• Nie Znaleziono Wyników

Sedimentation and diagenesis of the Niedzica Succession radiolarites in the Pieniny Klippen-Belt, Poland

N/A
N/A
Protected

Academic year: 2022

Share "Sedimentation and diagenesis of the Niedzica Succession radiolarites in the Pieniny Klippen-Belt, Poland"

Copied!
21
0
0

Pełen tekst

(1)

A N N A L E S S O C I E T A T I S G E O L O G O R U M P O L O N I A E R O C Z N I K P O L S K I E G O T O W A R Z Y S T W A G E O L O G I C Z N E G O

v . 51—1/2: 45—61 K r a k ó w 1931

Stanisław Kw ia t k o w s k i

SEDIMENTATION AND DIAGENESIS OF THE NIEDZICA SUCCESSION RADIOLARITES IN THE PIENINY

KLIPPEN-BELT, POLAND

(PI. I—IV and Figs 3)

Sedymentacja i diageneza radiolarytów serii niedzickiej w Pienińskim Pasie Skałkowym

(PI. I—IV i 3 fig.)

S tan isław K w i a t k o w s k i : Sedim entation and d iagenesis of the N iedzica Succession raidiolarltes in the P ien in y K lippen-BeK , Poland. Ann. Soc.. Geol. Polo- niae 51—1/2: 45— 61, 1981 Kraków.

A b s t r a c t : T he sedim entary structures of th e N iedzica Succession radio- larites suggest deposition by currents resulting in chert, carbonate or carbonate- chert beds separated by shales. In the early diagenesis th e silica and carbonate m atter dn particular beds w as separated, w hich w as controlled by th e distribution of clay. The parts of beds w ith high clay content are carbonate, th e parts w ithout clay are siliiceous. The separation of silica and carbonate in [the parti­

cular beds w as interrupted in d ifferent stages by lithification.

K e y w o r d s : radiolarltes, sedim entation, current, diagenesis, clay content, Upper Jurassic, Piieniny K lippenbelt.

S tan isław K w iatkow ski, Zespół Pracownii In stytu tu N auk G eologicznych P olskiej A kadem ii Nauk, Senacka 3, 31-002 K raków .

m anuscript received: A ugust 1980 accepted: Septem ber 1980

T r e ś ć : Struktury stw ierdzone w radiolarytach serii niedzickiej (uziarnienie frakcjonalne, lam inacja poziom a i przekątna, obecność intraklastów ) w skazują na sedym entację prądami dennym i. W czasie w czesnej diiagenezy następow ało roz­

dzielenie w obrębie poszczególnych ław ic substancji krzem ionkow ej i w ęg lan o ­ w ej — krzem ionkow a grom adziła się z reguły w środkowych, m niej zailonych częściach ław ic, a w ęg lan ow a w częściach dolnych i górnych, silniej zailonych.

C zynnikiem kontrolującym rozm ieszczenie w ław icy, w czasie diagnozy, obu tych substancji było rozm ieszczenie substancji ilastej. Proces rozdzielania substancji krzem ionkow ej li w ęglan ow ej był przeryw any w różnych stadiach w różnych ła ­ w icach przez lityfikację.

(2)

INTRODUCTION

The sedim entation of radiolarites, particu larly of th e T ethyan J u r a s ­ sic has been discussed for m ore th a n a h u n dred years, b u t has by no m eans been satisfactory explained. In a synthetic p ap e r G runau (1965) stated th a t th e genesis, paleogeography and stratig ra p h y of radiolarites was still poorly understood. Since then, th e re has been a great progress in the study of radiolarites. The results of the Deep-Sea Drilling P roject provided im p o rta n t data elucidating some aspects of the origin of th e deep sea siliceous deposits. Many papers based on these results, excell­

ently sum m arized by Calvert (1977), re fe r m ainly to the m ineralogical changes of silica in the deposit from opal A, through opal CT, to quartz.

This, how ever, h ard ly concerns the Jurassic radiolarites, w hich are now composed m ostly of qu artz and calcite. The electron microscopy of th e siliceous rocks (Folk and W eaver 1952 and m any followers) opened new possibilities for the radiolarite study. The principal questions of the radiolarite sedim entation: depth of deposition, significance of volcanism, mechanism of deposition, origin of colour — are still controversial.

The Jurassic radiolarites of the P ieniny K lippenbelt are a good object for sedimeritological research. They are relatively w ell outcropped and

Pieniny Klippert Belt boundary 3 Czajakawa Skała

1 Buwafd 4 K oniowiec

2 Niedzica

Fig. 1. P osition o f th e section Fig. 1. L okalizacja p rofili

the dating is exceptionally good. The featu re ham pering the research is the locally strong tectonic deform ation.

Studies on the radiolarites have in Poland a long tradition. The papers by Sujkow ski (1932, 1933, 1958) are in p a rt still relevant. B irken- m ajer (i.a. 1953, 1958, i977) described the radiolarite outcrops, th e ir geological position, lithology and palaeogeography. Gąsiorowski (1962)

(3)

— 47 —

dated the P ieniny radiolarites on Aptichi. In tw o common papers (Birken- m ajer and Gąsiorowski I960, 1961) these authors dealt w ith the sedi­

m entation of the P ieniny radiolarites, the source of m aterial, the depth and m echanism of deposition etc.

The present p a p e r is based on five sections of the Niedzica Succes­

sion radiolarites (Fig. 1). Two hundred polished surfaces and one h u n dred th irty five th in sections were studied. Some research was done using skanning electron microscope, th e spectrophotom eter infrared UNICAM SP 1200 and, fo r the clay m inerals, the diffractom eter DRON-2.

I should like to th a n k d r S. Gąsiorowski for showing th e outcrops, m y w ife Ewa fo r th e help in the field w ork and microscopic investig­

ations, d r A. Łaptaś, d r J. Srodoń, m gr E. K łyś and m g r J. Pawelczyk, which carried out the spectrophotom eter and diffractom eter analyses and P. Szewczyk w ho accomplished photographs.

The present stud y w as done in the In stitu te of G eological Sciences of the Polish A cadem y of Sciences under th e Project No MR-I-16.

GEOLOGICAL SETTING

The radiolarites of the Niedzica Succession (Czajakowa Radiolarite F orm ation — B irkenm ajer 1977) w ere studied a t Buwałd, in tw o klippes at Niedzica, a t Czajakowa Skała and at Koniowiec (Fig. 1).

Czajakowa R adiolarite Form ation is of a n O xfordian age and is divided into 3 m em bers (B irkenm ajer 1977):

1) K am ionka R adiolarite M ember ( = Low er Red Radiolarites) corres­

ponding to the A ptychus Horizons II2 and II3 (Mariae and Cordatum zones — Gąsiorowski 1962).

2) P odm ajerz Radiolarite M em ber ( = G reen Radiolarites) corresponding to the A ptychus Zone III (Transversarium zone — Gąsiorowski 1962).

3) Buw ałd Radiolarite M ember ( = U pper Red Radiolarites) correspon­

ding to the A ptychus Zone IV (BimmamatUm zone — Gąsiorowski 1962), (Fig. 2).

The Niedzica Succession radiolarites are underlain by the Niedzica Lim estone Form ation ( = Low er Nodular Lim estone — B irkenm ajer 1977). T heir low er boundary is placed at th e bottom of the first radio- larian chert bed. The Niedzica Succession radiolarites are overlain by the Czorsztyn Lim estone F orm ation ( = U p p er Nodular Lim estone — B irkenm ajer 1977). T heir u p p e r boundary is placed a t th e bottom of th e first nodular lim estone bed.

(4)

4) tti

£ a

3 *

■C ai

a S. c

—> Ó °

< N

S

Hol i — gowce

U C C E S S I B r a n i - . . P ieniny sko Niedzica

O N

C z e r t e - z ik C zorsz­

tyn Magura

1 4 0 - !

ii’iiil .... . i1!)-;!;-! " 1

• liiliiillii

Filljj'ii/'iE':! 'k!, - i'S:;::::- i;' !■:! i’:1 !I-

Fig. 2. R adiolarites in lithostratigraphdc units of th e P ien in y K lippen B elt of Poland, after Birkenm ajer 1977. Tim e scale in m ilion years after Van H inte 1976.

1 — lim estone form ations; 2 — radiolarite form ations; a — Sokolica R adiolarite Form ation, b — K am ionka R adiolarite Member; c — Podm ajerz R adiolarite M em ­ ber; d — B uw ałd R adiolarite Member; b + c + d — Czajakowa R adiolarite Form ation Fig. 2. R adiolaryty w jednostkach litostratygraficznych pienińskiego pasa skałko­

w ego, w g B irkenm ajera 1977. S kala czasu w m ilionach lat w g V an H inta 1976.

1 — form acje w apienne; 2 — form acje radiolarytow e; a — form acja radiolarytów z Sokolicy; b — ogniwo radiolarytów z Kam ionki; c — ogniwo radiolarytów z Podm ajerza; d — ogniwo radiolarytów z B uw ałdu; b -1- c + d — form acja radio­

larytów z C zajakow ej

In the present study one m ore u n it is added, nam ely the transition beds betw een the U pper Red Radiolarites and the U pper N odular Limestone (B irkenm ajer 1958, Gąsiorowski 1962). They correspond to the lower p a rt of the Czorsztyn Lim estone Form ation (upper p a r t of th e B im m am atum zone). Their low er boundary is placed at the bottom of the first nodular lim estone bed, and th e ir u p per boundary at th e top of the upperm ost radiolarite bed.

There are gradual transitions betw een radiolarites and nodular lim e­

stones (Upper and Lower) and also betw een the p a rtic u la r m em bers of the radiolarite form ation. There are no distinct gaps in the sequence

of the Niedzica Succession radiolarites. 1

In the Jurassic, the Niedzica Succcession was situated together w ith Czertezik Succession betw een the central p a rt of the basin (Pieniny and Branisko Successions) and its o u ter shallow er p a rt (Czorsztyn Suc­

cession) (Fig. 2).

(5)

— 49 —

ROCK DESCRIPTION

The Czajakowa Form ation consists of radiolarites and shales. The te rm “radiolarite” m eans h ere a rock form ed from a sedim ent which consisted m ostly of radiolarian skeletons.

The Niedzica Succession radiolarites are form ed by cherts, limestones and carbonate-siliceous rocks. C herts and lim estones form separate beds or often occur to g eth er in p a rtic u la r beds. The carbonate-siliceous rocks are less abundant th a n chert and limestone. They appear betw een cherts and lim estones and do not form separate beds (PI. I, fig. 1).

These three petrographic form s of th e radiolarites have m any features in common and are described together.

In the beds w here the cherts appear to g eth er w ith the limestones, the form er usually form the central p a r t of the bed, the la tte r its upper and low er parts. The ratio of the lim estone to the chert is different in different beds — from beds consisting alm ost exclusively of chert w ith th in lim estone lay er a t the top of bed to beds of limestone w ith th in lenses of ch e rt in the central part. The contact betw een chert and lim estone is com monly sharp and horizontal, som etim es inclined, ir­

reg u la r or serrate. The contact of some chert bodies w ith limestone is p a rtly indistinct, p a rtly sharp, set off by fissures. The contacts of carbonate-siliceous rocks w ith limestone and chert are usually indistinct, one rock passing gradually into the other.

Some stru ctu res ap pear locally on the top surface of the radiolarite beds: longitudinal ridges, some m illim eter high and wide and a few centim eters long, often w ith concave slopes; larger ridges, up to 70 m m wide and 22 m m high, and round bowl-shaped pits, 5— 15 mm in dia­

m eter. On the bottom surfaces th ere appear sim ilar pits and also some rectangular pits 1 m m in diam eter. The mounds, 5 mm wide, occur inside the beds in th e G reen Radiolarites at Koniowiec.

The radiolarites are of various colours: pink, red, green, green w ith red spots, light gray, d ark gray, ashy, yellowish, brown, violet, cream and white. Red, green and gray colours prevail. In non-calcareous cherts cream colour dom inates. Such noncalcareous, cream, m at cherts a t Bu- w ald contain in th e central p arts of beds lenses of vitrous, ashy chert.

T here is some relation betw een the colour and the carbonate content of the chert. In the Low er Red R adiolarites of Niedzica the cherts w ith th e lowest carbonate content are pink, and these w ith the greatest carbonate content are green. Some fissures in these rocks are surrounded by 1— 2 mm thick zone of green, calcareous rock.

T here is also some relation betw een the colour of the chert and th a t of the surrounding limestone. In the G reen Radiolarites at Konio­

wiec, the chert lenses in the green lim estone are d ark gray and in the red limestone — bright red. Sim ilarly in the Low er Red Radiolarites

4 — R o czn ik PTG 51/1—2

(6)

of Koniowiec the chert lenses in th e red lim estone are intense orange- red. In th e U pper Red Radiolarites a t Niedzica th e red cherts differ from surrounding lim estone b y d ark er or lighter tint.

The stu d y of 20 samples in th e in frared spectrophotom eter showed th a t the only form of silica is quartz, and th e only form of carbonate is calcite.

Microscopic investigation showed th a t th e chert is m ostly composed of micro- and cryptocrystalline quartz, th e lim estone m ostly of m icrite, and the carbonate-siliceous rock of m icrocrystalline quartz and m icrite.

In th e ch e rt th e re occur also: chalcedony, p artic u larly in radiolarian tests and o th e r skeletal rem ains, dispersed calcareous m icrite, calcitic skeletal rem ains, carbonate intraclasts and locally calcite and siderite crystals. In th e lim estone there is an adm ixture of m icrocrystalline quartz. Some of the skeletal rem ains, p artic u larly radiolarians, are preserved in chalcedony. Locally ap pear aggregates of calcite crystals.

In the U pper Red Radiolarites a t Niedzica th ere occurs in places, at;

th e boundary betw een chert and lim estone, a sparritic limestone. In the transition beds at Koniowiec th ere appear single beds of coarsely recrystallized limestone.

The clay content is different in the different petrographic types.

It is small or v ery sm all in chert. The non-calcareous chert in th e G reen Radiolarites a t Buwald is an exception. The argillaceous m a tte r form s here a net betw een aggregates of quartz crystals. The lim estone is commonly argillaceous or v ery argillaceous. The carbonate-siliceous rock is usu ally m ore argillaceous th a n the chert and less so th a n th e limestone. In all the petrographic types the argillaceous m a tte r is dispersed and locally concentrated in horizontal bands.

The ferruginous m atter, brown or red, is dispersed in all the types of rock. I t form s also bands and lenses (PI. II, fig. 2), and locally it concentrates in fissures and in skeletal rem ains. In th e carbonate-silice­

ous rock in th e U pper Red Radiolarites at Niedzica a vertical calcite vein divides th e rock into two parts: one strongly coloured w ith ferru m oxides and an o th er non-coloured (PI. I, fig. 2). In th e cherts of th e G reen Radiolarites a t Koniowiec th e re appear locally p y rite crystals and n o n -tran sp aren t rhom bic crystals of an unrecognized m ineral. In th e transition beds at Buwald and Koniowiec some skeletal rem ains are preserved in calcium phosphate.

In the Niedzica Succession radiolarites there appears (in 38% samples) norm al or reverse fine graded bedding, expressed by size and/or am ount of radiolarians (PL I, fig. 2, PL II, fig. 1). Commonly th e re are several sets of graded bedding in one bed. In some cases the graded bedding passes up in th e horizontal lam ination (PL II, fig. 2).

In 93% of th e sam ples th e re appears a horizontal alignm ent of the constituents. This alignm ent passes usually into a w eak and irre g u lar

(7)

— 51 —

lam ination represented by bands and lenses of argillaceous or ferru g i­

nous m a tte r and by bands w ith abundant radiolarians or other skeletal rem ains, separated by bands poor in radiolarians or other skeletal rem ains (PI. I ll, fig. 1 and 2). The thickness of bands varies from 0.1 mm to some centim eters. In 9% of th e samples th ere appears an indistinct cross lam ination (PI. IV, fig. 1). In the tran sitio n beds at Koniowiec th e lam ination expressed by th e bands of argillaceous m a tte r is distinct in the upperm ost and lowerm ost p arts of bed and indistinct in th e m iddle parts.

The chert and lim estone intraclasts are ra th e r ra re (PI. IV, fig. 2).

No stru ctu res attrib u ta b le to slum ping w ere observed.

Radiolarians (Spum ellina) occur commonly, and in places abundantly.

They are preserved in chalcedony, m ore ra re ly in m icrocrystalline qu artz or calcite. In some cases the ferruginous m a tte r is concentrated in the radiolarian tests. T heir state of preservation varies strongly and the w ell-preserved tests occur together w ith the poorly preserved ones.

Generally, they are b e tte r preserved in chalcedony and calcite th a n in m icrocrystalline quartz, and b e tte r preserved in the lim estone th a n in the chert.

O ther skeletal rem ains are locally abundant or rare, usually m ore num erous in th e lim estone th a n in th e chert. They are calcitic or, m ostly in the chert, silicified in various degree. These rem ains are represented by rhyncholites, aptychi, th in shelled pelecypods, foram in- ifers, crinoids, sponge spicules, echinid spines, echinoderm plates, ostra- cods, brachiopods, and (?) bryozoans. In the transition beds at Koniowiec and Buwałd th e re occur abundantly Saccocoma.

The radiolarites are commonly strongly fissured and th e fissures are filled by calcite veins (PI. Ill, fig. 1) and more seldom by chalcedony or coarse-crystalline quartz veins. In the non-calcareous chert all th e veins are chalcedonie. In some cases the chalcedony crystals cover the fissure walls and the calcite crystals fill the cen ter of the fissure.

Som etim es a p a rt of the fissure is filled by chalcedony and another p a rt b y calcite. In th e beds composed of lim estone and chert, the veins, some m m thick and always vertical, cut th ro u g h the chert and th e lim estone; differently, the num erous fine veinlets running in all direc­

tions are lim ited to th e chert. The thick calcite veins are locally d istu rb ­ ed, w ith brocken calcite crystals and new qu artz crystals inside. In th e ch ert of the G reen and U pper Red Radiolarites in Niedzica, th ere occur fissures w ith the calcite crystals growing into the walls of the fissure. These crystals are w idely spaced, form ing a “p e a rl-strin g ” stru c tu re of Miśik (1971).

One fissure in th e chert of the Lower Red Radiolarites at Koniowiec is gaping open and is filled by m icritic limestone. Sim ilarly, in the U pper Red Radiolarites and in the transition beds in Niedzica, some

4*

(8)

c h e rt layers are cracked and pushed ap a rt and th e gaps betw een the ch ert fragm ents are filled by the limestone.

The stylolites are developed locally w ithin the limestone, p a rti­

cularly in th e transition beds. U nquestionable stylolites have not been observed w ith in the chert. In places cracks rectilin ear in th e ch ert become stylolitic in the limestone.

The shale intercalations betw een the radiolarite beds are usually 1— 2 m m thick, exceptionally am ount to 15 cm. T heir colour usually corresponds to th e predom inating colour of the radiolarite. They are red in the L ow er and U pper Red Radiolarites and in the transition beds. In the G reen Radiolarites the shales are green. The diffractom eter stu d y of th e shales from a thick intercalation in the U pper Red Radio­

larites in Buw ald dem onstrated th a t the only clay m ineral here is illite.

DISCUSSION

Sedimentation

The m ost im portant question for the radiolarite sedim entation is th e origin of rhythm ic disposition: radiolarite — shale. For the T ethyan radiolarites th ere are four theories (Fig. 3).

1) According to Sujkow ski (1932) the Jurassic radiolarites w ere de­

posited by a “ra in ” of radiolarians, carbonate skeletal rem ains and clay particles. The alternation of the radiolarite and clay beds was form ed la te r in the diagenesis.

2) In the opinion of B irkenm ajer and Gqsiorowski (I960, 1961) th e rhythm ic radiolarite deposit is the re su lt of two processes: a continuous falling of radiolarian tests on the bottom and a periodical deposition of clouds of a clay suspension. This hypothesis was based on the following:

'— In the sam e periods, in different P ieniny successions, there are the sam e num bers of the clay layers.

— Fossils are scarcer in the shales th a n in the radiolarite beds.

— Absence of benthos in the shales and its presence in the radiolarites.

— Occurence of graded sandstone intercalations in the radiolarian lim estones of th e Eastern Alps.

3) According to G arrison and Fischer (1969) the Jurassic radiolarite sedim entation consisted of two processes: a continuous falling of clay particles and a periodical radiolarians deposition.

4) Recently the possibility of radiolarite deposition b y currents was considered. Imoto and Saito (1973) found graded bedding and cross

(9)

— 53 —

lam ination in th e P erm ian and Mesozoic radiolarites of Jap an and concluded th a t these radiolarites are a cu rren t deposit.

3 Z I *c °

(D

tim e

©

©

-»0 L.“U oo o o

E

A

1/(I

E H *

II/1 n II 11 I ■_

czas

rt ii ii it

■i ift.

AII

I

(T) S u jk o w s k i 1932

(2) B i r k i n m a j e r & G q s io ro w s k i 19 61 (J ) G a r r i s o n & F isch er 1969

® Fo lk & Me Bride 1978

Fig. 3. Pattern of radiolarite deposition according to d ifferen t authors. 1 — clay;

2 — lim estone and chert

Fig. 3. Model sedym entacji serii radiolarytow ych w g różnych autorów. 1 — iły ; 2 — w apien ie i czerty

G arrison (1974) found stru ctu res indicating redeposition and sorting by bottom cu rren ts (load casts, cross-lam ination, graded bedding) in th e Jurassic radiolarites of Liguria.

In the Jurassic radiolarites of Greece, composed from altern atin g radiolarite and shale beds, N isbet and Price (1974) found sim ilar stru c­

tures and considered these radiolarites as deposited by cu rren ts and m ostly by tu rb id ity currents.

According to Folk and McBride (1978), the Jurassic radiolarites of Liguria w ere deposited m ostly by bottom currents, probably tu rb id ity currents. The clay intercalations in these radiolarites are due to tails of tu rb id ity cu rren ts plus norm al hem ipelagic sediment. This opinion is presented in Fig. 3.

S tru ctu res indicating deposition by curren ts are common in th e Nie­

dzica Succession radiolarites: fine graded bedding, horizontal and cross- lamination, intraclasts. There are also transitions from graded bedded to lam inated deposit — A and B m em bers of the Bouma sequence (PI. II, fig. 2). It seems v ery probable th a t the Niedzica Succession radiolarites are m ostly c u rre n t deposits. Repeated changes in one bed of norm al and reverse graded bedding would indicate various energy of th e c u r r e n t 1.

1 D r S. Gąsiorowslci suggested to m e that th e cross-stratification m ight b e connected w ith ripple m arks of internal w aves, and th e graded bedding and lam ination w ith stirring up of uncomsoliidaited deposit by internal w aves; or that som e of th ese structures m ight b e interpreted as bacterial strom atolites.

(10)

Clay, in th e radiolarite beds, is m ost commonly distributed in th e following successions:

1) clay — ch ert w ith some clay — clay

2) clay — lim estone w ith high clay content — chert w ith low clay content — lim estone w ith high clay content — clay

3) clay — lim estone w ith high clay content — carbonate-siliceous rock w ith m edium clay content — chert w ith low or no clay content — carbonate-siliceous rock w ith m edium clay content — lim estone w ith high clay content — clay.

The distribution of clay in the radiolarite beds is a p rim ary feature, unchanged or very little changed by diagenesis. Silica and calcium carbonate can m igrate in solution w ith in one bed, b u t clay can be only displaced by growing crystals. In this last case, a t th e boundary betw een argillaceous lim estone and non-argillaceous chert, a clayey coating ought to be formed, b u t this was not observed. So it seems, th a t each radio­

larite bed representing one of the above m entioned successions cor­

responds to a single sedim entary rh y th m , beginning and closing w ith a high clay contribution, b u t depositing silica and carbonate w ithout clay in between.

The lack of visible erosion phenom ena on the top surfaces of th e radiolarite beds indicates th a t currents were too w eak for significant bottom erosion. This conclusion is confirm ed by setting of m ajo rity of rhyncholites w ith the low er surface upw ards (Gqsiorowski 1973). An exception occurs in th e U pper Red R adiolarites a t Koniowiec, w here only 30% rhyncholites have th e ir low er surfaces upw ards. G^siorowski (1973) in te rp reted this as being due to collisions of rhyncholites w ith crinoid skeletal fragm ents, abundant in these beds. More probable ex­

planation seems to be a stronger w a te r m ovem ent in this place and time.

The Niedzica Succession radiolarites, representing the whole O xford­

ian (after V an H inte 1976 — 6—6.5 m illion years), contain on th e average 65 rhythm s. Thus, a rh y th m corresponds on the average to about 100 000 years. The m ajo r p a rt of a rh y th m (chert, carbonate, p a rt of clay) was deposited, in a v ery short tim e and th e rest of clay in a very long period separating one sedim entary cu rren t from another.

A study of th e cosmic d ust content in clays and radiolarites (Garrison and Fischer 1969) m ight help to te st this suggestion.

The p resen t study gives no new d ata on the radiolarite sedim entation depth. The benthonic fauna in the radiolarites is redeposited and cannot be used to determ ine the depth of sedim entation.

The mounds, pits and ridges on the top and bottom of th e radiolarite beds are in te rp reted (Folk and McBride 1978) as trace fossils. D eter­

m ination of these forms, which are characteristic for radiolarites, r e ­ quires a detailed study.

(11)

— 55 —

The v e ry variable preservation of the radiolarian tests is the result of m any agents. P robably the m ajo rity of radiolarian tests were eaten in the superficial layers of the sea w ater. L ate r these tests w ere sinking in the fecal pellets, w hich protected them against dissolution in the sea w ater. These fecal pellets could have been eaten again and the tests could have sink in the new fecal pellets; th e to tal of these processes decided about the preservation of the tests (Smayda 1971).

T a b l e 1 F a c i e s

Member

Lithology, thickness of member in cm, range of radiolarite beds thickness in cm

Buwald Niedzica Koniowiec

Transition beds LIMESTONE*, chert 150

3—17

LIMESTONE, chert 130

2—20

LIMESTONE, chert 133

2—19 Upper Red

Radiolarites

CHERT

70 3—15

LIMESTONE+CHERT, carbonate-siliceous rock

220 5—29

LIMESTONE, chert

130 2—22 Green Radiolarites CHERT non calcareous

100 4— 12

CHERT, limestone 100

2—12

LIMESTONE with chert lenses

85 2—9 Lower Red

Ra.diolarites

CHERT, limestone 200

3—10

LIMESTONE with -■ chert lenses

20 1—4,5

* th e nam e of p revailin g rock is w ritten in capitals

Moore (1969) stated th a t various Cenozoic species of Radiolaria differed in their resistance to solution. P robably the Jurassic radiolarian species differed sim ilarly in this respect.

According to T hurston (1972) the radiolarians in the chert with' a high clay content are b etter preserved th a n in p u re chert due to the m ovem ent of pore solutions easier in the pure, th a n in clayey chert.

This probably explains the b e tte r preservation of the radiolarian tests in the argillaceous limestones th a n in the non-argillaceous chert in the Niedzica Succession radiolarites.

The vertical and horizontal differences in lithology and thickness in the sections seen are presented in table 1. There follows:

(12)

1) From th e w est (Buwald) to the east (Koniowiec) the lim estone am ount increases in all the m em bers of the formation.

2) In the w estern p a rt of the area (Buwald, Niedzica) the lim estone am ount increases upw ards from th e Green Radiolarites to th e top of the formation.

3) The thickness of the radiolarite beds increases upw ards from th e Low er Red to the U pper Red Radiolarites.

4) The thicknesses of the p a rtic u la r m em bers are sim ilar in different sections, excepted the U pper Red Radiolarites.

Probably th e radiolarites of Buw ald w ere deposited at a g re a te r d epth th a n those of Koniowiec. In th e u p p er O xfordian there w as a slow shallow ing of the basin or the lowering of the Carbonate Com­

pensation Depth.

Early diagenesis

Silica in cherts was derived by dissolution of radiolarian tests, w hich are very ab u n d a n t and commonly show traces of dissolution. The q u an ­ tity of sponge spicules in th e radiolarites is insignificant. No volcanic Jurassic rocks are know n in th e Pieniny area w ith only one exception.

The m ontm orillonite found by Sikora and W ieser (1979) in the shale underlying th e Red Radiolarites of th e Branisko Succession in S tare Bystre seems to be insignificant for th e radiolarite sedimentation. Such small am ounts of volcanic tuffs could not have been the im portant source of silica for the radiolarite form ation. The diffractom eter stu d y of clay m inerals from Niedzica Succession shales revealed only th e presence of illite.

The common occurrence of the carbonate fragm ents and skeletal rem ains in chert proves th a t these cherts were formed by dissolution of carbonate and precipitation of silica, probably in form of opal CT, which la te r passed into m icrocrystalline quartz and chalcedony.

The silicification took place in early diagenesis before th e lithi- fication. C herts w ere lithified before the lithification of limestones.

This is indicated by fissures in chert filled by m icritic limestone.

The characteristic and common featu re of the cherts is an insigni­

ficant content of argillaceous m atter, particu larly in comparison w ith a high clay content in the limestones. D istribution of the argillaceous m a tte r in th e radiolarite bed is usually regular. Its am ount increases up and down from the middle of th e bed. Sometimes, this is disturbed by irreg u lar argillaceous bands or lenses. In these cases th e non- argillaceous p a rts are occupied by chert, and the argillaceous ones b y limestone. The conclusion is th a t the silicification developed in th e

(13)

— 57 —

non-argillaceous p a rts of the deposit and avoided the argillaceous ones.

The clay content is very im portant for diagenesis of the carbonate and siliceous deposits. According to Bausch (1968), the clay content in th e cem ent of carbonate rocks controls th e size of th e calcite crystals.

Recrystallization is possible only w here the insoluble residue is less th a n 2%. According to Zankl (1969) early lithification of lime m ud depends on the p u rity of sediment. Less th a n 2% of insoluble residue (especially clay m inerals) favours cem entation and recrystallization be­

fore fu rth e r sedim ent accum ulation causes compaction.

In the siliceous rocks, clay inhibits diagenesis processes. Sujkow ski (1958) thought th a t the occurrence of argillaceous m a tte r in silico- -carbonate deposits delays the silica nodules form ation. According to Robertson (1977) the clay adm ixture in the deposit inhibits the passage of cristobalite (opal CT) into quartz. A fter Folk and McBride (1978) clay and probably haem atite inhibit the grow th of th e m icroquartz crystals.

In the Niedzica Succession radiolarites, th e re was not a delay b u t a complete absence of silicification in the argillaceous p a rts of the deposit. It seems, th a t th e inhibition of silicification in these p arts was sufficient fo r all the available silica to concentrate in th e non- argillaceous p a rts of the deposit. W here th e re was no carbonate, as in the Green Radiolarites of Buwald, the dissolution of th e radiolarian tests and the precipitation of silica occurred w ithin th e whole bed, argillaceous or non-argillaceous, because th e qu an tity of silica was sufficient.

Probably silicification and calcitization in p a rtic u la r beds, isolated by clay intercalations occurred independently. Each bed in this respect was a closed system. In some beds, th e separation of th e carbonate and the silica is alm ost complete — the chert contains a few carbonate rem ains and th e lim estone a few siliceous radiolarians. In other beds, the separation is little advanced and th e re occur carbonate-siliceous rocks. I t seems th a t the separation of carbonate and silica w as stopped in different beds not sim ultaneously, w hen lithification inhibited the m ovem ent of pore solutions in the deposit.

Late diagenesis

The fissures w ith calcite or chalcedony veins passing th rough th e cherts and th e limestones are probably of tectonic origin. O ther fissures are lim ited to the cherts. Some of them were form ed before th e lithification of limestone as indicated by filling w ith carbonate

(14)

m icrite. Some cracks w ere formed probably la te r and w ere due to tectonic stress and competence difference betw een chert and limestone.

Colouration by ferru m oxides of p a r t of the rock separated from another non-coloured p a r t by a calcite vein indicates th e late diagenetic m igration of th e ferruginous m atter.

The occurrence of green and calcareous zones, some m m thick, along the cracks in th e red cherts indicates th a t solution reduced the ferru m oxides and precipitated calcium carbonate.

Authigenic crystals of calcite in th e chert and authigenic crystals of quartz in the limestone are referre d to late diagenetic calcitization and silicification. These processes do not seem to have been im portant.

CONCLUSIONS

___ s

The Niedzica Succession radiolarites w ere form ed by:

1) Bottom cu rren ts which deposited alternating radiolarite and clay beds.

2) Early diagenetic separation of the carbonate and siliceous m atter, independent in p artic u lar beds, controlled by the argillaceous m a tte r distribution, favouring silicification of non-argillaceous p a rts of the deposit.

translated b y S. G qsiorow sk i

REFERENCES — W YKAZ LITERATURY

B a u s c h W. M. (1968), Clay content and calcite crystal size of lim estones.

Sedim en tology, 10: 71—75, Oxford.

B i r k e n m a j e r K. (1953), Prelim inary R evision of th e Stratigraphy of the P ien in y K lippen B elt Series in Poland. Bull. Acad. Pol. Sci., Cl. I ll, 1/6:

271— 274, W arszawa.

B i r k e n m a j e r K. (1958), Przew odnik geologiczny po Pienińskim P asie S k a ł­

kowym . W arszawa.

B i r k e n m a j e r K . (1977), Jurassic and Creitaceous L ithostratigraphic Units of th e P ien in y K lippen Belt, Carpathians, Poland, Stu dia Geo I. Pol., 45, 160 p.

W arszawa.

B i r k e n m a j e r K., G ą s i o r o w s k i S. M. (1960), Badania sedymenitologiczne kom pleksu radiolarytow ego pienińskiego pasa skałkow ego. S p r a w , z Posiedź.

K o m . Oddz. P A N w K r a k o w ie , stycz.— czerw. 1960: 1— 3, Kraków.

B i r k e n m a j e r K., G ą s i p r o w i s k i S. M. (1961), Sedim entary character of radiolarites in th e P ien in y K lippen Belt, Carpathians. Bull. Acad. Pol. Sci., Ser. sci. geol. geogr., 9/3: 171— 176. W arszawa.

(15)

— 59 —

C a l v e r t S. E. (1977), M ineralogy of silica phases in deep sea cherts and por- celanites. Philos. T r a n s . Roy. Soc. London, A , 286, 1336: 239— 252, London.

F o l k R. L., M e B r i d e E. F. (1978), R adiolarites and their relation to sub­

jacent “oceanic cru st” in Liguria, Italy. J. S ed im en t. Petrol., 48: 1069—1102,

T ulsa. s

F o l k R. L., W e a v e r С. E. (1952), A study of the textu re and com position of chert. Am. J. Set., 250: 498— 510, N ew Haven.

G a r r i s o n R. E. (1974), Radiolarian chents, pelagic lim estones and igneous rocks in eugeosynclinal assem blages. Spec. Pu bis int. Assoc. Sedimentologists, l:

367— 400, Oxford.

G a r r i s o n R. E., F i s c h e r A. G, (1969), D eep -w ater lim estones and radio­

larites of the A lp in e Jurassic. .Soc. Econ. Pal. and Min. Spec. Publ., 14:

20— 56, Tulsa.

G ą s i i o r o w s k i S. M. (1962), A ptychi from th e Dogger, Malm and N eocom ian in th e W estern Carpathians and their atratigraphical value. S tu d ia geol. pol., 10, 152 p., W arszawa.

G ą s i o r o w s k i S. M. (1973), Les R hyncholites. Geobios, 6/2—3: 127— 196, Lyon.

G r u n a u H. R. (1965), R adiolarian cherts and associated rocks in space and tim e. Eel. Geol. Helv., 58: 157—208, Basel.

I m o t o N., S a i t o Y. (1973), Scanning electron m icroscopy of chert. Bull. Nat.

Sci. Museum, Tokyo, 16/2: 397—400 Tokyo.

M i ś d k M. (1971), O bservations concerning calcite v einlets in carbonate rocks.

J. Sedim ent. Petrol., 41: 450—460, Tulsa.

M o o r e Т. C. J r (1969), Radiolaria: change in sk eletal w eig h t and resistance to solution. Geol. Soc. A m e rica Bull., 80: 2103—2108, Boulder.

N i s b e t E. G., P r i c e I. (1974), Siliceous iturbidites: bedded cherts as redeposited ocean ridge-derived sedim ents. Spec. Pubis int. Assoc. S edim entologists, 1:

351—366, Oxford.

R o b e r t s o n A. H. F. (1977), T he origin and d iagenesis of cherts from Cyprus.

S edim ento lo gy, 24: 11—30, Oxford.

S i k o r a W., W i e s e r T. (1979), Pochodne zasadow ych skał m agm ow ych w for­

m acji radiolarytow ej z Sokolicy (pieniński pas skałkowy). K w a r t. Geol., 23, p. 495, W arszawa.

S m а у d a T. J. (1971), Normal and accelerated sinking of phytoplankton in the sea. Marine Geology, 11: 105— 122, Am sterdam .

S u j k o w s k i Z. (1932), R adiolaryty Polskich Karpat W schodnich i ich porów na­

n ie z radiolarytam i tatrzańskim i. (Radiolarites des Karpates O rientales et leur com paraison avec le s radiolarites de la Tatra). Sp raw ozd . Pol. Inst. Geol., 7:

97— 168, W arszawa.

S u j k o w s k i Z. (1933), R adiolaryty dolno-karbońskie Gór Św iętokrzyskich. (Ra­

diolarites du Carbonifere inferieur du M assif de Ste Croix). S p ra w o zd . Pol.

Inst. Geol., 7: 637—711, W arszawa.

S u j k o w s k i Z. (1958), D iagenesis. Bull. Am . Assoc. Petr. Geologists, 42: 2692—

2717, Tulsa.

T h u r s t o n D. R. (1972), Studies on bedded cherts. Contrib. Mineralogy, P e tr o ­ logy, 36: 329—334, Berlin.

V a n H i n t e J. E. (1976), A Jurassic tim e scale. Bull. A m . Assoc. Petr. Geologists, 60: 489—497, Tulsa.

Z a n к 1 H. (1969) Structural and textu ral evidence of early lithification in fin e- -grained carbonate rocks. Sedim entology, 12: 241—256, Oxford.

(16)

EX PLANATIO N OF PLATES — OBJAŚNIENIA PLA N SZ

PLATE — PLA N SZ A I

Fig. 1. Rock composed of three petrographic elem ents: a — chert consisting of m icrocrystalline quartz, w ith s m a ll’ adm ixture of clay, w ith num erous calcite veinlets; b — lim estone w ith a high argillaceous and ferruginous m atter content, w ith a num ber of radiolarians (dark points). In upper part graded bedding expressed by size and num ber of radiolarians, in low er-m ost part a fin e lam ination w ith very sm all radiolarians; c — car­

b onate-siliceous rock w ith clay content higher than in lim estone but low er than in chert. L ow er Red R adiolarites. K oniow iec. N egative. Plane polarized.

Fig. 1. Skała złożona z trzech elem entów petrograficznych: a — rogow iec z b u ­ dowany z kwarcu m ikrokrystalicznego, nieco zailony z licznym i żyłkam i kalcytu; b — w apień silnie zailony i zażelaziony, z licznym i radiolariam i (ciem ne kropki). W górnej części uziarnienie frakcjonalne w yrażone zm ianą w ielkości i zagęszczenia radiolarii, w najniższej części delikatna lam inacja z b. drobnymi radiolariam i; c — skała w ęglanow o-krzem ion- kowa zailona silniej niż rogowiec i słabiej niż w apień. R adiolaryty czer­

w one dolne. Koniowiec. N egatyw . N ikole rów noległe.

Fig. 2. C arbonate-Siliceous rock w ith abundant radiolarians, . w ith thin argilla­

ceous bands. Graded bedding expressed by upward decrease of size and num ber of radiolarians. Rock on the left side of the great, vertical calcite vein is coloured by ferruginous m atter (lighter on photo). Upper Red Radiolariites. Niedzica. N egative. P lan e polarized.

Fig. 2. Skala w ęglanow o-krzem ionkow a, z dużą ilością radiolarii, sm ugow ana sub­

stancją ilastą. U ziarnienie frakcjonalne w yrażone przez zm niejszenie się ilości i w ielkości radiolarii ku górze. R adiolaryty czerwone góm e. N iedzi­

ca. N egatyw . N ikole równoległe.

PLATE — PL A N SZ A II

Fig. 1. Micritdc lim estone, argillaceous in low er pant, ferruginous in upper part, banded, w ith a num ber of chalcedonie radiolarians. R everse graded bedd­

ing expressed by upward increase of radiolarians num ber — in upper­

most part the rock composed alm ost ex clu siv ely of radiolarians passes into chert. Green Radiolarites. Kondowiec. N egative. P la n e polarized.

Fig. 1. W apień m ikrytow y, w dole zailony, w górze zażelaziony, sm ugow any, z w ielk ą ilością chalcedonow ych radiolarii. Odwrócone uziarnienie frak­

cjonalne, wyrażone zagęszczeniem się ku górze radiolarii, które w n aj­

w yższej części są tak liczne, że skała przechodzi w rogowiec. R adiolaryty zielone. Koniowiec. Negaityw. N ikole równoległe.

Fig. 2. Chert consisting m ostly of radiolarians preserved in chalcedony and quartz, w ith a low clay content. Graded bedding passes upwards in to a fin e la­

m ination. L ittle lenses of ferruginous m atter (light on photo). Green R a­

diolarites. Buwałd. N egative. Crossed nicols.

Fig. 2. R ogow iec złożony głów nie z radiolarii zachow anych w chalcedonie i k w ar­

cu. U ziarnienie frakcjonalne przechodzi ku górze w delikatną lam inację.

Małe soczew ki substancji żelazistej (białe na zdjęciu). R adiolaryty zielonei Buw ałd. N egatyw . N ikole skrzyżowane.

(17)

5. Kwiatkowski

Ann. Soc. Geoi. Po/oniae v. 51 j 1-2

(18)

Ann. Soc, Geol. Poloniae v. 5 1 / 1 - 2

(19)

S Kwiatkowski PI. III

Ann. Soc. Geol. Poloniae u. 51 / 1-2

(20)
(21)

— 61 —

PLATE — PLA N SZ A III

Fig. 1. Chert w ith a cla y and carbonate content, w ith radiolarians and carbonate skeletal rem ains, arranged horizontally. Irregular banding of ferruginous matter. C alcite veins. Transition beds. Buw ałd. N egative. Crossed nicols.

Fig. 1. Rogowiec z dom ieszką iłu i w ęglanów , z radiolariam i i w ęglan ow ym i szczątkam i szkieletow ym i, ułożonym i poziomo. Nćeregularne sm ugow anie substancją żelazistą. Żyły kalcytu. W arstw y przejściow e. Buwałd:. N egatyw . N ikole skrzyżowane.

Fig. 2. C arbonate-siliceous rock w ith a num ber of radiolarians, preserved in ch al­

cedony and coarse-crystallin e quartz. Lam ination wiith argillaceous and ferruginous bands (light on photo). Greeen R adiolarites. Niedzica. N egative.

P lane polarized.

Fig. 2. Skała w ęglanow o-krzem ionkow a, z licznym i radiolariam i zachow anym i w chalcedonie i grubokrystalicznym kwarcu. Lam inacja sm ugam i substan­

cji ilastej i żelazistej (jasnym i na zdjęciu). Rad/iolaryty zielone. Niedzicy.

Negatyw . N ikole rów noległe.

PLATE — PLA N SZ A IV

Fig. 1. Lim estone, strongly argillaceous, w ith dispersed microquartz, w ith m any carbonate rem ains and calciitized radiolarians, w h ose arrangem ent form s the irregular cross-lam ination. Vertical calcite veins. Upper Red Radiolarite.

Koniowiec. N egative. Plane polarized.

Fig. 1. W apień silnie zailiony, z rozproszonym m ikrokw arcem , z licznym i, w ęglan o­

w ym i szczątkam i szkieletow ym i i skalcytyzow anym i radiolariam i, których ułożenie tw orzy nieregularną, przekątną lamimację. Pionow e ży ły kalcytu.

R adiolaryty czerw one górne. Koniowiec. N egatyw . Niikole rów noległe.

Fig. 2. Micritic lim estone, strongly argillaceous, w ith dispersed microquartz, w ith radiolarians and aptychi, w ith intraclasts o f lim estone more and less argillaceous. V ein s of calcite and quartz. L ow er Radiolarites. Koniowiec.

N egative. P lan e polarized.

Fig. 2. W apień m ikrytow y, silniie zailony, z rozproszonym m ikrokw arcem i radio­

lariam i i aptycham i, z intraklastam i w apien ia bardziej i mniej zailonego Żyły k alcytow e i kw arcow e. R adiolaryty czerw one dolne. Koniowiec. N i­

kole rów noległe.

Cytaty

Powiązane dokumenty

ABSTRACT: Bed-Iby--bed collected ammonites :have permitted a recogniiion of the hybonotum, darwini, semiforme, and fallauxi Zones, Lower to Middle Tithonian, at

ABSTRACT: Terebratulid and dallinid brachiopods are described from the Upper Tithonian brachiopod layer exposed at the Castle KU,ppe at Czorsztyn and the Lower

The lower limestone intercalation (just below Quaternary terrace cover) j-ielded Leioceras opalinum (Reinecke) - No 4411b (Fig. This fauna indicates. a Lower

The black shales dated to the Cenomanian/Turonian bound- ary interval (an analogue of the Bonarelli horizon) occur across the whole Pieniny Basin: in the Czorsztyn Succession

Because most springs in the study area have small discharges, within classes VI, VII and VIII (Ma³ecka, 1981; ¯urawska, 1999), according to the classification of Meinzer (Pazdro

Lateral commissures at first are arcuately bent towards the brachial valve and subseque~tIy, at one-quarter of the distance from the anterior commissure turn

In this area, the Grajcarek Unit forms an eastward narrowing series of out- crops located between the klippen units and the Magura Unit (Figs. 1, 2) with flysch deposits

Abbreviations: S (=SLF) + F(=FLF) - Smolegowa and Flaki Limestone formations (white and grey crinoidal limestones); KLF - Krupianka Limestone Formation (red