1, ar- rays of random variables, which we shall call Z d -processes. We shall deal with stationary Z d -processes, that is, processes with distribution invariant

2000 Mathematics Subject Classification: Primary 11K16, 28D15.

Work supported in part by the Israel Science Foundation Grant No. 366-172.

[431]

(2)

under the Z d action. We shall call a specific realization of a Z d -process a

“configuration”.

In this note we generalize the Davenport and Erd˝ os construction to the Z d case. For the sake of clarity, we carry out the proof only for the case d = 2. The generalization for general d > 2 is easy and straightforward. We begin with a very simple generalization (see also [Ci] and [KT]).

We denote by N the set of non-negative integers. Let d, b ≥ 2 be two integers, N d = {(n 1 , . . . , n d ) | n i ∈ N , i = 1, . . . , d}, ∆ b = {0, 1, . . . , b − 1}, Ω = ∆ N b

d

.

We shall call ω ∈ Ω a configuration (lattice configuration). A configura- tion is thus a function ω : N d → ∆ b .

Given a subset F of N d , ω F will be the restriction of the function ω to F . Let N ∈ N d , N = (N 1 , . . . , N d ). We denote a rectangular block by

F N = {(f 1 , . . . , f d ) ∈ N d | 0 ≤ f i < N i , i = 1, . . . , d},

h = (h 1 , . . . , h d ), h i ≥ 1, i = 1, . . . , d; G = G h is a fixed block of digits G = (g i ) i∈F

h

, g i ∈ ∆ b , χ ω,G (f ) is the characteristic function of the block of digits G shifted by the vector f in the configuration ω:

χ ω,G (f ) = n 1 if ω(f + i) = g i , ∀i ∈ F h , 0 otherwise.

(1)

Definition. ω ∈ Ω is said to be rectangular normal if for any h ∈ N d and block G h ,

#{f ∈ F N | χ ω,G (f ) = 1} − b −h

1

...h

d

N 1 . . . N d = o(N 1 . . . N d ) (2)

as max(N 1 , . . . , N d ) → ∞.

As remarked, in what follows we shall consider the case d = 2.

Construction. The map

L(f 1 , f 2 ) =  f 1 2 + f 2 if f 2 < f 1 , f 2 2 + 2f 2 − f 1 if f 2 ≥ f 1 , (3)

is a bijection between N and N 2 , inducing a total order on N 2 from the usual one on N . Let I n = [α −1/(2r) b 2n

2

/r ], n = 1, 2, . . . We define the con- figuration ω n on F (2nI

n

,2nI

n

) as the concatenation of I n 2 2n × 2n blocks of digits with the lower left corner (2nx, 2ny), 0 ≤ x, y < I n . To each of these blocks we assign the number ϕ(L(x, y)). Next we use the b-expansion of ϕ(L(x, y)) according to the order L to obtain the digits of the 2n × 2n block considered. It is easy to obtain an analytic expression for the digits of the configuration ω n :

ω n (2nx + s, 2ny + t) = a L(s,t) (u), (4)

where

u = u(x, y) = ϕ(L(x, y)),

(5)

(3)

s, t, x, y are integers, 0 ≤ x, y < I n , 0 ≤ s, t < 2n, and n = X

i≥0

a i (n)b i (6)

is the b-expansion of the integer n.

Next we define inductively a sequence of increasing configurations ω n on F (2nI

n

,2nI

n

) . Put ω 1 0 = ω 1 , ω n+1 0 (f ) = ω 0 n (f ) for f ∈ F (2nI

n

,2nI

n

) and ω n+1 0 (f ) = ω n+1 (f ) otherwise. Put

ω = lim ω 0 n , (ω ) F

(2nIn,2nIn)

= ω 0 n , n = 1, 2, . . . (7)

Theorem. ω ∞ is rectangular normal.

The proof of the Theorem is given in Section 3.

2. Auxiliary notation and results. Let (u x ) x≥0 be an arbitrary se- quence in [0, 1). The quantity

D(N ) = D((u x ) N −1 x=0 ) = sup

γ∈(0,1]

1

N #{0 ≤ n ≤ N − 1 | u x ∈ [0, γ)} − γ (8)

is called the discrepancy of (u x ) N −1 x=0 . The sequence (u x ) x≥0 is said to be uniformly distributed in [0, 1) if D(N ) → 0.

To estimate the discrepancy we use the Erd˝ os–Tur´ an inequality (see, for example, [DrTi], p. 15)

N D(N ) ≤ 3 2

 2N

H + 1 + X

0<|m|≤H

| P N −1

x=0 e(mu x )|

m

 , (9)

where e(y) = e 2πiy , m = max(1, |m|) and H ≥ 1 is arbitrary.

We shall use the following Weyl inequality (see, for example, [DrTi], p. 15):

L

X

x=1

e(ψ(x))

≤ C(θ)L 1+θ (q −1 + L −1 + qL −k ) 2

1−k

, (10)

where ψ(x) = βx k + β 1 x k−1 + . . . + β k−1 x + β k , |β − p/q| < 1/q 2 , (p, q) = 1 and θ > 0 is arbitrary.

3. Proof of the Theorem. Consider the configuration ω n , where n satisfies the following inequality:

2(n − 1)I n−1 ≤ max(N 1 , N 2 ) < 2nI n . Let h 1 , h 2 ≥ 1 be integers and

d i

1

,i

2

∈ {0, 1, . . . , b − 1}, 0 ≤ i 1 < h 1 , 0 ≤ i 2 < h 2 .

We consider the block of digits G = (d i

1

,i

2

) 0≤i

1

<h

1

, 0≤i

2

<h

2

, the configuration

ω n , and the block of digits ω 0 = (ω n (i, j)) 0≤i<N

1

, 0≤j<N

2

.

(4)

To compute the number of appearances of the block G in the configura- tion ω 0 , we introduce the following notation (see (1)):

V n,G (L 1 , M 1 ; L 2 , M 2 ) (11)

= [

(i,j)∈[L

1

,L

1

+M

1

)×[L

2

,L

2

+M

2

)

{(i, j) | χ ω

n

,G (i, j) = 1}, V n,G (N 1 , N 2 )= V n,G (0, N 1 ; 0, N 2 ).

(12) Let

N 1 = 2nN 11 + N 12 , N 2 = 2nN 21 + N 22 , with N 12 , N 22 ∈ [0, 2n).

(13)

Next, we fix s, t ∈ [0, 2n), and compute the number of appearances of G in the configuration ω 0 = (ω n (i, j)) 0≤i<N

1

, 0≤j<N

2

such that the shift of the block G by the vector (i, j) satisfies i ≡ s (mod 2n), j ≡ t (mod 2n). Set

A s,t,G (M 1 , M 2 ) = [

(i,j)∈[0,2nM

1

)×[0,2nM

2

)

{(i, j) | χ ω

n

,G (i, j) = 1 and (14)

i ≡ s, j ≡ t (mod 2n)}.

Let ε > 0 be arbitrary. To complete the proof of the Theorem it is sufficient to prove that for all s, t ∈ [εn, 2n(1 − ε)),

|#A s,t,G (M 1 , M 2 ) − b −h

1

h

2

M 1 M 2 | < εM 1 M 2 . Observe that

V n,G (N 1 , N 2 ) = V n,G (2nN 11 , 2nN 21 ) ∪ V n,G (0, 2nN 1 ; 2nN 21 , N 22 ) (15)

∪ V n,G (2nN 11 , N 12 ; 0, N 2 ) and

V n,G (2nN 11 , 2nN 21 ) = [

0≤s<2n

[

0≤t<2n

A s,t,G (N 11 , N 21 ), (16)

V n,G (0, 2nN 11 ; 2nN 21 , N 22 ) (17)

= [

0≤s<2n

[

0≤t<N

22

(A s,t,G (N 11 , N 21 + 1) \ A s,t,G (N 11 , N 21 )).

Now let

v(i 1 , i 2 ) = v(s, t, i 1 , i 2 ) = L(s + i 1 , t + i 2 ).

(18)

Everywhere below 0 ≤ s, t < 2n − h 1 h 2 . Using (4)–(6) we see that the condition

ω n (2nx + s + i 1 , 2ny + t + i 2 ) = d i

1

,i

2

, ∀(i 1 , i 2 ) ∈ [0, h 1 ) × [0, h 2 ), (19)

is equivalent to the statement

a v(i

1

,i

2

) (u(x, y)) = d i

1

,i

2

, ∀(i 1 , i 2 ) ∈ [0, h 1 ) × [0, h 2 ).

(20)

(5)

From (14), (1) and (19), (20) we obtain A s,t,G (M 1 , M 2 )

(21)

= {(2nx + s, 2ny + t) ∈ [0, 2nM 1 ) × [0, 2nM 2 ) |

a v(i

1

,i

2

) (u(x, y)) = d i

1

,i

2

, ∀(i 1 , i 2 ) ∈ [0, h 1 ) × [0, h 2 )}.

Let k 1 , . . . , k h (h = h 1 h 2 ) be an increasing sequence of integers from the set {v(s, t, i 1 , i 2 ) + 1 | i 1 = 0, 1, . . . , h 1 − 1, i 2 = 0, 1, . . . , h 2 − 1}, (22)

and µ(i 1 , i 2 ) ∈ [1, h] ((i 1 , i 2 ) ∈ [0, h 1 ) × [0, h 2 )) be a sequence of integers so that

µ(i 1 , i 2 ) > µ(j 1 , j 2 ) ⇔ v(s, t, i 1 , i 2 ) > v(s, t, j 1 , j 2 ), (23)

where i ν , j ν ∈ [0, h ν ), ν = 1, 2. It is evident that

k µ(i

1

,i

2

) = v(s, t, i 1 , i 2 )+1, i 1 = 0, 1, . . . , h 1 −1, i 2 = 0, 1, . . . , h 2 −1.

(24) Now put

d µ(i

1

,i

2

) = d i

1

,i

2

, i 1 = 0, 1, . . . , h 1 − 1, i 2 = 0, 1, . . . , h 2 − 1.

(25)

From (21)–(25) we see that

A s,t,G (M 1 , M 2 ) = {(2nx + s, 2ny + t) ∈ [0, 2nM 1 ) × [0, 2nM 2 ) | (26)

a k

i

−1 (u(x, y)) = d i , ∀i ∈ [1, h 1 h 2 ]}.

Lemma 1. Let M 1 , M 2 ∈ [0, I n ), I n = [α −1/(2r) b 2n

2

/r ], s, t ∈ [0, 2n − 15h], h = h 1 h 2 . Then

#A s,t,G (M 1 , M 2 ) (27)

=

b

k2−k1−1

−1

X

x

2

=0

. . .

b

kh−kh−1−1

−1

X

x

h

=0

B st (M 1 , M 2 , d(x 2 , . . . , x h )), where

B st (M 1 , M 2 , d) = #{(x, y) ∈ [0, M 1 ) × [0, M 2 ) | (28)

{u(x, y)b −k

h

} ∈ [d/b k

h

−k

1

+1 , (d + 1)/b k

h

−k

1

+1 )}, and

d = d(x 2 , . . . , x h ) (29)

= d 1 + x 2 b + d 2 b k

2

−k

1

+ . . . + x h b k

h−1

−k

1

+1 + d h b k

h

−k

1

.

P r o o f. From (6), we see that the condition a k

i

−1 (u(x, y)) = d i , ∀i ∈ [1, h], is equivalent to the statement

u(x, y) = x 1 + d 1 b k

1

−1 + x 2 b k

1

+ d 2 b k

2

−1 + . . . + x h b k

h−1

+ d h b k

h

−1 + x h+1 b k

h

,

with x i ∈ [0, b k

i

−k

i−1

−1 ), k 0 = 0, i = 1, 2, . . . , h, x h+1 ≥ 0. Using (26) and

(29) we get

(6)

A s,t,G (M 1 , M 2 ) (30)

=

b

k2−k1−1

−1

[

x

2

=0

. . .

b

kh−kh−1−1

−1

[

x

h

=0

{(2nx + s, 2ny + t) ∈ [0, 2nM 1 ) × [0, 2nM 2 ) | u(x, y) = x 1 + d(x 2 , . . . , x h )b k

1

−1 + x h+1 b k

h

} for arbitrary integers x 1 ∈ [0, b k

1

−1 ), x h+1 ≥ 0. Bearing in mind that the condition

u(x, y) = x 1 + db k

1

−1 + x h+1 b k

h

is equivalent to the condition

{u(x, y)b −k

h

} ∈

 d

b k

h

−k

1

+1 , d + 1 b k

h

−k

1

+1



we deduce from (30) and (28) that A s,t,G (M 1 , M 2 )

=

b

k2−k1−1

−1

[

x

2

=0

. . .

b

kh−kh−1−1

−1

[

x

h

=0

{(2nx + s, 2ny + t) ∈ [0, 2nM 1 ) × [0, 2nM 2 ) |

{u(x, y)b −k

h

} ∈ [d/b k

h

−k

1

+1 , (d + 1)/b k

h

−k

1

+1 )}.

Lemma 2. Let 1 ≤ M 2 ≤ M 1 ∈ [b ξ2n

2

/r , I n ), I n = [α −1/(2r) b 2n

2

/r ], ξ = (1 − ε) 2 + ε ∈ (0, 1), s, t ∈ [εn, 2n(1 − ε)], h = h 1 h 2 , n ≥ 4/ε 2 , ε ∈ (0, 1/(4r)) and 0 < |m| ≤ H = b k

h

−k

1

+s+t . Then

S(m) =

M

2

−1

X

y=0 M

1

−1

X

x=0

e(mu(x, y)b −k

h

) = O(M 1 M 2 H −1 b −n

2

ε

2

2

−2r−2

).

(31)

P r o o f. By (22), (18) and the condition of the lemma, we get k 1 = max(s 2 + t, t 2 + t − s), k 1 − s − t > ε 2 n 2 /2, (32)

0 ≤ k h − k 1 ≤ 2sh 1 + 2th 2 + 2h 2 1 + 2h 2 2 ≤ 8nh + 4h 2 , (33)

H = O(b 16nh ).

Let

M 0 ∈ [b ξ

1

2n

2

/r , I n ], ξ 1 = (1 − ε) 2 + ε 2 , (34)

and

σ(y) =

M

0

−1

X

x=0

e(mϕ(x 2 + y)b −k

h

).

Applying Weyl’s inequality (10) with θ = ε 2 r2 −2r−2 , L = M 0 , k = 2r,

β = αmb −k

h

, q = b k

h

/d and d = gcd(b k

h

, αm), where α > 0 is an integer, we

obtain

(7)

|σ(y)|

(35)

≤ C(ε 2 r2 −2r−2 )M 0 1+ε

2

r2

−2r−2

(b −k

h

d + M 0 −1 + b k

h

d −1 M 0 −2r ) 2

−2r+1

. Using the assumption of the lemma, (34), (18), (22) and (32), (33) we get

b −k

h

d ≤ b −k

h

α|m| ≤ αb −k

h

H = αb −k

1

+s+t (36)

= O(b −k

1

/2 ) = O(b −ε

2

n

2

/2 ), M 0 −1 ≤ b −2((1−ε)

2

2

)n

2

/r < b −n

2

/r , (37)

b k

h

d −1 M 0 −2r ≤ b (k

h

)

max

(M 0 ) −2r min ≤ b 4n

2

(1−ε)

2

+2n−2r(((1−ε)

2

2

)2n

2

/r)

(38)

= b −4n

2

ε

2

+2n = O(b −2n

2

ε

2

).

Now from (33)–(38) we have

M 0 −1 σ(y) = O(M 0 ε

2

r2

−2r−2

b −ε

2

n

2

2

−2r

) = O(b −ε

2

n

2

2

−2r−1

), and

HM 0 −1 σ(y) = O(b −ε

2

n

2

2

−2r−2

).

(39) Putting

σ 1 =

M

22

−1

X

x=0

e(mϕ(x)b −k

h

), (40)

σ 2 =

M

2

−1

X

y=0 M

1

−1

X

x=0

e(mϕ(x 2 + y)b −k

h

), (41)

σ 3 =

M

2

−1

X

x,y=0

e(mϕ(x 2 + y)b −k

h

), (42)

and using (5) and (31), we obtain S(m) − σ 1 =

M

2

−1

X

y=0 M

1

−1

X

x=M

2

e(mu(x, y)b −k

h

) = σ 2 − σ 3 . (43)

If M 2 < b ξ

1

2n

2

/r , we apply (39) with M 0 = M 1 for σ 2 , and the trivial estimate for σ 1 and σ 3 :

HM 1 −1 M 2 −1 S(m) = O(b −ε

2

n

2

2

−2r−2

+ (HM 1 −1 M 2 −1 )M 2 2 ) (44)

= O(b −ε

2

n

2

2

−2r−2

+ b 16nh+(ξ

1

−ξ)2n

2

/r )

= O(b −ε

2

n

2

2

−2r−2

).

Now let M 2 ≥ b ξ

1

2n

2

/r . We apply (39) with M 0 = M 2 for σ 2 and for σ 3 : HM 1 −1 M 2 −1 (|σ 2 | + |σ 3 |) = O(b −ε

2

n

2

2

−2r−2

).

(45)

(8)

To estimate the sum σ 1 we apply Weyl’s inequality with θ = ε 2 r2 −2r−3 , L = M 2 2 , k = r, β = αmb −k

h

, q = b k

h

/d, d = gcd(b k

h

, αm), and repeat the calculations (35)–(39):

HM 1 −1 M 2 −1 |σ 1 | = O(b −ε

2

n

2

2

−2r−2

).

(46)

By (44)–(46) the assertion of the lemma follows.

Lemma 3. Under the assumptions of Lemma 2,

D = D(({u(x, y)b −k

h

}) M x=0, y=0

1

−1, M

2

−1 ) = O(b k

1

−k

h

−s−t ).

(47)

P r o o f. We apply Lemma 2, (31), (33) and Erd˝ os–Tur´ an’s inequality with H = b k

h

−k

1

+s+t to get

D = O



H −1 + (M 1 M 2 ) −1 X

0<|m|≤H

|S(m)|

m



= O

 H −1



1 + 1

s + t + 1 X

0<|m|≤H

1 m



= O(H −1 (1 + (s + t + 1) −1 log H))

= O(H −1 (1 + (s + t + 1) −1 (k h − k 1 + s + t))) = O(H −1 ).

Using the definition of discrepancy (8), we get:

Corollary 1. Under the assumptions of Lemma 2, B st (M 1 , M 2 , d) = M 1 M 2 b k

1

−k

h

−1 (1 + O(b −s−t )), (48)

where B st (M 1 , M 2 , d) is defined in (28).

Corollary 2. Under the assumptions of Lemma 2,

#A s,t,G (M 1 , M 2 ) = b −h M 1 M 2 + O(M 1 M 2 b −s−t ).

(49)

P r o o f. This follows from (28), Lemma 1 and Corollary 1.

Lemma 4. Under the assumptions of Lemma 2, let 1 ≤ N 2 ≤ N 1 ∈ [2nb ξ2n

2

/r , 2nI n ). Then

#V n,G (N 1 , N 2 ) − b −h 4n 2 N 1 N 2 = 200ε 0 N 1 N 2 + O(N 1 N 2 /n), |ε 0 | ≤ ε.

P r o o f. Using (16) we have V n,G (2nN 11 , 2nN 21 ) (50)

= [

εn≤s,t<2n(1−ε)

[

min(s,t)<εn

[

2n(1−ε)≤max(s,t)<2n

A s,t,G (N 11 , N 21 ).

We apply (49) to the first union and the trivial estimates to the other unions:

#V n,G (2nN 11 , 2nN 21 ) (51)

= X

εn≤s,t<2n(1−ε)

(b −h N 11 N 21 + O(N 11 N 21 b −s−t )) + 16ε 1 n 2 N 11 N 21

(9)

= b −h 4n 2 N 11 N 21 + 32ε 2 n 2 N 11 N 21 + O(N 11 N 21 ),

N 21 ≥ 1, |ε i | < ε, i = 1, 2.

Similarly, from (17) and (49) we obtain (52) #V n,G (0, 2nN 11 ; 2nN 21 , N 22 )

= X

0≤s<2n

X

0≤t<N

22

(b −h N 11 + O(N 11 b −s−t )) + 16ε 3 nN 11 N 22

= b −h 2nN 11 N 22 + 32ε 4 nN 11 N 22 + O(N 11 N 22 ) 5 with |ε i | < ε, i = 3, 4. We get a trivial estimate from (11)–(13):

#V n,G (2nN 11 , N 12 ; 0, N 2 ) ≤ N 2 N 12 ≤ 2nN 2 < N 1 N 2 /n.

Now the assertion of the lemma follows from (13), (15), and (51)–(52).

Similar notation is introduced for the configuration ω (instead of ω n ):

V G (P 1 , P 2 ) = {(v 1 , v 2 ) ∈ [0, P 1 ) × [0, P 2 ) | (53)

ω(v 1 + i 1 , v 2 + i 2 ) = d i

1

,i

2

, ∀(i 1 , i 2 ) ∈ [0, h 1 ) × [0, h 2 )}.

We prove the Theorem for the case N 1 ≥ N 2 . The other case is simi- lar.

End of the proof of the Theorem. Let 1 ≤ N 2 ≤ N 1 , N 1 ≥ 4b 8 . Then there exists n ≥ 3 so that

N 1 ∈ [2(n − 1)I n−1 − h, 2nI n − h).

(54) Now let

N 1 0 = 2(n − 1)I n−1 − h, N 2 0 = min(N 2 , N 1 0 ).

(55)

From (53) and the definition of the configurations ω, ω n we get

#V G (N 1 , N 2 ) = #V n,G (N 1 , N 2 ) − #V n,G (N 1 0 , N 2 0 ) + #V G (N 1 0 , N 2 0 ) (56)

+ 2ε 1 hN 2 0 + 2ε 2 N 1 min(h, N 2 − N 2 0 )

with |ε i | ≤ 1, i = 1, 2. It is easy to see that if N 2 ≤ n, then N 2 = N 2 0 , otherwise h ≤ hN 2 /n and

#V G (N 1 , N 2 ) − #V n,G (N 1 , N 2 ) = #V G (N 1 0 , N 2 0 ) − #V n,G (N 1 0 , N 2 0 ) (57)

+ 4ε 3 hN 1 N 2 /n with |ε 3 | ≤ 1.

Analogously

#V G (N 1 0 , N 2 0 ) − #V n,G (N 1 0 , N 2 0 ) = #V G (N 1 00 , N 2 00 ) − #V n−1,G (N 1 00 , N 2 00 ) (58)

+ 4ε 4 hN 1 N 2 /n,

(10)

where

N 1 00 = 2(n − 2)I n−2 − h, N 2 00 = min(N 2 , N 1 00 ), |ε 4 | ≤ 1.

(59)

It is evident that

#V G (N 1 00 , N 2 00 ) + #V n,G (N 1 00 , N 2 00 ) ≤ 2N 1 00 N 2 00 < 2N 1 N 2 /n.

(60)

From (56)–(60) we obtain

#V G (N 1 , N 2 ) = #V n,G (N 1 , N 2 ) − #V n,G (N 1 0 , N 2 0 ) + #V n−1,G (N 1 0 , N 2 0 ) + O(N 1 N 2 /n).

It is easy to verify that

b ξ2n

2

/r = o(I n−1 ),

where ξ = (1 − ε) 2 + ε ∈ (0, 1), and I n = [α −1/(2r) b 2n

2

/r ]. Hence N 1 ∈ [2nb ξ2n

2

/r , 2nI n ) and we can apply Lemma 4:

#V G (N 1 , N 2 )

= b −h N 1 N 2 − b −h N 1 0 N 2 0 + 400ε 5 N 1 N 2 + b −h N 1 0 N 2 0 + O(N 1 N 2 /n)

= b −h N 1 N 2 + 400ε 5 N 1 N 2 + O(N 1 N 2 /n) with |ε 5 | ≤ ε.

Now from (1), (2), and (53) we obtain the assertion of the Theorem.

Acknowledgments. We are grateful to the referee for his corrections and suggestions.

REFERENCES

[AKS] R. A d l e r, M. K e a n e and M. S m o r o d i n s k y, A construction of a normal number for the continued fraction transformation , J. Number Theory 13 (1981), 95–105.

[B] E. B o r e l, Les probabilit´ es d´ enombrables et leurs applications arithm´ etiques , Rend. Circ. Mat. Palermo 27 (1909), 247–271.

[C] D. J. C h a m p e r n o w n e, The construction of decimals normal in the scale ten , J. London Math. Soc. 8 (1933), 254–260.

[Ci] J. C i g l e r, Asymptotische Verteilung reeller Zahlen mod 1 , Monatsh. Math.

64 (1960), 201–225.

[DE] H. D a v e n p o r t and P. E r d ˝ o s, Note on normal numbers , Canad. J. Math. 4 (1953), 58–63.

[DrTi] M. D r m o t a and R. T i c h y, Sequences , Discrepancies and Applications , Lec- ture Notes in Math. 1651, Springer, 1997.

[KT] P. K i r s c h e n h o f e r and R. F. T i c h y, On uniform distribution of double sequences , Manuscripta Math. 35 (1981), 195–207.

[LeSm] M. B. L e v i n and M. S m o r o d i n s k y, On explicit construction of normal

lattices , preprint.

(11)

[SW] M. S m o r o d i n s k y and B. W e i s s, Normal sequences for Markov shifts and intrinsically ergodic subshifts , Israel J. Math. 59 (1987), 225–233.

Department of Mathematics and Computer Science Bar-Ilan University

52900 Ramat-Gan, Israel E-mail: mlevin@macs.biu.ac.il

School of Mathematical Sciences Tel Aviv University 69978 Tel-Aviv, Israel E-mail: meir@math.tau.ac.il

Received 27 August 1999; (3825)

revised 17 February 2000

Cytaty

Powiązane dokumenty

Rzędne krzywych granicznych uziarnienia mieszanek mineralnych do warstwy ścieralnej z betonu asfaltowego oraz orientacyjne zawartości asfaltu podano w tablicy 3..

(See §2 below for the definition of the metric on X and for the definition of the boundary ∂Ω.) Notice that a Cayley graph X of a finitely generated group with infinitely many

w sprawie ustalenia wysokości stawek czynszu za dzierLawę w trybie bezprzetargowym gruntów stanowiących wlasność bądź pozostających w użytkowaniu wieczystym Gminy

The following parameters were analyzed: mean 24-h systolic (SBP), diastolic (DBP), and mean arterial pressure (MAP), mean day-time systolic (dSBP), diastolic (dDBP), and MAP

Metabolic syndrome has been defined as the clustering of risk fac- tors for cardiovascular disease and type 2 diabetes mel- litus, such as obesity, dyslipidemia, hypertension,

· 1.2 Istotne zidentyfikowane zastosowania substancji lub mieszaniny oraz zastosowania odradzane Brak dostępnych dalszych istotnych danych.. · Zastosowanie substancji /

Zborowo, Fiałkowo; Dopiewo: Bukowska, Dworcowa, Konarzewska, Laserowa, Leśna, Łąkowa, Niecala, Nowa, Polna, Południowa, Powstańców, Północna od Bukowskiej do Polnej, Przy

· Szkodliwe działanie na rozrodczość W oparciu o dostępne dane, kryteria klasyfikacji nie są spełnione. · Działanie toksyczne na narządy docelowe –