• Nie Znaleziono Wyników

The Bell System Technical Journal : devoted to the Scientific and Engineering aspects of Electrical Communication, Vol. 19, No. 1

N/A
N/A
Protected

Academic year: 2022

Share "The Bell System Technical Journal : devoted to the Scientific and Engineering aspects of Electrical Communication, Vol. 19, No. 1"

Copied!
163
0
0

Pełen tekst

(1)

JANUARY, 1940

NUMBER 1

V '

¡ Æ THE BELL SYSTEM

T O H N I C A L J O U R N A L

DEVOTED TO THE SCIENTIFIC AND ENGINEERING ASPECTS OF ELECTRICAL COMMUNICATION

TM V V The Physical Basis of Ferromagnetism— R. M. Bozorth . . 1 Contact Phenomena in Telephone Switching CircuitsI

— A. M . Curtis 40 Effect of the Quadrature Component in Single Sideband

Transmission— H. Nyquist and K. W. Pfleger . . . . 63 Low Temperature Coefficient Quartz Crystals— W. P. Mason 74 A New Standard Volume Indicator and Reference Level

— H. A. Chinn, D. K. Gannett, and R. M . Morris 94 Metallic Materials in the Telephone System

— Earle E. Schumacher and W. C. Ellis 138 Technical Digest—

An Interesting Application of Electron Diffraction—

L. H. Germer and K . H. Storks 152 Abstracts of Technical P a p e r s ...156 . Contributors to this I s s u e ...159

AMERICAN TELEPHONE AND TELEGRAPH COMPANY NEW YORK

50c p e r Copy $1.50 p e r Year

-

(2)

THE BELL SYSTEM TECHNICAL JOURNAL

Published quarterly by the

American Telephone and Telegraph Company 195 Broadway, New York, N. Y.

im iiiim iiiiiiiiiiiiiiiiiiiiiiim iii

EDITORS

R . W . K in g J. O. Perrine

F. B. Jewett A. F. Dixon S. Bracken

EDITORIAL BOARD H. P. Charlesworth

O. E. Buckley M. J. Kelly

W. Wilson

W. H. Harrison O. B. Blackwell G. Ireland

»

SUBSCRIPTIONS

Subscriptions are accepted at $1.50 per year. Single copies are fifty cents each.

The foreign postage is 35 cents per year or 9 cents per copy.

Copyright, 1940

American Telephone and Telegraph Company

P R I N T E D I N U . S . A .

(3)

T he Bell System Technical Journal

Vol. XIX January, 1940 No. 1

The Physical Basis of Ferromagnetism

By R . M . B O Z O R T H

A fte r a n in tr o d u c to r y rev iew of th e g e n e ra l n a tu r e of th e th e o r y of m a g n e tic p h e n o m e n a a n d th e m a g n itu d e s of th e a to m ic forces in v o lv e d , th e r e is a d iscu ssio n of E w in g ’s th e o ry , its re s u lts a n d lim ita tio n s . T h e la te r th e o r y of W eiss is th e n giv en b riefly in o rd e r to fix th e c o n c e p t of th e m o le c u la r field. In o rd e r to e lu c id a te th e n a tu r e of th is field a d ig ressio n is m a d e to d iscu ss th e a to m ic s t r u c ­ tu r e of th e fe rro m a g n e tic e le m e n ts a n d e le m e n ts h a v in g sim ilar s tru c tu r e s . W ith th is as a b asis th e p h y sic a l n a tu r e of th e m o lecu lar field is d iscu ssed a t som e le n g th . I t s re la tio n to th e s tr u c tu r e of d o m a in s, p a rtic u la rly th e n a tu r e of th e b o u n d a rie s b e tw e e n d o ­ m a in s, is b r o u g h t o u t.

F in a lly th e r e is a rev iew of th e g y ro m a g n e tic effect, its signifi­

c a n c e fo r m a g n e tic th e o r y , th e p rin c ip a l e x p e rm e n ta l m e th o d for its d e te r m in a tio n , a n d th e n u m e ric a l re s u lts s u p p o rtin g th e id ea t h a t th e s p in of th e e le c tro n a n d n o t its o rb ita l m o m e n t is re s p o n ­ sible fo r fe rro m a g n e tis m .

In t r o d u c t i o n

I

N T H E la s t five or te n y ea rs th e th e o ry of ferrom agnetism has show n in d icatio n s of m a tu rity . F o r th e first tim e a plausible sto ry can be to ld concerning th e u ltim a te m agnetic particle, th e essential n a tu re of th e ato m of a ferrom agnetic substance, th e kind of forces w hich d ete rm in e th e p ro p erties of m agnetic crystals, th e effect of s tra in on m a g n e tic m a te ria ls and th e m a n n er in w hich these various p h en o m en a com bine to d eterm in e th e properties of com m ercial m ate ria ls. I t is tru e t h a t th e sto ry is largely q u alitativ e, an d th a t th e re are still m a n y p o in ts t h a t are u n c e rtain or m issing en tirely , b u t n evertheless it is possible to describe th e m ajo r fe atu res w ith som e confidence.

T h e fu n d a m e n ta l m ag n etic p article is th e spinning electro n . O ne m ig h t th in k t h a t th e o rb ita l m otions of th e electrons in th e a to m would also c o n trib u te to ferrom agnetism , owing to th e ir m agnetic

1

I t l t y

V,

(4)

2 B E L L S Y S T E M T E C H N I C A L J O U R N A L

m o m en ts, b u t it h a s now been esta b lish e d t h a t w hen th e m a g n e tiz a tio n is a lte re d all t h a t changes is th e d irectio n o r “ s e n s e ” of th e spin of c e rta in of th e e lectro n s in th e a to m s— th e o rb ita l m o tio n s rem ain p ra c ­ tic a lly u n ch an g ed .

T h e electro n s t h a t a re resp o n sib le for th e m a g n e tic p ro p e rtie s of iron, c o b a lt, nickel a n d th e ir alloys lie in a d efin ite “ s h e ll” in th e ato m . A s show n in Fig. 1, th e re a re four shells o r regions, m o re or

less well defined, in to w hich all th e e lec tro n s circ u la tin g a b o u t th e nuclei of th e se a to m s m a y be d iv id e d w h en th e a to m is s e p a ra te d from its neig h b o rin g ato m s, a s it is, for ex am p le, in a gas. Som e of th e se shells a re su b d iv id e d a s show n. W h en th e a to m s com e closer to g e th e r as th e y do in a solid, th e fo u rth or o u te rm o st shell of each becom es d is ru p te d , a n d th e tw o elec tro n s w hich c o m p rised it w a n d e r from a to m to a to m a n d are th e “ fr e e ” ele ctro n s resp o n sib le for

(5)

t h e p h y s i c a l b a s i s OF F E R R O M A G N E T I S M 3 electrical conduction. T h e electro n s in th e o u te r p a r t of th e th ird shell are th o se responsible for th e d istin ctiv e kind of m ag n etism found in iron, co b alt an d nickel. Som e of th e se electrons spin in one directio n an d som e in th e opposite, as in d icated , so t h a t th e ir m ag n etic m o m en ts n eu tralize each o th e r p artia lly b u t n o t w holly, and th e excess of those spinning in one directio n over th o se spinning in th e o th e r causes each a to m as a w hole to b eh av e as a sm all p e rm a n e n t m ag n et.

T h e w ell-established k in etic th e o ry of m a tte r tells us t h a t if each ato m w ere to a c t in d ep en d e n tly of its neighbors, th e a to m s w ould be v ib ra tin g an d ro ta tin g so en erg etically t h a t th e y could n o t be aligned even w ith th e stro n g e st field t h a t can be produced in th e la b o rato ry . T o explain th e kind of m ag n e tic p ro p ertie s found in iron, therefore, it is necessary t h a t th e re be som e in te rn a l force cap ab le of m aking th e m agnetic m o m en t of a g roup of neighboring a to m s lie parallel to each oth er— th e sm all ato m ic “ p e rm a n e n t m a g n e ts ” of each g ro u p m u st po in t in th e sam e d irection so as to provide a m ag n e tic m o m en t g reat enough to p e rm it a realig n m en t w hen su b jected to ex tern al fields.

R ecen tly it has been show n b y in d ep e n d en t m eans t h a t th e re is such a force in ju s t those elem en ts w hich are ferrom agnetic, a n d it is from th is force t h a t th e difference b etw een m ag n etic an d non-m agnetic m a te ria ls arises. T h e force is e le c tro sta tic in n a tu re an d is called

“ exchange in te ra c tio n ” by th e a to m ic -stru c tu re experts, th e w ave m echanicians, w ho h av e show n its existence an d calcu lated its order of m ag n itu d e. T h is force m a in tain s sm all groups of a to m ic m ag n ets parallel ag ain st th e forces of th erm al a g itatio n . (W hen th e m aterial is h ea te d so h o t th a t th e disordering actio n of th e a g ita tio n becom es stro n g enough to overpow er th e forces of “ exchange in te r a c tio n ” th e m aterial loses its ferrom agnetism ; in iron th is h ap p en s a t 770° C.)

B u t w h y th e n is n o t ev ery piece of iron a com plete p erm a n e n t m ag n et? F o r som e reason n o t und ersto o d a t presen t, a t o rd in a ry te m p e ra tu res th e e le c tro sta tic forces of exchange in te ra c tio n m a in ta in th e ele m e n ta ry m ag n ets parallel only over a lim ited volum e of th e specim en. T h is volum e is usu ally of th e o rd er of 10-8 or 10-9 cubic cen tim eters a n d co n tain s a million billion a to m s an d is of course in ­ visible. Such a volum e is said to be s a tu ra te d because th e ato m ic m ag n ets a re all po in tin g in th e sam e directio n , a n d has been given th e nam e “ d o m a in .” T h u s a m ag n etic m aterial a t room te m p e ra tu re, before it has been m agnetized b y su b jectin g it to th e influence of a m ag n etic field, is d ivided in to a g re a t m a n y dom ains each of w hich is m agnetized to s a tu ra tio n in som e d irectio n gen erally different from th a t of its neighbors. T h e n e t o r v ec to r sum of th e m ag n etizatio n s is zero, an d ex tern ally th e m a te ria l ap p e a rs to be u n m agnetized b u t in

(6)

4 B E L L S Y S T E M T E C H N I C A L J O U R N A L

re a lity th e m a g n e tiz a tio n a t a n y one p o in t is v e ry in ten se. W h en a m a g n e tic field is a p p lied b y bringing n e a r th e m e ta l a p e rm a n e n t m a g n e t o r a coil of w ire c a rry in g a c u rre n t, th e m a g n e tiz a tio n of th e m a te ria l as a w hole is in creased to a definite v alu e. W e believe t h a t w h a t th e n ta k e s p lace is sim p ly a change in th e d ire c tio n of th e m a g ­ n e tiz a tio n s of th e d o m ain s. If we re p re se n t th e m a g n e tiz a tio n of a n y d o m ain b y a v e c to r, th e effect of th e e x te rn a lly a p p lied field will be re p re se n te d b y th e r o ta tio n of th ese v ec to rs— ro ta tio n s n o t acc o m ­ p a n ie d b y a n y chan g es of length.

/ n / V

r1 / //

/

7

D IR E C TIO N S OF EASY M A G N E T IZ A T IO N

IR O N N I C K E L

Fig. 2—T he positions of th e atom s and th e directions of easy m agnetization in crystals of iron and of nickel.

R e c e n tly m u ch h as been learn ed a b o u t th e m a g n e tic p ro p e rtie s of m a te ria ls b y a s tu d y of single c ry sta ls. O rd in a ry m e ta ls are com posed of a g re a t m a n y c ry sta ls o ften to o sm all to b e seen easily b y th e n a k e d eye. B u t in th e la s t few y e a rs m e th o d s h a v e b ee n fo u n d for m a k in g large c ry sta ls of a lm o st all th e com m on m e ta ls, c ry sta ls as large as th e m o re fa m ilia r ones of ro c k c a n d y a n d even of q u a rtz . E x p e rim e n ts on such c ry sta ls of iron show t h a t th e y are m u ch m o re easily m ag n etize d in som e d irectio n s th a n in o th e rs.

T h is d ep en d en ce of ease of m a g n e tiz a tio n on d ire c tio n is illu s tra te d in F ig. 2 for iron a n d nickel in re la tio n to th e p o sitio n s of th e a to m s in

(7)

T H E P H Y S I C A L B A S I S OF F E R R O M A G N E T I S M 5 th e cry stals. T h e circles re p re se n t th e positions w hich cen ters of ato m s ta k e up on a n im ag in a ry fram ew o rk or la ttice. B ecause of th e sm allness of ato m ic dim ensions o n ly a sm all fraction of th e a to m s in a cry stal of o rd in a ry size are show n, b u t th e sam e p a tte rn , th e u n it of w hich is o u tlin ed b y solid lines, e x ten d s th ro u g h o u t th e w hole of th e single c ry sta l. T h e arrow s in d ic a te th e d irectio n s of “ e a s ie s t” m a g ­ n etizatio n , w hich are d ifferent for th e tw o m aterials a s m ay be noticed.

In o rd er to give a n o tio n of th e ab so lu te and relativ e sizes of c ry sta ls and dom ain s and ato m s w ith w hich m ag n etic processes are concerned, it m ay be p o in ted o u t t h a t a piece of o rd in a ry iron a cubic ce n tim e te r in volum e m a y co n ta in a b o u t 10,000 single cry stals, an d t h a t each cry sta l co n tain s on th e av erag e 100,000 dom ains each w ith from 1014 to 1016 ato m s.

A lth o u g h th is article is n o t concerned p rim arily w ith th e d etails of th e changes in m a g n e tiz a tio n t h a t occur w hen a m ag n etic field is applied, a b rief d escrip tio n of such changes is desirable. In a cry sta l of iron th e d irectio n s of e asy m ag n e tiz atio n are parallel to th e cubic axes, t h a t is, th e y are th e six d irectio n s parallel to th e edges of th e cube w hich rep resen ts th e s tru c tu re . W hen such a m ag n etic m aterial is u n m ag n etized as a w hole a po rtio n of one of th e cry stals in it m ay be rep resen ted b y th e highly schem atic Fig. 3(a). As show n, each of th e dom ains, rep resen ted b y th e arrow s, circles an d crosses, is m ag n etized in one of th e directions of easy m ag n etizatio n , equal n u m b ers in each of th e six d irections. W h en a w eak field is applied in th e directio n in d ic a te d an d its stre n g th g ra d u ally increased to a high value, th e m ag n etizatio n s of th e dom ains change su d d en ly a n d th e ir d irectio n s ap p ro a c h coincidence w ith th a t of th e m agnetic field. T h is is usu ally accom plished b y th e displacem ents of dom ain boundaries, th ese m oving so t h a t som e dom ains grow a t th e expense of o th ers in w hich th e m ag n etizatio n lies in a directio n fu rth e r from t h a t of th e field. W h en th e field has been increased to such a stre n g th th a t p ra c tic a lly all th e dom ains are o rien ted as show n in (b) a n d th e crystal is really ju s t one large dom ain, a second process com m ences: th e m ag ­ n e tiz atio n changes slow ly in direction u n til finally it is parallel to th e field, a n d th e n changes no m ore. T h e m aterial is th e n said to be s a tu ra te d , as show n in (c).

F ig u re 3 is d raw n to illu stra te th e changes in m ag n etizatio n t h a t occur in a single c ry sta l of iron. Iro n as we o rd in arily see it is com ­ posed of a g re a t m a n y m in u te single c ry stals, b u t th e changes in m ag n etizatio n t h a t occu r in each one of th ese c ry stals are ju s t those w hich hav e been described, th e m a g n etiz atio n of th e w hole p o ly ­ cry sta llin e m a te ria l being th e sum of th e m ag n etizatio n of th e p a rts.

(8)

T h e m o st d efin ite e v id en ce of th e existence of d o m a in s is th e B a rk h a u se n effect. T o p ro d u ce an d d e te c t it, a piece of m a g n e tic m a te ria l is w o u n d w ith w ire th e ends of w hich are c o n n e c te d to a v a c u u m tu b e am plifier. W h en th e m a g n e tiz a tio n of th e m a te ria l is ch an g ed , a s e.g. b y m oving a p e rm a n e n t m a g n e t n e a r it, a ru stlin g so u n d o r a series of clicks m a y be h ea rd in phones o r in a loud s p e a k e r 6 B E L L S Y S T E M T E C H N I C A L J O U R N A L

i

Fig. 3— D omains in a single crystal of iron. As th e m agnetic field increases in strength the magnetic mom ents first change suddenly (a to b) by displacem ent of th e boundaries between them , then ro tate sm oothly (b to c).

co n n e c te d to th e o u tp u t e n d of th e am plifier. E v e ry su ch click is ascrib ed to th e su d d e n c h an g e in d ire c tio n of m a g n e tiz a tio n in a single d o m ain , a n d from m e a su re m e n ts of th e sizes of th e clicks w e g e t o u r b e s t e s tim a te of th e sizes of th e d o m ain s. E v e n m o re d ire c t evid en ce of th e existen ce of d o m a in s a n d th e ch an g es t h a t th e y u n d erg o h a s been o b ta in e d re c e n tly b y sp re a d in g colloidal iron oxide o v er th e su rface of a m a g n e tic m a te ria l a n d looking a t it u n d e r a m icroscope.

(9)

T H E P H Y S I C A L B A S I S OF F E R R O M A G N E T I S M 7 T h e regular p a tte rn o bserved 1 is sim ilar in n a tu re to th e fam ilia r one o b ta in ed w hen iron filings are sprin k led n ear a p e rm a n e n t m a g n e t;

th e fine colloidal p a rticles are n ecessary in th is case b ecau se th e whole scale is sm all. T h is m ic ro -p a tte rn changes w hen th e ap p lied field changes, an d th e difference is a ttr ib u te d to th e re d istrib u tio n or re o rie n ta tio n of gro u p s of dom ains. T h ese p a tte rn s are o b ta in e d only on m ag n e tic m a te ria ls a n d are found on th e m even w hen th e m a te ria l is unm ag n etized ; such a one is show n in Fig. 4.

Fig. 4— The powder pattern produced by colloidal iron oxide on the surface of a demagnetized silicon-iron crystal, showing the presence of inhomogeneous mag­

netic fields. Magnification about 1000.

Ma g n i t u d e s o f Ma g n e t i c Fo r c e s

F erro m ag n etic th e o ry h as been m ad e difficult b y th e fa c t t h a t th e m ag n etic forces b etw een th e electrons in an a to m are sm all com pared to th e e le c tro sta tic forces. T h e la tte r force betw een tw o electrons of charge e (in e.s.u.), a d istan ce a a p a rt, is eq u al to

e 2/ a 2.

T h e m ag n etic force betw een th e sam e electrons dep en d s on th e speed of th e charges as well as on th e ir m ag n itu d es, an d , w hen th e d irection of m otion is p erp en d icu la r to th e line joining them , is eq u al to

w here v/c is th e ra tio of th e speed of each electron to th e speed of light. Since vie is u su ally of th e o rd er of 0.01, th ese m ag n etic forces

1 L. W. M cKeehan and W. C. Elm ore, Phys. Rev., 46, 226-228 (1934). See also the earlier experiments by F. B itter, Phys. Rev., 41, 507-515 (1932). See also the account by Elmore in F . B itter’s Introduction to Ferrom agnetism , McGraw-Hill, New York, 55-66 (1937).

(10)

8 B E L L S Y S T E M T E C H N I C A L J O U R N A L

a re a b o u t 10~4 of th e e le c tro s ta tic forces. T h e difference is even g re a te r w hen e le c tro sta tic forces betw een electro n s a n d nuclei, or b etw een nuclei, are c o m p ared w ith m a g n etic forces. T h e m a g n itu d e s of th e se forces for a specific h y p o th e tic a l a rra n g e m e n t are show n in F ig. 5.

E LECTRO N

-e

/ /

/ ELECTROSTATIC FORCES

I IN DYNES

f i ---2 X IO "3 ---

--- 2 X I O '1--- * 0 NU CLEUS

+ 2 6 e

0

\

M A G N E T IC FORCES IN DYNES

— O R BITAL M OTIO NS, 2 X IO - 5 ---- ---S P IN S , 3 X tCT1 4 ---

ELECTRO N

-e

Fig. 5— T he m agnitudes of the forces in a hypothetical iron-like atom , showing th a t electrostatic forces are more powerful th a n m agnetic forces.

C onsider th e m a g n itu d e of m a g n etic forces from a n o th e r p o in t of view . T h e m a g n e tic en erg y of a p e rm a n e n t m a g n e t of m o m e n t ha

in a field of s tre n g th H is

E = - haH ,

w hen ha a n d I I a re p arallel. In a m a g n e tic su b sta n c e w e m a y re g a rd th e a to m ic m a g n e ts as being held p arallel b y a fictitio u s field H i.

W h en th e m a te ria l is h e a te d to th e C u rie te m p e ra tu re , 6, th e e n e rg y of th e rm a l a g ita tio n (p= kd) d e stro y s th e a lig n m e n t of th e ato m ic m a g n e ts b y th e fictitio u s o r “ in te r n a l” field H {. T h e n

kd ~ haHí.

F o r iron, 6 = 1043° K . a n d ha = 2.04 X 10 20 erg /g au ss, th u s th e

(11)

T H E P H Y S I C A L B A S I S OF F E R R O M A G N E T I S M 9 energ y p e r a to m is

kd = 1.4 X 10-13 e r g = 0.09 electro n -v o lt a n d th e in te rn a l field

H i = 7,000,000 oersteds.

A lth o u g h th is field is m u c h stro n g er th a n a n y so far produced in th e la b o ra to ry , th e en erg y involved is sm all com pared to t h a t w hich c o n tro ls chem ical b in ding. F o r exam ple, th e energ y of ionization of th e helium a to m is a b o u t 25 electro n v o lts. A n o th e r w a y of show ing t h a t th e m a g n e tic forces are sm all co m p ared to th e e lec tro sta tic forces holding a to m s to g e th e r, is to co m p are th e C urie te m p e ra tu re w ith th e te m p e ra tu re of v a p o riz a tio n .

T h e calcu latio n of m ag n e tic forces b y th e o ry is th u s ex trem ely difficult, b ecau se th e y are b u t sm all a d d itio n s to th e ele c tro sta tic forces w hich th em selv es c a n n o t u su ally b e c a lcu lated w ith m uch precision.

E w i n g ’s Th e o r y

E w ing 2 w as one of th e first to a tte m p t to explain ferrom agnetic p h en o m en a in te rm s of th e forces betw een ato m s. H is th e o ry will be d escribed briefly here, since m a n y physicists to d a y , w hen th in k in g a b o u t m a g n etic phenom ena, still go b a c k to E w in g ’s ideas of fifty y e a rs ago. H e assu m ed w ith W eb er t h a t ea ch a to m w as a p e rm a n e n t m a g n e t free to tu r n in a n y directio n a b o u t its ce n ter. T h e o rien tatio n s of th e v a rio u s m a g n e ts w ith re sp e c t to th e field an d to each o th e r w ere supposed to b e d u e e n tire ly to th e m u tu a l m ag n etic forces.

T h e / , H cu rv e an d h y steresis loop w ere calc u lated for a lin ear gro u p of su c h m a g n e ts a n d w ere d eterm in ed e x p erim en tally using m odels h av in g as m a n y as 130 m a g n e ts a rran g ed a t th e p o in ts of a plane s q u a re la ttic e .

T h e c alc u latio n s for a lin ear ch ain show t h a t as th e field is g ra d u ally in creased in m a g n itu d e from zero th e re is a t first a slow continuous ro ta tio n of th e m ag n ets, th e n a su d d en change in o rie n ta tio n and finally a fu rth e r co n tin u o u s ro ta tio n u n til th e m a g n ets lie parallel to th e field. T h e I , H cu rv es c a lcu lated for such a g ro u p of m a g n ets resem ble in g eneral form th e a c tu a l curves of iron : th e y show a p erm e­

a b ility first increasing th e n decreasing, a n d s a tu ra tio n a n d hysteresis.

A m a g n e tiz a tio n cu rv e an d a h y steresis loop o b ta in e d 3 w ith a m odel of 130 m a g n e ts in sq u a re a rra y , are show n in Fig. 6. E xperi-

2J . A. Ewing summarized in “ M agnetic Induction in Iron and O ther M etals,”

T he Electrician, London, 3d ed. (1900).

3 J . A. Ewing and H . G. Klaassen, P hil. Trans. Roy. Soc., 184A, 985-1039 (1893).

(12)

10 B E L L S Y S T E M T E C H N I C A L J O U R N A L

m e n ts w ith th e m odel show ed a v a rie ty of o th e r p h en o m en a in clu d in g ro ta tio n a l h y ste resis loss a n d its red u ctio n to zero in high fields, th e effect of s tra in on m a g n e tiz a tio n , th e existence of h y steresis in th e s tra in vs. m a g n e tiz a tio n d ia g ra m , th e effect of v ib ra tio n an d th e ex isten ce of tim e lag a n d acco m m o d atio n w ith re p e a te d cycling of th e field.

E w in g ’s g eneral m e th o d m a y b e illu s tra te d b y c alc u la tin g th e m a g n e tiz a tio n cu rv e a n d h y ste resis loop for an infinite line of p arallel

Fig. 6—A m agnetization curve and hysteresis loops of a Ewing model of 130 pivoted magnets in square array.

e q u ally spaced m a g n ets (Fig. 7a). I t is done m o st sim ply b y co n ­ sid erin g first th e m a g n e tic p o te n tia l en erg y 4 of a m a g n e t of m o m e n t Ha and length I, in th e field of a sim ilar m a g n e t:

w *= - 7 T

-

V ?

P‘W - ‘y r P>(>)

--- • (*) H e re r is th e d ista n c e b etw een th e c e n te rs of th e m a g n e ts an d th e P ( 6 ) ’s are L egendre fu n c tio n s of th e angle, 6, b etw een th e d irec tio n of th e m o m e n t of th e m a g n e t a n d th e line jo in in g th e m a g n e t cen ters.

Ps(9) = (1 + 2 cos 26)/4,

P i(d) = (9 + 20 cos 26 + 35 cos Ad)/64,

Pe(9) — (50 -f- 105 cos 26 + 126 cos 4 9 + 231 cos 60)/512.

T h e p o te n tia l en erg y p e r m a g n e t, W i, for a n infinite s tra ig h t row of m a g n e ts can easily be o b ta in e d b y sum m in g W for all pairs.

W i = - — [1.20 P 2(0) + l.O 4P4(0)(i/r)2

+ l.O lP e(0)(Z/r)4 + • • • ] • (2) 4 G. M ahajani, Phil. Trans. Roy. Soc., 228A, 63-114 (1929).

(13)

T H E P H Y S I C A L B A S I S OF F E R R O M A G N E T I S M 11 T h e b eh av io r of th e line w hen su b je c te d to a field H m a y be found b y a d d in g to W i th e energy te rm — Hha cos (0O — 6), w here 60 is th e angle b etw een th e line of c e n te rs an d th e d ire ctio n of th e field, an d

FIELD STRENGTH

Fig. 7—A m agnetization curve and hysteresis loop for an infinite line of equally spaced magnets originally “ demagnetized.”

finding th e v a lu e of 6 w hich m akes th is to ta l energy a m inim um for given valu es of do a n d I I :

~ [ W i - I Iha cos (0„ - ^ )] = 0.

T h is gives

n = (d/dd)W i

H Asin (00 — 6 ) '

(14)

12 B E L L S Y S T E M T E C H N I C A L J O U R N A L

T h e co m p o n e n t of m a g n e tiz a tio n parallel to H is I = /« c o s (0O - 0),

w here I , is th e s a tu ra tio n m ag n e tiz a tio n . B y s ta r tin g w ith h alf of th e line of m a g n e ts p o in tin g in a d irectio n o p p o site to t h a t of th e o th e r half, th e in itia l m a g n e tiz a tio n is zero an d an u n m a g n e tiz e d or d e m a g ­ n etized m a te ria l is sim u la te d . T h u s a m a g n e tiz a tio n cu rv e an d a h y steresis loop of th is assem blage are o b ta in e d b y p lo ttin g H a g a in s t I.

S uch a p lo t is show n in F ig. 7(b), w ith th e scale of H d e te rm in e d b y th e m a g n itu d e s of h a a n d r. T h e cu rv es are o bviously sim ilar to th o se for real m a te ria ls.

Li m i t a t i o n s o f Ew i n gs Th e o r y

So far, th is c a lc u latio n is e q u iv a le n t to w h a t E w ing d id o v er four d ecad es ago. B u t now w e know th e c ry sta l s tru c tu r e of iron a n d in p a rtic u la r th e d ista n c e s b etw een th e ato m s. W e also know th e m a g ­ n e tic m o m e n t of eac h iron a to m a n d know , th erefo re, th e v a lu e of Ma/r3 w hich d e te rm in e s th e scale of H . U sing th e a p p ro p ria te v a lu e s ha = 2.0 X 10-20 erg /g a u ss a n d r = 2.5 X 10-8 cm , th e coercive force H c for l/r = 0.1 is found to be 4600 oersteds. T h is is affected som e­

w h a t b y th e ra tio l/r, b u t in a n y case H c is found to be of th is o rd e r of m a g n itu d e unless l/r is v e ry close to u n ity . T h is m a g n itu d e of H c is g re a te r b y a fa c to r of 106 th a n th e low est v a lu e o b ta in e d ex p erim en ­ ta lly , 0.01. S im ilarly th e in itia l p e rm e a b ility , h o, acco rd in g to th e m odel is a b o u t u n ity w hile ob serv ed v alu es for iro n ra n g e fro m 250 to 20,000. A d ju s tm e n t of l/r to h ig h er valu es d ecreases h o-

T h is ca lc u la tio n of th e m ag n e tiz a tio n cu rv e a n d h y steresis loop are b a se d on a v e ry m u c h idealized m odel, an d it is difficult to e s tim a te th e e rro r to w hich i t m a y le ad . O ne fa c to r t h a t h a s b een co m p letely n eg lected is th e flu c tu a tio n in en erg y . A m u ch b e tte r a p p ro x im a tio n w ould b e to c a lc u la te th e m a g n e tic p o te n tia l e n erg y of a g ro u p of m a g n e ts a rra n g e d in sp ace in th e sam e w ay t h a t th e iron (or nickel) a to m s are a rra n g e d in a c ry sta l. T h is h as been done b y M a h a ja n i 4 w ho show ed t h a t a p p lic a tio n of E q . (1) w ith / = 0 (b u t su m m ed to a c c o u n t for th e effects of all m a g n e ts in th e s tru c tu re ) lead s to th e re su lt t h a t th e m a g n e tic p o te n tia l of th e sp ace a rra y is in d e p e n d e n t of 0, in o th e r w ords one o rie n ta tio n of th e dipoles is a s sta b le a s a n y o th e r a n d th e m a g n e tiz a tio n cu rv e w ould go to s a tu ra tio n in in fin itesi­

m a l fields no m a tte r in w h a t d ire c tio n H m ig h t be a p p lied . I f I is finite, th e sta b le p ositions of th e m a g n e ts are p arallel to th e b o d y - d iag o n als of th e cu b e w hich is th e u n it of th e c ry s ta l s tru c tu re , a n d

(15)

T H E P H Y S I C A L B A S I S OF F E R R O M A G N E T I S M 13 th is becom es therefore th e d irectio n of easy m ag n etiza tio n , a situ a tio n w hich is co rrec t for nickel b u t decidedly n o t so for iron. T h e b e st correspondence b etw een th e ac tio n of th e m odel a n d of iron itself is o b ta in e d if th e m odel is m ad e b y placing a sm all circu lar c u rre n t of electricity , in ste ad of a m a g n e t w ith finite len g th , a t each la ttic e p o in t of th e space a rra y . In th e la tte r case we can explain th e d irectio n of easy m ag n e tiz a tio n in iron an d th e v a ria tio n of m ag n etic en erg y w ith d irectio n in th e cry stal.

In considering E w in g ’s m odel it is a p p ro p ria te to e stim a te th e energy of th e rm a l a g ita tio n an d to co m pare it w ith th e m ag n etic p o te n tia l energ y as c a lc u la ted from th e m odel. S u b stitu tin g in E q . (2) th e sam e v alu es of ha an d r as w ere used above, we o b ta in 10-16 erg per a to m for th e m a g n e tic p o te n tia l energy in zero field. T h is is to be co m p ared w ith th e ro ta tio n a l energy of a single m olecule a t room te m p e ra tu re , 2 X 10-14 erg p er a to m as given b y th e kin etic th e o ry . T h u s th e en erg y of th e rm a l a g ita tio n is 200 tim es as g re a t as th e calcu ­ la te d m a g n e tic energy. E v en a t liquid a ir te m p e ra tu re s th e th e rm a l a g ita tio n w ould p re v e n t th e ato m ic m a g n e ts from form ing sta b le co n ­ figurations. W ith o u t som e ad d itio n a l force th e m odel E w ing used w ould b eh a v e as a p a ra m a g n e tic ra th e r th a n a ferrom agnetic solid.

In a real m a te ria l, how ever, it is now well established t h a t th e re are v e ry pow erful forces, n o t co n te m p la te d w hen E w ing m ade his m odel an d proposed his th e o ry , w hich m a in ta in parallel th e dipole m o m en ts of neighboring ato m s. T h ese are th e e lectro static forces of exchange (see p. 24) w hich H eisenberg suggested are pow erful enough to align th e e le m e n ta ry m a g n ets a g a in st th e disordering forces of th e rm a l a g ita tio n , forces m u ch larg er th a n th o se of m ag n etic origin. T h e o ry acco u n ts only for th e o rd er of m a g n itu d e of th ese forces. O u r b e s t e stim a te of th e c o rresponding energy of m ag n e tizatio n is o b tain ed b y assum ing t h a t it is eq u al to th e en erg y of th e rm al a g ita tio n a t th e C urie point,

\k d . F o r iron (6 = 1043 °K ) th is gives 7 X 10“ 14 erg per ato m . Th e We i s s Th e o r y

In o rd er to u n d e rsta n d how ato m ic forces give rise to ferrom agnetism i t is d esirab le to review briefly W eiss’s th e o ry 6 of ferrom agnetism , w hich in tro d u ces a so-called “ m olecular fie ld ’’ th a t p resen tly will be identified w ith th e n a tu re of th ese forces. T h is th e o ry is a n extension of L a n g e v in ’s th e o ry of a p a ram ag n e tic gas. T h e original L angevin th e o ry c u lm in a te d in a fo rm u la re la tin g th e m ag n etizatio n , I , to th e field-strength, I I, a n d th e te m p e ra tu re , T ; th is is th e h yperbolic co-

6 P. Weiss, Jour, de physique (4) 6, 661-690 (1907). P. Weiss and G. Foex, “ Le M agnetism e,” Colin, Paris (1926).

(16)

14 B E L L S Y S T E M T E C H N I C A L J O U R N A L ta n g e n t law,

I _ . . ¡J-aH k T h ~ C n k T haH '

In d e riv in g th is th e a ssu m p tio n s a re m ad e t h a t th e e le m e n ta ry m a g ­ n e ts, each of m o m e n t /xa, a re su b je c t to th e rm a l a g ita tio n a n d m o m e n ­ ta rily m a y h a v e a n y o rie n ta tio n w ith re sp e c t to th e d ire c tio n of th e field, a n d t h a t th e y a re to o fa r a p a r t to influence each o th e r. Q u a n tu m th e o ry a lte rs th e second of th o se a ssu m p tio n s b y s ta tin g t h a t in such a n en sem b le of e le m e n ta ry m a g n e ts (atom s) th e re will be o n ly a lim ite d n u m b e r of possible o rie n ta tio n s, in th e sim p lest case o n ly tw o , one p arallel a n d th e o th e r a n tip a ra lle l to th e d irectio n of th e field. In th is case th e e q u a tio n co rresp o n d in g to L a n g e v in ’s is

7. = tanhT # - (3)

T h e se tw o th e o re tic a l relatio n s are p lo tte d for v a ria b le H a n d c o n ­ s ta n t T (room te m p e ra tu re ) in F ig. 8, th e c o n s ta n ts b ein g th o se for

Fig. 8— W ith no helpful m utual action between atom s, enorm ous fields would be necessary to satu rate a m agnetic m aterial.

iron (/o = 1740, ha = 2.04 X 10-20 erg /g au ss). I t is o b v io u s t h a t w ith th e h ig h e st fields so fa r a tta in e d in th e la b o ra to ry (a b o u t 300,000 o ersted s) th e m a g n e tiz a tio n w ould a tta in o n ly a sm all fra c tio n of its final v a lu e Io if th is law w ere obeyed, a n d in th is ra n g e I w ould be sen sib ly p ro p o rtio n a l to th e fie ld -s tre n g th :

(17)

T H E P H Y S I C A L B A S I S OF F E R R O M A G N E T I S M 15 w here C is a c o n sta n t. T h is relation, know n as C u rie ’s Law , is obeyed b y som e paramagnetic th o u g h n o t b y ferro m ag n etic su b sta n c e s. I t is usually w ritte n w ith I / H d e n o te d b y th e sym bol

x>

rep resen tin g su sc e p tib ility :

C X = J . ’

M a n y m ore p a ram ag n etic su b stan c es obey th e sim ilar “ C urie-W eiss Law ” :

I = (4)

t - e K J

W eiss p ointed o u t th e significance of 6 in th is e q u a tio n : it m eans t h a t th e m a te ria l b eh av es m ag n etically as if th e re w ere an ad d itio n a l field, N I , aiding th e tru e field I I . T h is equivalence is show n m a th e m a tic ­ ally b y p u ttin g 6 = N C in E q . (4) w ith th e re su lt

C ( I I + N I ) T

T h e q u a n tity rep resen ted b y N I is called th e "molecular fie ld ” an d t h a t b y N th e “ molecular field constant.” I t is in te rp re te d b y su p p o s­

ing t h a t th e elem en tary m a g n e t does hav e an influence on its neighbors, c o n tra ry to th e assu m p tio n s of th e sim ple L angevin th eo ry .

T h e significance of th e m olecular field for ferrom agnetism is now a p ­ p a re n t if we replace th e H b y H + N I in th e m ore general E q . (3) and exam ine th e resu ltin g e q u a tio n :

. f . t a n h

S A S + S H .

(5)

1 o Kl

T h is eq u a tio n is perh ap s th e m o st im p o rta n t in th e th e o ry of ferro­

m agnetism . I t in d icates t h a t even in zero field th e re is still a m ag ­ n e tiz atio n of considerable m ag n itu d e, provided th e te m p e ra tu re is n o t too high. P u ttin g I I = 0 and

E q . (5) reduces to

6 — haN I o/k,

T, = T je ' (6)

T h is p u rp o rts to specify th e m a g n etiza tio n a t zero applied field b y a fu n ctio n t h a t is th e sam e for all m aterials, w hen th e m a g n etizatio n is expressed as a fractio n of its value a t ab so lu te zero and th e te m p e ra tu re as a fractio n of th e C urie te m p e ra tu re on th e ab so lu te scale. T h is m a g n etiza tio n vs. te m p e ra tu re relation, p lo tte d as th e solid line of Fig.

(18)

16 B E L L S Y S T E M T E C H N I C A L J O U R N A L

9, m ean s t h a t at all temperatures below 0 the intensity o f magnetization has a definite value even when no field is applied.

H ow is it th e n t h a t a piece of iron can a p p a re n tly b e u n m ag n etized a t room te m p e ra tu re ? T h e answ er, given b y W eiss, is t h a t below th e C u rie p o in t all p a r ts of th e iron are m ag n etized to s a tu ra tio n b u t t h a t d ifferen t p a rts a re m ag n etized in d ifferen t d ire c tio n s so t h a t th e o v erall

Ldt t 0 .4 II

J?|J?

0.3

0

0 0.1 0 .2 0 .3 0 .4 0.5 0.6 0.7 0 .8 0 9 10

J_e

Fig. 9— Dependence on the tem perature of the saturation m agnetization of iron, cobalt and nickel, as com pared w ith theory.

effect is zero. T h is is th e c o n c e p t of th e d o m ain , a lre a d y d iscu ssed . A cco rd in g to th is c o n cep tio n th e I of E q . (5) is t h a t of a d o m a in an d is d e te rm in e d e x p e rim e n ta lly b y m e a su rin g th e m a g n e tiz a tio n of a specim en w hen all d o m a in s a re parallel, i.e., a t (tech n ical) s a tu r a tio n ( / = I s). E q . (6) should th e n b e w ritte n

h P h

(19)

T H E P H Y S I C A L B A S I S OF F E R R O M A G N E T I S M 17 I t is a problem of th e o retical physics to d e te rm in e th e n a tu r e of th e m olecular field. Before discussing w h a t progress h as been m a d e in d o in g th is it will be necessary to review som e of o u r know ledge of th e s tr u c tu r e of th e a to m s w ith w hich we are co ncerned.

At o m i c St r u c t u r e o f Fe r r o m a g n e t i c M a t e r i a l s

T h e s tru c tu re of an iso lated iron a to m h a s a lre a d y b een show n in F ig. 1. T h e tw e n ty -six elec tro n s a re d iv id ed in to four principal

“ sh ells,” each shell a m ore o r less well defined region in w hich th e electro n s m ove in th e ir “ o rb its .” T h e first (in n erm o st) shell c o n tain s tw o electro n s, th e n e x t shell e ig h t, th e n e x t sixteen, a n d th e la st tw o.

A s th e periodic sy ste m of th e ele m en ts is b u ilt u p from th e lig h test elem ent, hyd ro g en , th e fo rm a tio n of th e in n erm o st shell begins first, an d w hen co m p leted th e n u m b e rs of electro n s in th e first four shells are tw o, eig h t, eig h teen , a n d th irty -tw o , b u t th e m ax im u m n u m b e r in each shell is n o t alw ays re ac h ed before th e n e x t shell begins to be form ed. F o r exam ple, w h en fo rm atio n of th e fo u rth shell begins, th e th ird shell c o n ta in s o n ly e ig h t electrons in ste a d of e ig h te e n ; it is th e su b se q u e n t b u ild in g u p of th is th ird shell t h a t is in tim a te ly connected w ith ferro m ag n etism . In th is shell som e electrons w ill be sp in n in g in one d irectio n a n d o th e rs in th e opposite, an d th e se tw o senses of th e spins m a y be c o n v e n ie n tly referred to a s positive a n d negative. T h e n u m b ers on th e circles show how m a n y electrons w ith + a n d — spins are p re se n t in e a c h shell in iron a n d it will be noticed t h a t all ex cep t th e th ird shell c o n ta in as m a n y electro n s spinning in one directio n as in th e opposite. T h e m a g n e tic m o m e n ts of th e electrons in each of these shells m u tu a lly c o m p e n sa te one a n o th e r so th a t th e shell is m ag n etic­

ally n e u tra l a n d does n o t h a v e a p erm a n en t m agnetic m om ent. In th e th ird shell, how ever, th e re a re five electrons w ith a positive spin an d one w ith a n e g ativ e so t h a t four electron spins are u n b alan ced or u n ­ co m p en sa ted a n d th e re is a re su lta n t polarization of th e a to m as a w hole. T h e existence of a p erm an e n t m agnetic m o m en t for each ato m ob v io u sly satisfies one of th e requirem ents for ferrom agnetism .

In th e free a to m th e o rb ita l m otions of th e electrons also co n trib u te to th e m a g n e tic m om ent. W hen th e iron ato m becom es p a r t of m e ta llic iron th e electron o rb its becom e too firmly fixed in th e solid s tru c tu re to be influenced appreciably b y a m ag n etic field. T h e co rresp o n d in g m om ents do n o t change w hen th e in te n sity of m a g n e tiz a ­ tio n c h a n g e s — th is is shown by th e gyrom agnetic experim ents discussed l a t e r a n c j ; t is s u p p o s e d th a t th e o rb ita l m om ents of th e electrons in

n e u t r a l i z e one a n o th er, v a rio u s ato m s n euuaiu-

(20)

18 B E L L S Y S T E M T E C H N I C A L J O U R N A L

In th e solid s tr u c tu r e n eighboring a to m s influence th e m o tio n an d d is trib u tio n of electrons, p a rtic u la rly in th e th ird p a r t of th e th ird shell (3d shell) a n d th e first p a r t of th e fo u rth shell (45 shell). In F ig. 10 th e difference b etw een a free a to m an d one t h a t is p a r t of a m e ta l is illu stra te d . E a c h of th e te n places for electro n s in th e 3d shell is re p re se n te d b y an a re a w h ich is sh ad ed if t h a t p lace is occu p ied . T h e d is trib u tio n corresponds in (a) to a n isolated a to m of nickel, in (b) to a nickel a to m in a m e ta l; in th e la tte r s itu a tio n th e re is on the average 0.6 electro n p er a to m in th e 45 shell (these electro n s are loosely b o u n d a n d are th e free electrons responsible for electric co n d u c tio n ) a n d a v a c a n c y o r hole of 0.6 electro n p e r a to m in th e 3d-shell.6 In th e 45 shell th e n u m b e r of electro n s w ith + an d w ith — sp in a re a lm o st e x a c tly eq u al, b u t in th e 3d shell all of th e sp aces for + spin a re filled.

T h e difference b etw een th e n u m b ers of + an d — spins is e q u a l to th e n e t m a g n e tic m o m e n t p er a to m . E x p e rim e n ta lly th e difference in th e n u m b e r of + spins an d — spins in an a to m is d e te rm in e d fro m th e s a tu ra tio n in te n s ity of m a g n e tiz a tio n a t a b so lu te zero. W h e n th is difference is one th e a to m h a s a m o m en t of one B ohr m a g n eto n ,

mb = 9.2 X 10-21 erg/gauss

co n seq u en tly th e n u m b e r of B o h r m a g n e to n s ca n b e c a lc u la te d from th e a to m ic w eig h t, A , a n d th e d e n sity , d :

B ohr m a g n e to n s/a to m = /3 — —IoA• Msd

In Fig. 10 (/) th e d iag ram for nickel is re p eated , th is tim e w ith th e to p s of th e unfilled positions on th e sam e level to b rin g o u t a n an alo g y w ith th e filling of vessels w ith w a te r. D ia g ra m s for m an g an ese, iron, c o b alt, nickel a n d c o p p e r are show n in p a rts (c) to (g). I n ea c h case th e 18 electro n s in closed shells are n o t show n. In iron th e s itu a tio n is so m ew h at d ifferen t from t h a t in nickel, n e ith e r th e 3 d + n o r th e 3d — shell is filled. T h is follows from th e re la tiv e c o n sta n c y of th e n u m b e r of electro n s in 45, from th e excess of holes in 3 d + o v er th o se in 3d — (/3 = 2.2), an d from th e to ta l n u m b er, 26, of e x tra -n u c le a r electrons.

T h e d istrib u tio n in sp ac e of electro n s belonging to th e 3d a n d 45 shells is know n a p p ro x im a te ly 7 a n d is d e p icted in Fig. 11. In (a) th e o rd in a te show s th e n u m b e r of electro n s th e re a re a t v a rio u s d ista n c e s from th e nucleus. T h e 3d shell is th u s seen to be a ra th e r d en se rin g

6 E . C. Stoner, Phil. Mag., 15, 1018-1034 (1933); N. F . M o tt, Proc. Phys. Soc.

47, 571-588 (1935); L. Pauling, Phys. Rev., 54, 899-904 (1938).

7 Calculations were based on th e equation given by J. C. Slater, Phys. Rev 36

57-64 (1930). ’ ’

(21)

T H E P H Y S I C A L B A S I S OF F E R R O M A G N E T I S M 19

D i

rC, ' ro 7

1 05

0.5 ' . O . 's ] GG

bn

G 03

£

G

1 0 . 7 f d . 3] 0 . 7

i m

CO ■r1. Oj

“ r.

r

■ ° 1CO 1 r - - y - r ,

^ t v . O l v • t i l ?

V *7 1 • :

z0 0 . 7 ; - Q 3 ;

2 t LU

_ l 3 + 0 . 7 } 0 3 5

UJ

■0f O T - , y . ^ . - :

CO I

»o i-:-r.’

0 i.-/.I*.- :

0.7 ro.3]

■ “ I:-:

1-7.

I/.-1.7 V); to 1 | 0.65 ¡0;35| c/3Oa:

+ | 0.65 ¡p.'35] UJ_)

3d

o

*G

<-t-i

O .

£ *«5 3 2cd 6

<D

a) TO

- o 03 i-.

. £ ^

tocx .2 S4-> O

■53^

° ti a «2

JV0J

3 a

‘to cx to O

O O

<D

UJ , n cd '5 4J —

. ^ n i

- E Z E Z 3 (D ft

I'.;V

0 . 7 » 0 3 1

£ + 1 0-7 H t\j I.: .r4 o iv.;.v.

o

a : H

1 iZ

(22)

20 B E L L S Y S T E M T E C H N I C A L J O U R N A L

of electro n s, a s c o n tra s te d w ith th e 4s shell w hich ex te n d s fa rth e r from th e nucleus, so fa r t h a t in th e solid th e shells of n eig h b o rin g a to m s o v e r­

lap c o n sid erab ly . In (b) th e n u m b e r of e lectro n s h a v in g e n e rg y b e­

tw een E a n d E + d E is p lo tte d a g a in st th e e n e rg y E ; th is re p re s e n ta ­ tio n is sim ilar to t h a t of Fig. 10 b u t now th e sq u a re s a n d rectan g les are rep laced b y th e m ore a p p ro p ria te cu rv ed surfaces. If (b) is tu rn e d 90 re la tiv e to (a) th e tw o p airs of cu rv es b e a r som e resem b lan ce to each o th e r. T h is is so because th e e n erg y of b in d in g is g en erally less a t g re a te r d ista n c e s from th e nucleus. T h e 3d-\- level is re p resen ted as low er in energ y th a n th e 3 d — since one of th ese b a n d s is p referred .

(a) (b)

F 'f : 11—T he filling of electron positions in iron, and some elem ents near it in the periodic table. Electron positions for closed shells, containing 18 electrons are not shown.

T h e a re a enclosed b y each 3d cu rv e co rresp o n d s to 5 electro n s w hile t h a t enclosed b y th e 4s co rresp o n d s to 2.

T h e line “ F e ” in Fig. 11(6) re p re se n ts th e lim it to w hich th e 3d a n d 4s shells are filled in iro n ; n e ith e r 3 d + n o r 3 d — is c o m p letely full. T h e low est en erg y levels a re filled first, a n d th e p ic tu re is d ra w n so t h a t th e an alo g y w ith th e filling of co n n ected vessels w ith w a te r is a p p a re n t.

In c o b a lt a n d nickel th e e x tra one a n d tw o electro n s co m p le te ly fill 3d + b u t n o t 3 d - , as in d ic a te d b y th e line “ N i ” for nickel. S ince th e ran g e of e n e rg y in th e 3d “ b a n d s ” is m u c h g re a te r th a n in th e 4s b a n d s th e a d d itio n a l electro n s do n o t a lte r g re a tly th e n u m b e r in 4s, a n d from th e s a tu ra tio n in te n s ity of nickel we e s tim a te th is n u m b e r as 0.6. In co p p e r th e ad d itio n a l ele ctro n is sufficient to fill b o th 3d shells w ith one e lectro n to sp are, a n d th is electro n m u s t go in to th e

(23)

T H E P H Y S I C A L B A S I S OF F E R R O M A G N E T I S M 21 45 shell w hich th e n becom es h alf full as show n b y th e line “ C u ” as well as b y (g) of Fig. 10. T h e d iag ram does n o t show changes in th e re lativ e levels of th e 3d + an d 3 d — b an d s t h a t occur in going from one elem ent to a n o th e r; w hen b o th 3d b a n d s are filled, as in copper, th ese levels a re th e sam e. T h e n u m b ers of electrons an d “ h o le s ” in m etals n e a r iron in th e periodic ta b le are given in T a b le I. A m ore

TABLE I

Nu m b e r o f El e c t r o n s a n d Va c a n c i e s ( Ho l e s) i n Va r i o u s Sh e l l s i n Me t a l At o m s Ne a r Ir o n i n t h e Pe r i o d i c Ta b l e

Elem ent

N um ber of electrons in following shells

T otal

Holes in

Excess holes in 3 d — over 3 d +

3 d + 3d — 4 s + 45 — 3 d + 3 d -

Cr 2.7 2.7 0.3 0.3 6 2.3 2.3 0

Mn 3.2 3.2 0.3 0.3 7 1.8 1.8 0

Fe 4.8 2.6 0.3 0.3 8 0.2 2.4 2.22

Co 5 3.3 0.35 0.35 9 0 1.7 1.70

Ni 5 4.4 0.3 0.3 10 0 0.6 0.61

Cu 5 5 0.5 0.5 11 0 0 0

a c c u ra te d e te rm in a tio n of th e form of th e 3d a n d 4s b an d s for copper is given in Fig. 12, due to S la te r.8

A n especially sim ple an d in te re stin g illu stra tio n of th e atom -m odel d escribed is afforded b y th e alloys of nickel an d copper. T h e s u b s titu ­ tio n of one copper for one nickel a to m in th e la ttic e is e q u iv alen t to a d d in g one electron to th e alloy. T h is electron seeks th e place of low est energy in th e alloy and finds it in th e 3d-shell of a nickel ato m ra th e r th a n in th e copper ato m to w hich it originally belonged. T h is lowers th e m ag n etic s a tu ra tio n of th e alloy b y one B ohr u n it, since th e a d d e d electron in th e 3 d — b an d ju s t n eu tralizes th e m o m en t of one in th e 3 d + b an d . A ddition of m ore copper to nickel decreases th e av erag e m o m e n t u ntil th e e m p ty spaces in th e 3 d — b an d are ju s t full;

th is occurs w hen 60 per c e n t of th e ato m s are copper, and th e n th e m ag n etic s a tu ra tio n a t 0° K will be ju s t zero. T h is is th e ex p lan atio n of th e ex p erim en tal re su lts 9 show n in Fig. 13. T h e re are show n also th e s a tu ra tio n m o m en ts for o th e r alloys of nickel; it is ev id e n t th a t zinc w ith tw o 45 electrons fills up th e 3d b an d tw ice as fa st as copper, alu m in u m th re e tim es as fast, silicon an d tin four tim es an d an tim o n y five, in good accord w ith th eo ry . In each of th ese cases th e ad d ed

8 J. C. Slater, Phys. Rev., 49, 537-545 (1936).

9 V. M arian, A n n . de Physique (11), 7, 459-527 (1937). Some of the d ata for the other alloys shown in Fig. 12 are taken from C. Sadron, A nn. de Physique, 17, 371-452 (1932). T he interpretation of these results is due to E . C. Stoner, ref. 6.

(24)

22 B E L L S Y S T E M T E C H N I C A L J O U R N A L

a to m s h a v e filled u p 3d b an d s, losing th e ir m o re loosely b o u n d 4s electro n s w hen th e re a re a v a ila b le places of low er en erg y . T h e d a ta for p a lla d iu m in d ic a te t h a t th is elem en t h as th e sam e n u m b e r of o u te r

NUMBER OF Q U AN TU M STATES PER U N IT EN ER G Y

Fig. 12— E nergy levels in the 3d and 4s shells in copper, according to S later.

Sim ilar levels are believed to exist in nickel and cobalt w ith th e levels filled to “ 10”

and “ 9 ” respectively.

electro n s as n ic k e l; th is m ig h t be ex p ected since p a lla d iu m lies d ire c tly below nickel in th e periodic ta b le . W h en th e sim ilar b u t h e av ier p la tin u m is ad d e d to nickel, th e d ecrease in av e ra g e a to m ic m o m e n t

(25)

T H E P H Y S I C A L B A S I S OF F E R R O M A G N E T I S M 23 indicates t h a t som e of th e o u te r electrons of p la tin u m go in to th e 3d b an d of nickel, b u t t h a t th e y do n o t fill th is level as ra p id ly as th e o u te r electrons of cop p er do w hen th is elem en t is ad d ed .

E lectro n shells t h a t a re co m p letely filled b eh av e m ore like h a rd elastic spheres th a n th o se w hich a re only p a rtia lly filled. In solid co p p er w ith

Fig. 13—The saturation m agnetization of nickel decreases upon the addition of other elements having 1 ,2 ,3 , . . . electrons in th e outerm ost shell.

a com plete 3d shell a n d a 4s shell ju s t begun, th e 4s electrons “ o v erlap ” th o se of neighboring a to m s so m u ch t h a t th e ir connection w ith a n y one a to m is lo st; th e 3d shells on th e o th e r h an d hav e v e ry little overlap w ith neighboring ato m s. In th e ferro m ag n etic m e ta ls th e 3d shells a re in co m p lete a n d th e overlap is g re a te r th a n in co p p er; th is affects th e in te ra c tio n responsible for th e W eiss m olecular field, now to be

(26)

24 B E L L S Y S T E M T E C H N I C A L J O U R N A L

discussed. B u t c o p p e r w ould n o t be ferro m ag n etic ev en if th e in te r­

a c tio n w ere large, b ecau se th e com pleted shell m ean s t h a t th e s a tu r a ­ tio n m ag n e tiz a tio n is z e ro ; in re a lity co p p er is d ia m a g n e tic .

A m ore d e ta ile d discussion of th e ato m ic s tr u c tu re of m etals, p a r ­ tic u la rly of th e b a n d p ic tu re of th e ferro m ag n etic m e ta ls, is given in a re c e n t artic le in th is jo u rn a l b y W . S h ockley.10

In t e r p r e t a t i o n o f t h e Mo l e c u l a r Fi e l d

I t w as show n b y H eisen b erg 11 t h a t th e m o lecu lar field can be ex­

plained in te rm s of th e q u a n tu m m echanical forces of exch an g e actin g b etw een electro n s in neig h b o rin g ato m s. Im a g in e tw o a to m s som e d ista n c e a p a rt, each a to m h a v in g a m a g n e tic m o m e n t of one B ohr m a g n eto n d u e to th e sp in m o m e n t of one electro n . A force of in te r ­ a c tio n h as been show n to ex ist b etw een th em , in a d d itio n to th e b e tte r- know n e le c tro sta tic an d (m u ch w eaker) m a g n e tic forces. I t is know n th a t, as one w ould ex pect, such forces are negligible w hen th e a to m s are tw o or th re e tim es as fa r a p a r t a s th e y are in c ry sta ls. I t is su p p o sed also, on th e basis of c a lcu latio n s b y B e th e ,12 t h a t a s tw o a to m s are b ro u g h t n e a r to each o th e r from a d ista n c e th e se forces cau se th e elec­

tro n spins in th e tw o a to m s to becom e p arallel (p o sitiv e in te r a c tio n ) . As th e a to m s a re b ro u g h t n e a re r to g e th e r th e sp in -m o m e n ts a re held parallel m ore firm ly u n til a t a c e rta in d ista n c e th e force d im in ish es an d th e n becom es zero, a n d w ith still closer a p p ro a c h th e s p in s se t th em selv es a n tip a ra lle l w ith re la tiv e ly stro n g forces (n e g a tiv e in te r ­ a c tio n ). In th e c u rv e of Fig. 14 th e energies c o rresp o n d in g to th e se forces a re show n as a fu n c tio n of th e d ista n c e s b etw een a to m s.

B e th e ’s cu rv e w as d raw n orig in ally for a to m s w ith d efin ite shell ra d ii a n d v a ry in g in tern u clei d ista n ces. I t m a y eq u ally well be used for a series of elem en ts if w e ta k e a c c o u n t of th e d iffe ren t ra d ii of th e shell in w hich th e m a g n e tic m o m e n t resides. T h e c rite rio n of o v erla p p in g or in te ra c tio n for th e m e ta ls of th e iron g ro u p is th e ra d iu s, R , of th e a to m (half th e in te rn u c le a r d ista n c e in th e c ry sta l) d iv id ed b y th e rad iu s, r, of th e 3d shell. In Fig. 14 th is ra tio R / r h as been used as ab scissa a n d th e elem en ts iron, c o b a lt a n d nickel h a v e been given a p ­ p ro p ria te p o sitio n s on th e cu rv e. T h e re c e n tly d isco v ered ferro m ag ­ n e tism of g adolinium 13 is a p p a re n tly a sso ciate d w ith a larg e R / r a n d sm all in te ra c tio n , a s co m p are d to nickel. I t is p laced on th e cu rv e accordingly. S la te r 7 has show n t h a t th e ra tio R / r is larg er in th e

10 W. Shockley, Bell System Technical Journal, 18, 645-723 (1939).

11 W. Heisenberg, Z . f . Physik, 49, 619-636 (1928).

12 H . B ethe, Handbuch der Physik, 24, p t. 2, 595-598 (1933).

13 G. U rbain, P. Weiss, and F . Trom be, Compt. Rend., 200, 2132-2134 (1935).

(27)

T H E P H Y S I C A L B A S I S OF F E R R O M A G N E T I S M 25

R_ _ ATOMIC SEPARATION T — DIAM ETER OF 3 d ORBIT

Fig. 14—B ethe’s curve relating the energy of magnetization to the distance be­

tween atom -centers, with a fixed diam eter of the unfilled inner shell th a t has the magnetic moment.

ferro m ag n etic elem ents th a n in o th e r elem ents h av in g in com plete inner shells, a n d t h a t th e p o in t a t w hich th e cu rv e crosses from th e n o n ­ ferro m ag n etic to th e ferro m ag n etic region is n e a r R / r = 1.5. V alues of 2R, 2r an d R /r , as calcu lated b y S la te r for som e of th e elem ents w ith in co m p lete in n e r shells, a re given in T a b le II.

TA BLE II

I n t e r n u c l e a r D i s t a n c e s ( 2R ) a n d D i a m e t e r s ( 2 r ) o f I n c o m p l e t e I n n e r S h e l l s o f S o m e A t o m s , i n A n g s t r o m s

Atom 2 R

Inner Shell 2 r

Ratio R/r

Incomplete Inner

Shell

Curie T em perature

6, °K.

Mn 2.52 1.71 1.47 3d

Fe 2.50 1.58 1.63 3d 1040

Co 2.51 1.38 1.82 3d 1400

Ni 2.50 1.27 1.97 3d 630

Cu-M n 2.58 1.44 1.79 3d 600

Mo 2.72 2.94 0.92 U

Ru 2.64 2.33 1.13 4 d

Rh 2.70 2.11 1.28 U

Pd 2.73 1.93 1.41 4 d

Gd* 3.35 1.08 3.1 4/ 290

W 2.73 3.44 0.79 5 d

Os 2.71 2.72 1.02 5 d

Ir 2.70 2.47 1.09 5 d

Pt 2.77 2.25 1.23 5d

* Calculated using Slater’s formula.

(28)

T h e e n erg y of in te ra c tio n , J — th e p ositive o rd in a te of F ig. 14— can be e s tim a te d fro m th e v a lu e of th e C urie te m p e ra tu re , 6, in a m a n n e r su g g ested b y S to n e r.14

L e t 2 / be th e difference in th e energy of interaction betw een tw o atom s when th e ir m om ents are respectively parallel and antiparallel. T he to ta l energy of these tw o atom s is therefore

2 E = 2E0 ± J

where E 0 is th e energy of an isolated atom . T he negative sign applies when th e spins are parallel, th e positive when they are antiparallel. Im agine a crystal in which each atom of m om ent ya is surrounded a t equal distances b y z other atom s of which x have th eir spins parallel and y antiparallel. T hen tu rn in g one atom from th e parallel to antiparallel position produces a change of (y — x) in th e num ber of parallel pairs and (x — y) in th e num ber of antiparallel pairs and, therefore, requires an energy

« = 2 J (x - y). (5)

Since in each atom th e m om ent m ust be parallel or antiparallel to th e field, the m agnetization of the m aterial as a whole will depend on the average value of x — y:

I/Io = (x - y)/z. (6)

According to B oltzm ann’s equation an atom will have th e following probabilities of being parallel and antiparallel

P p = 1/[1 + exp ( - e/kT)2

P a = exp ( — e/kT)/[_ 1 + exp ( — t!kT)~\.

Since all atom s behave in th e same way on the average x and y m ust be zP p and zPa. Hence we have

26 B E L L S Y S T E M T E C H N I C A L J O U R N A L

H Io = (x — y)/z = P p — P a ~ ta n h (e/2k T ) or using (5) and (6)

To

= tanh (fifo)-

Com paring th is w ith th e modified Weiss equation, E q. (4), 1 _ u » ¿ N I _ I / I 0

Io k T Tie

we have J in term s of the molecular field constant or th e Curie tem perature:

J = haN IoIz — kd/z.

F o r iron, z = 8, J = kd/8 = 1.8 X 10~14 erg or 0.01 electron volt.

T his derivation indicates th a t J is proportional to d, and th a t the constant of proportionality depends on th e num ber of nearest neighbors. T he num ber of neighbors has not been tak en into account in the following discussion of Fig. 14.

T h e in te ra c tio n c u rv e is s u b s ta n tia te d in a q u a lita tiv e m a n n e r b y th e ob serv ed v a ria tio n of th e C u rie p o in ts of th e iron-nickel a llo y s.15 14 E . C. Stoner, P hil. Mag., 10, 27-48 (1930). S toner’s original work appears to have been in error by a factor of tw o; th e modified tre a tm e n t given here is due to W. Shockley and follows closely the m ethod employed in dealing w ith order and disorder in alloys (see e.g. E qs. 1.11, 1.12, 2.2 and 2.16 in th e article by F . C. Nix and W. Shockley, Rev. Mod. Phys. 10, 1-71 (1938)).

16Sum m arized by J. S. M arsh, A lloys of Iron and Nickel, v. 1, pp. 45 and 142, M cGraw-Hill, New Y ork (1938).

Cytaty

Powiązane dokumenty

sulting from the random packing, there are cavities which are due to bridging action of the particles themselves. ■ This bridging is not due to irregular or

As stated earlier a given impedance function can be obtained from a large num ber of networks b u t when th e impedance is to be sim ulated for a limited frequency range, such

cycles.. 3— Sections betw een pinholes. Section m odulus of crossarm sections containing knots of th e sizes shown on the base line and located in the positions

In the usual case of positive characteristic distortion, the maximum S B displacement will occur when the s ta rt transition is preceded by a long marking

In the field of telephone receivers 6 an analysis by means of impressed square waves has been found useful as a measure of transient response. In the

Current in the sheath of buried cables, due to direct lightning strokes, strokes to ground near the cables or discharges between clouds, gives rise to voltages

3.5.8—Lim iting values of amplification factors for linear damped cushioning with no rebound... 3.6.2—Amplification factors for undam ped cushioning w ith cubic

The available literature on crosstalk between coaxial conductors in contact makes it clear th a t the presence of any other conducting m aterial in continuous or