• Nie Znaleziono Wyników

The dielectric Skyrme model

N/A
N/A
Protected

Academic year: 2022

Share "The dielectric Skyrme model"

Copied!
6
0
0

Pełen tekst

(1)

Contents lists available atScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

The dielectric Skyrme model

C. Adam

a,

, K. Oles

b

, A. Wereszczynski

b

aDepartamentodeFísicadePartículas,UniversidaddeSantiagodeCompostela,InstitutoGalegodeFísicadeAltasEnerxias(IGFAE),E-15782 Santiagode Compostela,Spain

bInstituteofPhysics,JagiellonianUniversity,Lojasiewicza11,Kraków,Poland

a r t i c l e i n f o a b s t ra c t

Articlehistory:

Received10May2020

Receivedinrevisedform8June2020 Accepted11June2020

Availableonline17June2020 Editor:A.Ringwald

We consider a version of the Skyrmemodel where both the kineticterm and the Skyrme termare multipliedbyfield-dependentcouplingfunctions.Forsuitablechoices,this“dielectricSkyrmemodel”has staticsolutionssaturatingthepertinenttopologicalboundinthesectorofbaryonnumber(ortopological charge)B= ±1 butnotforhigher|B|.Thisimpliesthathigherchargefieldconfigurationsareunbound, and looselyboundhigher skyrmionscanbe achievedbysmalldeformations ofthisdielectricSkyrme model.Weprovideasimpleandexplicitexampleforthispossibility.

Further,weshowthatthe|B|=1 BPSsectorcontinuestoexistforcertaingeneralizationsofthemodel like,forinstance,afteritscouplingtoaspecificversionoftheBPSSkyrmemodel,i.e.,theadditionofthe sextictermandaparticularpotential.

©2020TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

1. Introduction

TheSkyrmemodel [1–3] isone particularproposalfora low- energy effective field theory (EFT) of strong-interaction physics [4–6] and,inparticular,forthedescriptionofbaryonsandnuclei.

Itsprimaryfieldsaremesons,whereasbaryonsandnucleiemerge astopologicalsolitons(Skyrmions)[7–10] supportedbythemodel.

The Skyrmemodel incorporatesmany nontrivialfeatures of low- energyQCD(baryonnumberconservation,chiralsymmetryandits breaking,currentalgebraresults,. . . )inacompletelynaturalway.

It also reproduces some quantitative properties of nucleons and severallightnucleiwithreasonablesuccess[11–19].Severalshort- comings,however,impedeits useasa generalandquantitatively preciseEFT ofnuclearphysics.Twomajorproblemsofthemodel arethetoolargebindingenergiesofhigher-chargeSkyrmionsand theabsenceofalpha-particleclustersinsidethem.Physicalnuclei have rather small binding energies (always below 1%) and fre- quentlypossessan alpha-particlesubstructure. TheSkyrmemodel permitsmanygeneralizations,e.g.,theadditionofmoreterms[20]

and the inclusion of further meson fields [21–25], and some of these generalizations allow to significantly alleviate these short- comings[26–34].

Themodelproposed in thepresentletteris mainlymotivated by the first problem (the too large binding energies), because the theory of topological solitons provides simple and system-

*

Correspondingauthor.

E-mailaddress:adam@fpaxp1.usc.es(C. Adam).

aticmethodsto searchformodelswithsmallbindingenergies.A systematicmethod topredict alpha-particle substructuresforthe Skyrmions of a particular model,on the other hand,is currently not known. To answer this question, at present full numerical calculations ofhigher charge solitons are required [34]. Abetter qualitativeunderstandingoftheformationofsubstructureswithin Skyrmionswouldcertainlybedesirable.

TheoriginalversionoftheSkyrmemodelrestrictsthefieldcon- tenttopionsandisgivenbythefollowingLagrangian density

L

=

L2

+

L4

+

L0 (1)

where

L2

=

c2Tr

μU

μU

,

L4

=

c4Tr

( [

Rμ

,

Rν

])

2 (2)

are the kinetic (Sigma model or Dirichlet) termand the Skyrme term, respectively. Here, the field U takes values in SU(2), and = ∂μU U1 is the right-invariant current. Further, L0 =

c0U(Tr U) is a potential term, where a frequent choice is the pionmasspotential Uπ= (1/2)Tr(IU).Finally,theci arecou- plingconstants.

Inthesmall-fieldlimit,whichisrelevantforlargedistances,the Dirichlet termquadraticin the pionfield dominates andinduces attractivechannelsbetweenSkyrmions. Thatis tosay,there exist certain relative orientationsbetween individual B=1 Skyrmions (modeling nucleons) such that they attract each other,and they maybearrangedinarrayssuchthat allnearest neighborsattract.

Theformationofboundstates,i.e.,theexistenceofhighercharge

https://doi.org/10.1016/j.physletb.2020.135560

0370-2693/©2020TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).Fundedby SCOAP3.

(2)

Skyrmions with restenergies below the total mass oftheir con- stituentsis,therefore,expected, andthisisindeedwhathappens.

Ifthepionmasstermquadraticinthepionfieldisincluded,then the attractive forces change from power-law to exponential, but boundstatesstill form.Theresultingbindingenergiesare,infact, muchlargerthanthebindingenergiesofphysicalnuclei(see,e.g., [7]).

TheSkyrmemodel(1) permitsmanygeneralizations.Firstofall, moregeneral choicesforthe potential apart fromthe pionmass termare possible.Secondly,terms withhigherpowers of deriva- tives may be added. Among these, a particular term of a sixth powerinfirstderivativesissingledout,

L6

= −(

24

π

2

)

2c6BμBμ

,

(3)

becausethistermisstillquadraticintimederivativesandleadsto astandardHamiltonian.Here,Bμ isthebaryoncurrent,

Bμ

=

1

24

π

2



μνρσTr RνRρRσ

,

B

=



d3xB0

,

(4)

whichallowsto calculatethebaryon number(topologicalcharge) B.Thirdly,inadditiontothepions,furtherfieldsmaybeincluded inthemodel.

Giventhis vastlandscape ofpossible generalizations,arbitrar- ily choosing a model inside it and calculating its higher charge Skyrmions does not seem to be an efficient strategy for find- ingmodels withlow bindingenergies. Topologicalsolitonmodels like thegeneralized Skyrmemodels, however,allow to findnon- trivial topological energy bounds [35], [36]. For Skyrme models in Minkowski space-time, they are always exactly linear in the topological charge (baryon number) [28], [37]. Further, so-called Bogomolnyequationscanbefound[35],whichimplythatthecor- respondingboundissaturated.TheseboundsandtheirBogomolny equationsarevaluabletoolsinthesearchforSkyrmemodelswith smallbindingenergies.Inafirststep,certainsubmodels(so-called BPS models) must be identified which possess both a topologi- calbound andnontrivialsolutions(BPSSkyrmions)saturatingthe bound.TheexistenceoftheBPSSkyrmionsimpliesthat thebind- ingenergiesinthemodelareeitherzeroornegative.Modelswith smallbindingenergies canthenbeconstructedbycertain“small”

deformationsoftheBPSsubmodels.

More concretely, a BPS submodel may either support BPS Skyrmions witharbitrarybaryon number.Theirenergies arethen exactlylinearinB andtheresultingbindingenergiesarezero.This isthe caseof theBPS Skyrme model[26], consistingof thesex- tic term (3) and an arbitrary potential, or of the Skyrme model withaninfinitetowerofvectormesons [32],obtainedfroma di- mensional reduction of a higher-dimensional Yang-Mills theory.

TheotherpossibilityisthattheBPSsubmodelhasaBPSSkyrmion onlyin the B= ±1 sector.Higher B solutions are then unstable, andtheresulting“bindingenergies” arenegative. Inother words, theinduced forces betweenthe B=1 BPSSkyrmions are always repulsive. Thisis the caseofthe BPS submodel discovered by D.

Harland[28],andthemodelinvestigatedinthepresentletteralso belongs to this class. We remark that for BPS submodels based onlyonpionfields,eithertheabsenceoftheDirichlettermorits suppression inthe small-field limit (e.g.,by making it effectively higherthansecondorder,orbyenhancingotherterms)isaneces- sarycondition,asfollowsfromtheattractiveforcesinducedbythis term.Any deformationtoarealistic near-BPSmodelmustcorrect thisbehaviorintheregionofsmallpionfields.

Inthepresentletter,wefurtherdeveloptherecentobservation thattheminimalSkyrmemodelwithaveryparticular runningpion decay constant enjoys the BPS property [38]. We generalize this finding to the case of two running coupling constants (the pion decayconstant fπ andtheSkyrmeparametere).Here,theformof

thesefunctionsisarbitrarywhiletheirproductisfixedbytheBPS condition.Thenweshowhowanear-BPSsectorcanbereachedvia abreaking oftheBPScondition. Importantly,alreadythesimplest and most natural BPS breaking is capable of producing arbitrar- ilysmallbindingenergiesandcanbringthecouplingconstantsto their physicalvalues. Finally, we consistently (i.e.,preserving the BPS property) add the usual BPS Skyrme model into the frame- work.

2. ThedielectricSkyrmemodel

WeconsiderthestaticenergyfunctionaloftheminimalSkyrme model(1),

E

=

Ed2

+

Ed4

,

(5)

consistingofthekineticterm(Dirichletenergy), Ed2

=



R3

f2

2 Tr

(

RiRi

)

d3x

,

(6)

andthequarticSkyrmeterm Ed4

=



R3

1

16e2 Tr

( [

Ri

,

Rj

][

Ri

,

Rj

])

d3x

.

(7)

Incontrasttothestandardcase,however,weassumethatinstead ofthecouplingconstants c2 andc4 nowwehavefield-dependent coupling functions f and e. This is explicitly indicated by the index d (dielectric).In particular, we assume that they are func- tions of the trace of the Skyrme field Tr U , implying that the isospinsymmetry remainsunbroken.Equivalently,usingthestan- dardparametrization(here

τ

arethePaulimatrices)

U

=

exp

(

i

ξ(

x

) τ  · 

n

(

x

)),

(8) oftheSkyrmefieldintermsofaprofilefunctionξ andanisospin unit vector n, the couplingfunctionsonly depend onthe profile,

f=f(ξ ),e=e(ξ ).

2.1. TopologicalboundandBogomolnyequations

Tofindthepertinenttopologicalboundwefollowthestandard method based on the three eigenvalues λ2i of the strain tensor Di j= −12 Tr(RiRj)[39].Then, thestaticenergycan berewritten as

Ed

=



R3



f2



λ

21

+ λ

22

+ λ

23



+

1

e2



λ

21

λ

22

+ λ

22

λ

23

+ λ

23

λ

21



d3x

=



R3



(

f

λ

1

±

1

e

λ

2

λ

3

)

2

+ (

f

λ

2

±

1

e

λ

3

λ

1

)

2

+ (

f

λ

3

±

1 e

λ

1

λ

2

)

2



d3x

6



R3 f

e

λ

1

λ

2

λ

3d3x

6



R3 f

e

λ

1

λ

2

λ

3d3x

=

12

π

2

f e

|

B

|,

(9)

whereF istheaveragevalue ofatargetspacefunctionF over thewholeS3 targetspace.Thelaststepfollowsfromthefactthat thebaryondensityB0 isjust

B0

=

1

2

π

2

λ

1

λ

2

λ

3

.

(10)

(3)

The bound is saturated if and only if the following dielectric Bogomolnyequationshold,

f

λ

1

±

1

e

λ

2

λ

3

=

0

,

f

λ

2

±

1

e

λ

1

λ

3

=

0

,

f

λ

3

±

1

e

λ

1

λ

2

=

0

,

(11) whichafterastraightforwardmanipulationresultin

λ

21

= λ

22

= λ

23

=

e2

(ξ )

f2

(ξ ) .

(12) Inthestandardcase,where f ande areconstant,theBogomolny equationscannotbesatisfiedfornon-zero B inR3 space.Indeed, thenalleigenvaluesmustbeconstantwhichcontradictsthefinite- nessoftheenergyforsolutionsoftheBogomolnyequations.Here, ontheother hand,the r.h.s.of(12) isafunction ofξ,whichcan tendto0for|x|→ ∞. Ifwe requirethatthe Skyrmefield U ap- proachestheperturbativevacuumU= I(i.e.,ξ0)for|x|→ ∞, thenatleastoneofthetwocouplingfunctions, e or f ,mustap- proachzeroatξ=0.Weshallfindthat thesolutionpresentedin thenextsectionautomaticallyobeysthisrequirement.

2.2. B=1 BPSsolution

It isknown that for R3 base space theBogomolny equations (12) admitatopologicallynontrivialsolutionif

e f

=

1

2r0Tr

(I

U

)

(13)

where r0>0 (we chose the plus sign). In fact, this result was firstobtainedinthe contextofa BPS submodelconsidered by D.

Harland[28],consistingoftheSkyrmetermandtheparticularpo- tentialU4= (Tr(IU))4.ThecorrespondingBogomolnyequations are identical to (12) after the identification (e f)4=U4 andhave solitonic solutions in the B= ±1 topological sectors. Skyrmions with higher values of the baryon charge do not obey the Bo- gomolny equations and, therefore, do not saturate the pertinent topologicalbound.

Following[28],thecharge B=1 solutionofourmodelcanbe easily found. We assume a naturalspherical symmetry provided bythehedgehogansatz ξ= ξ(r),n= (sinθcosφ,sinθsinφ,cosθ ) insphericalpolarcoordinates (r,θ,φ).Theunit three component isovectorn can beexpressedviathestereographicprojectionbya complexfieldu



n

=

1

1

+ |

u

|

2



2

(

u

),

2

(

u

),

1

− |

u

|

2



,

(14)

whereu(θ,φ)=tanθ2eiφ.Thentheeigenvaluesare

λ

21

= ξ

r2

, λ

22

= λ

23

=

sin2

ξ

r2

.

(15)

Theequalityoftheλ2i leadstoafirstorderODE

ξ

r

= −

sin

ξ

r

.

(16)

Thisshouldbecompletedwiththethirdequalityin(12)

ξ

r

= −

1

r0

(

1

cos

ξ ).

(17)

Thesetwoequationshaveacommonsolution

ξ =

2 arctanr0

r (18)

whichinterpolates between

π

and0 asr changesfrom 0 toin- finity.ThisfinallyconstitutesaBPSSkyrmionwithunittopological

charge.Weremarkthatsolution(18) alsocoincideswiththesolu- tionfoundin[40],wheretheSkyrmefieldiscoupledtoasecond, non-dynamicalfield.

Tocompute the energyofthe B=1 solution we mustdecide howthecouplingfunctionsdependonthetargetspacecoordinate ξ. Thesefunctionsare, however, arbitraryprovided thecondition (13) isfulfilled.Hereweconsiderthefollowingpossibility

e

=

e0

(

1

cos

ξ )

α

,

f

=

f0

(

1

cos

ξ )

1α (19) witharealparameter

α

.Further,e0 and f0 aredimensionalcon- stantssettingtheenergyscale E0= ef00 andthelength scaler0=

1

f0e0. They donothavetocorrespondtophysicalvalues.Thenus- ingtheexplicitformulaforthetargetspaceaverageintegral

f e

=

2

π



π

0

sin2

ξ

d

ξ =

2

π

f0 e0



π

0

sin2

ξ(

1

cos

ξ )

12αd

ξ

=

2

·

41α

π

f0 e0



5

2

2

α

[

4

2

α ]

(20)

finally,weget Ed

=

12

π

22

·

4

1α

π

f0 e0



5

2

2

α

[

4

2

α ] .

(21)

Despite the appearance of a zero ine (and, forsome parameter values,asingularityin f )theenergyintegralconvergesfor

α

<54. This includes threequalitatively very differentcases. Namely, for

α

<1 thecouplingfunction f increaseswithξ,from f(ξ=0)=0 to f(ξ=

π

)=21α f0,whichmeansthatithasbiggervalueinside theBPSSkyrmionthaninthevacuum.For

α

=1,thefunction f is just aconstant.Finally,for

α

∈

1,54

, f decreaseswithξ.There- fore,ithasabiggervalueinthevacuumthaninsidetheSkyrmion (here f(ξ=0)= ∞).We remarkthatthecase

α

=0 was consid- eredalreadyin[38],inaslightlydifferentcontext.

TheBPSconstraintonlydeterminestheratiobetweentherun- ningcouplings f ande,therefore,theabovechoiceofthesefunc- tions should be regardedjust asan exampleto get a qualitative pictureoftheallowedpossibilitiesinthedielectricSkyrmemodel.

Indeed,theparticularformofoneofthefunctionscan bechosen arbitrarily, e.g., by fitting to the in-medium dependence of cou- pling constants. Thesefits, however,should always be done after breaking the BPS property (see below), where the vacuum con- stantsapproachtheirphysicalvalues.

The restrictive form of the Bogomolnyequations excludes so- lutions withhigher valuesofthetopologicalcharge forthe same model(thesamedielectricfunctionse and f ).Theargumentspre- sentedin[28] likewiseholdforthedielectric Skyrmemodel.The result is that higher charge Skyrmions are not BPS solitons and haveenergieshigherthan B·E(B=1).Thus,theyareenergetically unstabletowardsadecayintoacollectionofseparatedchargeone BPSSkyrmions.Toconclude,therearenostableB>1 Skyrmions.

Obviously,the fact that atleast one ofthe couplingfunctions approacheszeroatthevacuummayhavea significantimpact on the (time-dependence of) non-BPS solutions (solutions ofthe di- electricBPSmodelthatdonotobeytheBPSequations).Forexam- ple, forour choice (19), we findthat theprofile function of any non-BPSsolutionmusttendtothevacuumfasterthan1/rn,where n>1/(4

α

4)(sphericalsymmetryassumed).Forrealisticphysical applications,however,alwaysanear-BPScompletionofthedielec- tricBPSmodelshouldbeconsidered,wherethecouplingfunctions tendtotheirphysicalvaluesinthevacuum(seebelow).Then,the time-dynamicsaswellastheperturbativepropertiesofthemodel closetothevacuumcoincidewiththestandardSkyrmemodel.

(4)

2.3. Adielectricnear-BPSSkyrmemodel

Thebehavior(13) ofthedielectricfunctionsisnotphenomeno- logically acceptable closeto the vacuum ξ=0. A rather obvious proposal for a realistic near-BPS model is a deformation which changes(13) toanonzerovalueforξ0 butleavesitessentially untouched forsufficiently large ξ. Thisproposal has the twofold advantage that, i), it recovers the correct small-field limit and, ii), it should provide small binding energies, because small-field regions only make small contributions to the total energy. For a fullyrealistic modelone probablypreferssmooth dielectric func- tions f(ξ ) and e(ξ ), but for the less ambitious goal of finding estimatesforthebindingenergiesofnear-BPSmodels,continuous functionsaresufficient.Concretely,weshallassumee=1,whereas f is given by the expression resulting from (13) for ξ∈ [ξ,

π

], butbythe constantvalue f= f) forthenear-vacuumregion ξ∈ [0].Forourspecific examplewe chooseξ= (

π

/6) which issmallbutnotverysmall.Further,thesizeparameterr0 isirrel- evant for ourenergy considerations, therefore we choose r0=1.

Thatistosay,we choosededielectricSkyrmemodelwiththedi- electricfunctions

e

=

1

,

f

=



1

cos

ξ . . . ξ ∈ [ξ

, π ]

f

1

cos

ξ

=

1

23

. . . ξ ∈ [

0

, ξ

] , ξ

π

6

.

(22)

Forξ∈ [ξ,

π

],thecontribution E> totheenergyisgivenby the accordinglyrestrictedBPSbound,

E>

=

E>BPS

=

12

π

2



1

cos

ξ 

>

=

24

π



π

π 6

d

ξ

sin2

ξ(

1

cos

ξ )

= π (

10

π +

1

+

3

3

) 

118

.

162

.

(23) Forξ∈ [0],thecontributionto theBPS boundissimply given bytheaccordinglyrestrictedSkyrme-Faddeevbound,

E<BPS

=

24

π

f

π



6

0

d

ξ

sin2

ξ = π

f

(

2

π

3

3

) 

0

.

4576

.

(24)

ForthecontributionE<tothetrueenergy,weshould,inprinciple, find the hedgehog solution of the minimal Skyrme model (with couplingconstantse=1 and f= f∗)intheregionξ∈ [0]with the corresponding boundary conditions. But if we only want to findanupperboundforthebindingenergy,thenanupperbound E<b >E< issufficient.Suchupperboundscanbefoundbyinsert- ing certain trial functions instead of the true hedgehog solution intotheenergyfunctional.Onefirstpossibilityistousethesame BPSsolution(18), butitturnsout thatthisisalousyapproxima- tion,becauseithasthewronglarger behavior.Thesolutionofthe minimal Skyrme modelbehaves like r2 for large r, so the sim- plestpossibletrialfunctionwiththisbehavioris

ξ

<

(

r

) = ξ

r2

r2

. . .

r

>

r

,

r

=

1

tan12π

=

1 2

− √

3

.

(25) Here,r istheradiuswheretheBPSsolution(18) takesthevalue ξ,such thattheBPSsolutionforrr∗ andthetrialfunction ξ<

forr>r togetherdefineacontinuousfunction.Itsfirstderivative isno longercontinuous (has a finitejumpatr), butthisissuf- ficientlyregular forourenergyestimates.Thenumericalvaluesof ourparametersare

f



0

.

1340

,

r



3

.

7320

,

C

≡ ξ

r2



7

.

2928

.

(26) Fortheupperenergyboundwefinallyget

E<b

=

E<b,2

+

E<b,4

4

π



r

drr2

(

Eb,2

+

Eb,4

)

(27)

where Eb,2

=

f2



4C2

r6

+

2sin2

(

C

/

r2

)

r2



(28)

Eb,4

=

8C2 r8 sin2 C

r2

+

sin4

(

C

/

r2

)

r4

.

(29)

Performingtheintegrationsnumerically,thisleadsto

E<b,2

=

4

π

f2

·

2

.

0203

=

0

.

4559

,

(30) E<b,4

=

4

π ·

0

.

2359

=

0

.

2359

,

(31) E<b

=

E<b,2

+

Eb<,4

=

0

.

6918

.

(32) For therelative binding energies we, therefore, getthe following upperbound,



E

(

B

)

E

(

B

)

B E

(

1

)

E

(

B

)

E

(

B

)

E<b

E<BPS

E>BPS

+

EBPS<



0

.

235

118

.

6

=

0

.

00198

,

(33) where E(B)is the energyofa skyrmion withbaryon number B.

Inotherwords,relativebindingenergiesforthedielectricSkyrme model defined by the dielectric functions of Eq. (22) must al- waysbebelow0.2%.Thisexampledemonstratesthatthedielectric Skyrmemodelnotonlyallowstofindsubmodelswithsmallbind- ing energies.It provides,infact,an extremelysimple andnatural mechanismtoconstructsuchmodelswitharbitrarilysmallbinding energies.

Weremarkthatthesamemechanismholdsforanyotherchoice oftherunningfunctions,alsothosewhere f takesasingularvalue atξ=0.Thisisimportant,sinceaparticularformof f (and,con- sequently,e)shouldnotonlyreproduceitsvacuumvalue fπ (after theBPSbreaking) butalso,atleastqualitatively, theexperimental in-mediumdependence.

3. Inclusionofthesextictermandpotential 3.1. DielectricBPSSkyrmemodel

If generalizations of the Skyrme model at most quadratic in time derivatives are considered, which still lead to a standard Hamiltonian, thentwopossibletermsmaybe added.Namely, the sextictermwithstaticenergy E6=g2

π

2B20,andanon-derivative term, i.e., a potential E0U. The two terms together form the so-calledBPSSkyrmemodel

EB P S

=

E6

+

E0 (34)

Here g isapositiveconstant.

This model is interesting because some of its properties co- incide with several relevant features of nuclear matter (atomic nuclei).Firstofall,itisaBPStheorywherethecorrespondingBo- gomolnyequationhassolitonicsolutionsinany topologicalsector.

Thus,stableBPSsolitonswitharbitraryvaluesofthebaryoncharge exist.Asaconsequence,themodelprovideszerobindingenergies attheclassicallevel.Ratherrealisticphysicalbindingenergiescan beobtainedalreadywithinthemodel,ifsomenaturalclassicaland quantumcorrectionsareincluded[27].Secondly,thestaticenergy

(5)

functionalenjoysalargesymmetrygroup,i.e.,thevolumepreserv- ingdiffeomorphisms.ThismeansthattheenergyofaBPSsoliton doesnot depend on its shape and is constant provided the vol- umeremains unchanged. Infact, thissymmetry isthe symmetry ofaliquidifthesurfaceenergyisnegligible.Furthermore,theBPS SkyrmeLagrangiandescribesaperfectfluid.Thisreproducesatthe fieldtheoreticleveltheliquiddropmodel.

Letusnowpromotetheconstant g toa functionofthetarget spacevariable,Tr U .Wedonotconsideranydielectricfunctionfor E0,asanyfunctionaldependencemayincorporatedintothepoten- tial.Theresultingdielectricversion oftheBPSSkyrmemodelstill possesses a non-empty self-dual sector. To see this, we compute thecorrespondingtopologicalbound

EdB P S

=



R3



g2 4

π

2

λ

2

1

λ

22

λ

23

+

U



d3x

=



R3



g

2

π λ

1

λ

2

λ

3

±

U



d3x

1

π



R3 g

U

λ

1

λ

2

λ

3d3x

1

π



R3 g

U

λ

1

λ

2

λ

3d3x

=

2

π 

g

U



|

B

|.

(35)

The bound is saturated if and only if the following Bogomolny equationisobeyed

g

2

π λ

1

λ

2

λ

3

±

U

=

0

.

(36)

ThiscanbetransformedintotheBogomolnyequationofthestan- dard(non-dielectric)BPSSkyrmemodelbyintroducinganewpo- tential ˜U =g2U.Inotherwords,thedielectricfunctioncanalways beincorporatedintothepotential.Asaconsequence,theSDiff in- varianceofthe BPSsolutions survives.To conclude,the dielectric generalizationoftheBPSSkyrmemodeldoesnotchangethemain qualitative properties of the model. In realistic applications, the functionsg andUshould,ofcourse,beconstrainedbyexperimen- taldata.

3.2. B=1 BPSsolutionofthegeneralizeddielectricSkyrmemodel

Owing to the large freedom in the (dielectric) BPS Skyrme model,itispossibletofindsuchfunctionsg andUthattheBogo- molny equationshares somesolutions withtheBogomolny equa- tionsforthedielectricminimalSkyrmemodel(11).

Intheunitchargesector,aSkyrmionagaincanbeobtainedby thehedgehogansatz.Thus,eq. (36) leadsto

1 2

π

g

(ξ )

sin2

ξ ξ

r

r2

= − √

U (37)

Assumingthatthesolutionshouldbeoftheform(18) wecanfind that

U

g

=

1

2

π

r30

(

1

cos

ξ )

3

1

16

π

r30

(

Tr

(I

U

))

3 (38) Thus,wehaveproventhatthegeneralizeddielectricSkyrmemodel

Ed

=

Ed2

+

Ed4

+

Ed6

+

E0 (39)

has a BPS unit charge solution provided the dielectric functions andthepotentialobeyrelations(13) and(38).

Notethattheadditionoftheminimal(dielectric)Skyrmemodel breaks the SDiff symmetry explicitly.Furthermore, higher charge Skyrmions are again unstable towards decay into separated BPS Skyrmions.

4. Possibleapplicationsandconclusions

A first, general observation is that there exists a rather large freedom in the construction of near-BPS Skyrme models, where solitons form bound states with small binding energies. The di- electricSkyrmemodelsproposedinthepresentletterconstitutea newandinterestingpossibilityforthisphenomenon,whichshould befurther explored.Inparticular,theinclusionofthesexticterm (or the BPS Skyrme model) into the full BPS submodel is inter- esting,because thispartofthe completemodelgivestheleading behaviorinthehighdensity(pressure)regime[41].

Smallclassical binding energies require that theBPS property in the B=1 sector is weakly broken. Thiscan be achievedby a deformationoftheconstraintsonthedielectricfunctionsandthe potential (13), (38). For anydeformation to a physically relevant near-BPS modelwe should impose thatclose to theperturbative vacuum(ξ=0)thedielectric functionstendto thenon-zerovac- uumvalues f(ξ=0)= fπ ande(ξ=0)=e0.Buttheseconditions onlyaffectthesmall-fieldregionswhichproviderathersmallcon- tributions to the total energyof a soliton. Inother words, ifwe choosedeformationssuch thatthecouplingfunctionsremain(al- most)unchangedforlargefield values,thentheresultingbinding energiesareexpectedtobesmall.Wedemonstratedinaconcrete andsimpleexamplethatthisisindeedthecase,andtheresulting bindingenergiescan bemadeextremelysmall.Thatistosay,the mostnaturaldeformationsofthedielectricBPSSkyrmemodel,i.e., those which just recover the phenomenologically correct small- field limit, automatically provide very low binding energies, by construction.

Arelatedquestionconcernspossiblephysicalinterpretationsor justificationsforthe(deformed)couplingfunctions.Fromaneffec- tive field theory point ofview, they simplycorrespond to higher order terms inthe field expansion which maybe taken into ac- count. They are not forbidden because they respect the relevant symmetries.Further,afterthedeformation,theyalsoreproducethe correctsmall-fieldlimit.Anotherpossibilityistointerpretthedi- electricfunctions asin-medium coupling constants, inparticular, f asanin-mediumpiondecayconstant.Infact,owingtothearbi- trarinessofoneofthecouplingfunctionsintheminimaldielectric Skyrmemodel, f maybechosentoqualitativelyreproducethein- medium behavior of thepiondecayconstant. Thesameconcerns thedielectric function g and especiallythepotential U,which in thesmallfield-limitinvacuumshould tendtothepionmasspo- tentialm2Tr(IU).

The possible relation between (near)-BPS structures and in- mediumpropertiesofSkyrmions(in-mediumSkyrmemodels,see, e.g., [42–45])indicated aboveis aninteresting observationwhich deservesamoreprofoundinvestigation.

Weremarkthatthecondition(38) alsoallowstoaddthemodel E4+U4 of[28].

Declarationofcompetinginterest

Theauthorsdeclarethattheyhavenoknowncompetingfinan- cialinterestsorpersonalrelationshipsthatcouldhaveappearedto influencetheworkreportedinthispaper.

Acknowledgements

TheauthorsacknowledgefinancialsupportfromtheMinistryof Education,CultureandSports,Spain(GrantNo.FPA2017-83814-P), theXuntadeGalicia(Grant No.INCITE09.296.035PRandConselle- riadeEducacion),theSpanishConsolider-Ingenio2010Programme CPAN(CSD2007-00042),MariadeMaetzuUnitofExcellenceMDM- 2016-0692,andFEDER.

(6)

References

[1]T.H.R.Skyrme,Anonlinearfieldtheory,Proc.R.Soc.Lond.260(1961)127.

[2]T.H.R.Skyrme,Aunifieldfieldtheoryofmesonsandbaryons,Nucl.Phys.31 (1962)556.

[3]T.H.R.Skyrme,KinksandtheDiracequation,J.Math.Phys.12(1971)1735.

[4]G.t’Hooft,Aplanardiagramtheoryforstronginteractions,Nucl.Phys.B72 (1974)461.

[5]E.Witten,Baryonsinthe1/N expansion,Nucl.Phys.B160(1979)57.

[6]E.Witten,Currentalgebra,baryons,andquarkconfinement,Nucl.Phys.B223 (1983)433.

[7]N.Manton,P.Sutcliffe,TopologicalSolitons,CambridgeUniversityPress,Cam- bridge,UK,2007.

[8]H.Weigel,Chiralsolitonmodelsforbaryons,Lect.NotesPhys.743(2008)1.

[9]M.Rho,I.Zahed(Eds.),TheMultifacetedSkyrmion,2edition,WorldScientific, Singapore,2016.

[10]Y.-L.Ma,M.Rho,EffectiveFieldTheoriesforNucleiandCompact-StarMatter, WorldScientific,Singapore,2019.

[11]G.S.Adkins,C.R.Nappi,E.Witten,StaticpropertiesofnucleonsintheSkyrme model,Nucl.Phys.B228(1983)552.

[12]E.Braaten,L.Carson,ThedeuteronasasolitonintheSkyrmemodel,Phys.Rev.

Lett.56(1986)1897.

[13]L.Carson,B=3 nucleiasquantizedmultiskyrmions,Phys.Rev.Lett.66(1991) 1406.

[14]T.S.Walhout,Multiskyrmionsasnuclei,Nucl.Phys.A531(1991)596.

[15]O.V.Manko, N.S.Manton, S.W.Wood,Light nucleias quantizedSkyrmions, Phys.Rev.C76(2007)055203.

[16]R.A.Battye,N.S.Manton,P.M.Sutcliffe,S.W.Wood,Lightnucleiofevenmass numberintheSkyrmemodel,Phys.Rev.C80(2009)034323.

[17]P.H.C.Lau,N.S.Manton,Statesofcarbon-12intheSkyrmemodel,Phys.Rev.

Lett.113(2014)232503.

[18]C.J.Halcrow,VibrationalquantisationoftheB=7 Skyrmion,Nucl.Phys.B904 (2016)106.

[19]C.J.Halcrow,C.King,N.S.Manton,Adynamicalα-clustermodelofO-16,Phys.

Rev.C95(2017)031303.

[20]A.Jackson,A.D.Jackson,A.S.Goldhaber,G.E.Brown,L.C.Castillejo,Amodified Skyrmion,Phys.Lett.B154(1985)101.

[21]G.S.Adkins,C.R.Nappi,Stabilizationofchiralsolitonsviavectormesons,Phys.

Lett.B137(1984)251.

[22]G.S.Adkins,RhomesonsintheSkyrmemodel,Phys.Rev.D33(1986)193.

[23]U.G.Meissner,I.Zahed,Skyrmionsinthepresenceofvectormesons,Phys.Rev.

Lett.56(1986)1035.

[24]B.Schwesinger,H. Weigel,Vectormesonsversushigherordertermsinthe Skyrmemodelapproachtobaryonresonances,Nucl.Phys.A465(1987)733.

[25]M.Bando,T.Kugo,K.Yamawaki,Nonlinearrealizationandhiddenlocalsym- metries,Phys.Rep.164(1988)217.

[26]C.Adam, J.Sánchez-Guillén, A.Wereszczynski, A Skyrme-typeproposal for baryonicmatter,Phys.Lett.B691(2010)105,arXiv:1001.4544.

[27]C.Adam,C.Naya,J.Sánchez-Guillén,A.Wereszczynski, Bogomol’nyi-Prasad- SommerfieldSkyrmemodelandnuclearbindingenergies,Phys.Rev.Lett.111 (2013)232501,arXiv:1309.0820.

[28]D.Harland,Topologicalenergybounds forthe Skyrmeand Faddeevmodels withmassivepions,Phys.Lett.B728(2014)518,arXiv:1311.2403.

[29]M.Gillard,D.Harland,M.Speight,Skyrmionswithlowbindingenergies,Nucl.

Phys.B895(2015)272,arXiv:1501.05455.

[30]S.B.Gudnason,B.Zhang,N.Ma,GeneralizedSkyrmemodelwiththeloosely boundpotential,Phys.Rev.D94(2016)125004,arXiv:1609.01591.

[31]S.B.Gudnason,ExploringthegeneralizedlooselyboundSkyrmemodel,Phys.

Rev.D98(2018)096018,arXiv:1805.10898.

[32]P.Sutcliffe,Skyrmions,instantonsandholography,J.HighEnergyPhys.1008 (2010)019,arXiv:1003.0023.

[33]C.Naya,P.Sutcliffe,Skyrmionsinmodelswithpionsandrhomesons,J.High EnergyPhys.1805(2018)174,arXiv:1803.06098.

[34]C.Naya,P.Sutcliffe,Skyrmionsandclusteringinlightnuclei,Phys.Rev.Lett.

121(2018)232002,arXiv:1811.02064.

[35]E.B.Bogomolnyi, Stabilityofclassicalsolutions,Sov.J. Nucl.Phys.24(1976) 449.

[36]L.D.Faddeev,Somecommentsonthemany-dimensionalsolitons,Lett.Math.

Phys.1(1976)289.

[37]C.Adam,A.Wereszczynski,TopologicalenergyboundsingeneralizedSkyrme models,Phys.Rev.D89(2014)065010.

[38]C.Naya,K.Oles,Backgroundfieldsandself-dualSkyrmions,arXiv:2004.07069.

[39]N.Manton,GeometryofSkyrmions,Commun.Math.Phys.111(1987)469.

[40]L.A.Ferreira,Exactself-dualityinamodifiedSkyrmemodel,J. HighEnergy Phys.1707(2017)039,arXiv:1705.01824.

[41]C.Adam,M.Haberichter,A.Wereszczynski,Skyrmemodelsandnuclearmatter equationofstate,Phys.Rev.C92(2015)055807.

[42]U.-G.Meissner,Bosonexchangephenomenology:afirststepfromnucleonsto nuclei,Nucl.Phys.A503(1989)801.

[43]U.-G.Meissner,V.Bernard,TheNambu-Jona-Lasiniomodel:applications and limitationsofastrongcouplingtheory,CommentsNucl.Part.Phys.19(1989) 67.

[44]G.E.Brown,M.Rho, ScalingeffectiveLagrangiansinadensemedium, Phys.

Rev.Lett.66(1991)2720.

[45]Y.-L.Ma,M.Rho,RecentprogressondensenuclearmatterinSkyrmionap- proaches,Sci.China,Phys.Mech.Astron.60(2017)032001,arXiv:1612.06600.

Cytaty

Powiązane dokumenty

We find that our model of allele frequency distributions at SNP sites is consistent with SNP statistics derived based on new SNP data at ATM, BLM, RQL and WRN gene regions..

We will get infor- mation from all the ideals, by means of Theorem 1.1 and noting that in fact an ideal is, in some sense, a divisor of its elements.. In this way, we give a new

The model of generalized quons is described in an algebraic way as certain quasiparticle states with statistics determined by a commutation factor on an abelian group.. Quantization

Math 3CI Even More about solving DiffyQ Symbolicallly Part IV In these problems you are pushed to develop some more symbolic tech- niques for solving ODE’s that extends the

Space charge measurements on dielectric interfaces showed that a model of the interface based on the Maxwell-Wagner theory can predict up to a certain extent the polarization

3) rectors and rectors of higher education institutions run by churches and other re- ligious associations receiving subsidies, grants and other resources from the state budget

ustaw (druk nr 2970 Sejmu VII kadencji); rządowy projekt ustawy o zmianie ustawy – Prawo łowieckie (druk nr 3192 Sejmu VII kadencji); rządowy projekt ustawy o

Under these conditions and near charge inversion, F 0 is approximately proportional to the net surface-charge density of the surface being screened by multivalent ions and the sign