**CLASSICAL APPOXIMATION** HOMEWORKS

**Due date is November 18, 2019**

## (1) Show that the following space of infinite sequences *c*

_{0}

*:= {(x*

_{1}

*, x*

_{2}

*, . . .) : x*

_{i}*∈ R, lim*

_{i→∞}*x*

_{i}*= 0}*

## with the norm max

_{i1}*|x*

_{i}*| is not strictly convex.*

*(2) Find the best approximation in L*

_{2}

*([0, 1]) for the function f (x) = x with respect* *to the space spanned by v*

_{1}

*(x) = e*

^{x}*i v*

_{2}

*(x) = e*

^{2x}## .

*(3) Suppose that none of the points a*

_{1}

*, a*

_{2}

*, . . . , a*

_{n}*is in the interval [a, b]. Show that* then

## span

## 1 *x − a*

1
*,* 1

*x − a*

2
*, . . . ,* 1 *x − a*

*n*

*is a Haar space in C([a, b]).*

*(4) For what values of a < b the space spanned by the functions* *(a) {1, cos(x), cos(2x), . . . , cos(nx)}*

*(b) {sin(x), sin(2x), . . . , sin(nx)}*

*is a Haar space in C([a, b])?*

*(5) Let D be the unit sphere,*

*D = {~* *x ∈ R*

^{s}*: k~* *xk*

2 *= 1 } ⊂ R*

^{s}*.*

*For what values of s and n one can find Haar spaces of dimension n that are* *subspaces of C(D)?*

*(6) Find a polynomial p of degree ¬ 3 that minimizes* sup

*−1¬x¬1*

*| |x| − p(x) |.*

## (7) Find a trigonometric polynomial of the form *v(t) = a*

0*+ a*

1*sin t + b*

1*cos t*

*that best approximates the function sin(t/2) in the uniform norm on the interval* *[−π, π].*

*(8) In the set of polynomials p of degree ¬ n such that p(0) = 1 find p*

^{∗}## that has *minimal uniform norm on [1, 2].*

*(9) Let p be a polynomial of degee at most n such that kpk*

_{C([−1,1])}*¬ 1. Show that* *then for any |x| 1 we have |p(x)| ¬ |T*

_{n}*(x)|.*

*(10) Show that among all the polynomials of degree at most n such that p*

^{0}*(1) = A,* *the polynomial AT*

_{n}*/n*

^{2}

*has the minimal uniform norm in [−1, 1].*

**Due date is December 9, 2019**

*(11) Let the operator L : C([a, b]) → C([a, b]) be given as* *(Lf )(x) =*

*n*

X

*i=1*

*f (x*

*i*

*)g*

*i*

*(x),*

1

2

*where a ¬ x*

_{1}

*< · · · < x*

_{n}*¬ b and g*

_{i}*∈ C([a, b]). Show that L is positive if and* *only if all the functions g*

_{i}## assume nonnegative values only.

*(12) Let L : C([a, b]) → C([a, b]) be a positive linear operator satisfying Lw = w for* *all polynomials of degree at most 2. Show that then Lf = f for all f ∈ C([a, b]).*

*(13) Show that if f is a polynomial of degree at most k then the same property* *possess all the Bernstein polynomials B*

_{n}*f.*

*(14) Let E be the family of projections L : C([a, b]) → P*

_{n+1}*, and ˆ* *E be the family of* projections ˆ *L : C([−1, 1]) → P*

_{n+1}*. Show that*

*L*

## inf

*n*

*∈E*

*kL*

*n*

*k = inf*

*L*ˆ*n**∈ ˆ**E*

*k ˆ* *L*

*n*

*k.*

*(15) Let L : C([−1, 1]) → P*

_{3}

## be the interpolation operator corresponding to some *points x*

_{i}*, i = 0, 1, 2. Show that*

*−1¬x*0

## min

*<x*1

*<x*2

*¬1*

*kLk =* 5 4 *,*

*and for the Chebyshev points we have kLk = 5/3. What is kL*

_{2}

*k for the equ-* *ispaced points −1, 0, 1?*

*(16) Show the following properties of the Chebyshev polynomial T*

_{n}## . *(a) (1 − x*

^{2}

*)T*

_{n}

^{00}*(x) − xT*

_{n}

^{0}*(x) + n*

^{2}

*T*

_{n}*(x) = 0*

*(b) T*

_{2n}*(x) = T*

_{n}*(2x*

^{2}

*− 1)* *(c) T*

_{n}*(T*

_{m}*) = T*

_{nm}*(17) Let f (x) = x*

^{3}

*. Find possibly minimal n such that B*

_{n}*f approximates f with* error at most 10

^{−8}*with respect to the uniform norm on [0, 1]?*

*(18) Show that if f i f*

^{0}*are continuous on [0, 1] then for any > 0 there is a* *polynomial p such that kf − pk ¬ and kf*

^{0}*− p*

^{0}*k ¬ , where the norm is* *uniform on [0, 1].*

*(19) Let X = L*

2*([0, 1]), f (x) = x*

^{m}*and v*

*k*

*(x) = x*

^{p}

^{k}*, k = 1, 2, . . . , n, where* *0 ¬ m < p*

1 *< p*

2 *< · · · < p*

*n*

*.*

*Let V*

*n*

*= span(v*

1*, v*

2*, . . . , v*

*n*

## ). Show that *dist(f, V*

*n*

## )

^{2}

## = 1

*2m + 1*

*n*

Y

*k=1*

*m − p*

_{k}*m + p*

_{k}## + 1

!2

*.*

**Hint.**

## det

## 1 *a*

_{k}*+ b*

_{k}*n*
*k,l=1*

!

## =

Q

*k>l*

*(a*

_{k}*− a*

_{l}*)(b*

_{k}*− b*

_{l}## )

Q

*k,l*

*(a*

_{k}*+ b*

_{l}## ) *.* *(20) Let 0 ¬ m < p*

_{1}

*< p*

_{2}

*< · · · . Show that*

*n→∞*

## lim

*n*

Y

*k=1*

*m − p*

_{k}*m + p*

*k*

## + 1

!2

## = 0 if and only if

*∞*

X

*k=2*

## 1 *p*

*k*

*= ∞.*

3

*(21) (M¨* *unz theorem I) Show that the space spanned by the functions v*

_{k}*(x) = x*

^{p}

^{k}## , *where 0 ¬ p*

_{1}

*< p*

_{2}

*< · · · , is dense in L*

_{2}

*([0, 1]) if and only if*

^{P}

^{∞}

_{k=2}*1/p*

_{k}*= ∞.*

**Hint. Use Problems 19 i 20 and the fact that algebraic polynomials are dense** *in L*

_{2}

*([0, 1]).*

*(22) (M¨* *unz theorem II) Show that the space spanned by the functions v*

_{k}*(x) = x*

^{p}

^{k}## , *where 0 ¬ p*

_{1}

*< p*

_{2}

*< · · · , is dense in C([0, 1]) if and only if p*

_{1}

## = 0 and

P*∞*

*k=2*

*1/p*

_{k}**= ∞. Hint. Use Problem (21).**

**= ∞. Hint. Use Problem (21).**

*(23) Is the space spanned by 1, x*

^{p}^{1}

*, x*

^{p}^{2}

*, . . . , x*

^{p}

^{n}*, . . ., where p*

_{n}