• Nie Znaleziono Wyników

Analysis of controllability of a mechanical system with distributed parameters

N/A
N/A
Protected

Academic year: 2022

Share "Analysis of controllability of a mechanical system with distributed parameters"

Copied!
14
0
0

Pełen tekst

(1)

Jerzy RESPONDEK Politechnika Śląska

THE A N A L Y SIS OF C O N T R O L L A B IL IT Y OF A M E C H A N IC A L SYSTEM W IT H D IST R IB U T E D PA RAM ETER S

S um m ary. The paper is devoted to the verification o f the controllability conditions o f flexible mechanical system with distributed parameters. Following this aim the functional analysis methods and results from previous papers are applied. At first presented the system state equation, in the form o f the abstract differential equation, and studied the properties o f the system's eigenfunctions. Next the state equation was transformed into infinite series o f finite first order dimensional systems.

Describing the system in this form enabled use o f proper theorems on controllability without constrains and U-controllability for an examined system. Finally received results were used in examination o f controllability some particular control forces.

ANALIZA STEROW ALNOŚCI UKŁADU MECHANICZNEGO O PARAMETRCH ROZŁOŻONYCH

Streszczenie. W ramach pracy zbadano warunki sterowalności elastycznego układu mechanicznego o parametrach rozłożonych. Analizę przeprowadzono opierając się na metodach analizy funkcjonalnej i wynikach uzyskanych w poprzednich pracach.

Na początku przedstawiono wyjściowe równanie stanu układu w postaci abstrakcyj­

nego równania różniczkowego i zbadano własności funkcji własnych układu. Następ­

nie przekształcono go do postaci dwóch nieskończonych ciągów układów skończenie wymiarowych pierwszego rzędu. Przedstawienie układu w tej postaci pozwoliło na zastosowanie odpowiednich twierdzeń podających warunki sterowalności bez ograniczeń i U-sterowalności badanego układu. W końcu pracy uzyskane warunki zastosowano do zbadania sterowalności dla kilku konkretnych wymuszeń.

1. Basic Concepts

Recently in the m odem mechanical constructions it can be noticed decreasing density because o f appearing new light materials. Decreasing mass o f the constructions caused improvement o f the dynamical properties o f the mechanical systems. Unfortunately simultaneously, because o f the elastically deformations, the resonance vibrations was

(2)

160 J. Respondek

observed. So the key significance turned out the damping o f that vibrations. Following this aim necessary is the mathematical model considering the distributed parameters o f the investigated mechanical system.

1.1. M athem atical M odel

Let us consider a mechanical system described by the following linear partial differential equation:

dt dx dx dt dx dt ~~\

where:

a: e (0,1), t > 0

a > 0, p e [0,1) with initial conditions:

u(x,0) = u0(x), x e (0,1)

du(x, 0) . . . . .

■; 1 a « i W . x e ( 0 , l ) ot

and boundary conditions:

« (o ,o = — ° ’- - = o, / > o dx

= = 0, » o

OX

The function u(x,t) is equal to the movement o f the considered elastic beam in the Y axis direction in the time moment t>0 and in the point x ( 0<x<l). The firsts two terms in the equation (1) are the only terms taking into account for the ideally springy elastic beam. The remaining two terms are modelling the phenomenon o f the internal friction. More detailed description o f these terms and the phenomenon they are describing can be found in the papers [3, 7,13]. The look o f the system can be seen on the fig. 1.

(3)

Fig. 1.

Rys. 1.

1.2. The Definition o f The D ifferential Operator " A "

Let us define linear unbounded differential operator A : D{A) c IT -> H [ 18] in the following way:

A u ( x ) = d u e D ( A ) ox

£>(/!) = j u ( x ) e t f 2(0,/): ¡u 2(x)dx<03, «(0) = «’(0) = 0, «(/) = «'(/) = 0

where H = L2(0,l) is a Hilbert space o f functions integrable with square in the interval [0,1].

It can be proved that the operator A has the following properties [18]:

- Operator A has only purely discrete point spectrum consisting entirely o f distinct real positive eigenvalues X,

. each eigenvalue can be calculated by formula A, = rj* where is the positive root o f the following equation:

cosh(?7/) cos(t]l) - 1 = 0

-Af ^ A, fo r i * j , A, < A, fo r i < j , lim A,. =co - the operator/! is self-adjoin and positive defined

• there exists an inverse operator A '1 and it is bounded

- for each eigenvalue there exists a corresponding eigenfunction o f the operator A:

<pi (x ) = /.-{cosf^.x) - cosh(7/fx) + d, (x)[sin(?/ix) - sinh(^,x)]}

d = cos(77fx)-cosh(77,.x) ' sm(77,.x) - sinhf?;^) j = 1,2,3,..., x e ( 0 , / ) , k > 0

(4)

162 J. Respondek

- The eigenilmctions o f operator A {<t>i e D(A), i = 1,2,3,...} form complete orthonormal system in Hilbert space H. Hence for every u e H the following unique expansion holds true:

particularly:

1.3. State Equation

Basing on the definition and properties o f the operator A partial differential equation (1) can be expressed in form o f the linear abstract ordinary differential equation in the Hilbert space H:

« = £ < « , a >//

i-i

the operator A has the following spectral resolution:

- The fractional power o f operator A is defined as follows [15]:

(

2

)

and operator B:

and controls:

h(t) = [hl (t),h 2( t) > - > K ( 0 h RP where h /t) j= l,2 ,...,p denote scalar controls.

Let us define so called damping term by the following formula:

(5)

f ( A ) u = 2 aAu + 2J3A2u

Using the damping term f(A ) the equation (2) can be rewritten in the following more compact form:

dt d t (3)

2. R epresentation o f T h e State Equation By T he Set o f First O rder Equations

In [17] it was proved that the second order equation (3) is equivalent to the following set o f first order differential equations:

d ' m ' A + 0 ' ' m 4 .' g ( A y 'B '

dt _K t). 0 A \ X ‘).

T

r g (A y 'B _hit)

where the linear operators A + and A ' are defined by the following formulas:

A 1 = - a A - ¡3A2 ± g (A )

A* :H=> D (A ) H ^ i A * ) = D (A) The operator g(A) is defined as follows [3]:

(4)

v * 0 0 « = H s W < >h <!>>

u e D ( g ( y l) )

with domain D (g(A ))-D (A ) [13].

Appearing in the above formulas function g(A . ) : R —> C is defined as follows:

g W = .

I \ 2

O bl f + ß Ä f - X , , Äj > o

Therefore, operator Q o f the system (4) is given by the equality:

(6)

164 J. Respondek

and moreover has purely discrete point spectrum o(Q) o f the following form:

where s f are distinct eigenvalues o f Q given by the formula:

s f = - a 0A, - p i f ± g ( A i )

3. R epresentation o f T he Set o f The Infinite D im ensional Equations By The Infinite Series o f Finite D im ensional System s

As it was showed in [12] the set o f differential equations (4) can be represented by the infinite series o f finite dimensional systems as well.

Taking into account the fact that the differential state equation (3) o f the considered mechanical system has only single eigenvalues ( mf= 1 ) the infinite series receives the following simple form:

at . dt where:

B f = [ g - \ A i ) b \...g - \A i)b f ...g - \A ,) b f\

B f = - B f Furthermore:

bf =<bk,fa > „ i = 1,2,3,..., k = \,2,...,p

and 0 denotes the i h coefficient o f the Fourier series o f spectral representation for the element x in the state space H. Tire coefficients are explicitly given by the inner product of elements 4(0 and ¡i(t) in the state space H and the appropriate eigenfunction fa o f the

operator^:

6 ( 0 = < £ (0 ,0 / >H> -“ / ( 0 = < M 0 , 6 >H> »=1,2,3,...

(7)

4. The A nalysis o f C ontrollability

4.1. Basic Concepts

It is given a stationary, finite dimensional system, described by the following equations:

f x[t) = A0x(t) + B0u(t), f Z 0 1 y ( 0 = C0x(t) + D 0u(t), t > 0

where Ao.Bo,Co,Do are constants matrices with dimensions nxn, nxm, p xn, p xm , respectively.

4.1.1. Controllability W ithout Constrains Theorem 1 [8]

The dynamical system (5) is controllable if and only if:

rank[Bo\AoBo\Ao Bo\...\Aon lBo]=n

4.1.2. Controllability W ith Constrained Controls Theorem 2 [12]

The infinite dimensional distributed parameter dynamical system (1) is globally approximately [/-controllable to zero if and only if the following conditions are satisfied simultaneously:

(1) There exists a w e U such that B i +w = 0 for every i - 1,2,3,...

(2) The convex hull CH([/) has a nonempty interior in the space Rp.

(3) rank[5,-"]=/«/, for every i=l,2,3,...

(4) There is no real eigenvector v,. e R m' o f matrixes A *, A'." satisfying v jB * w < 0 for all w 6 U , for every i=l,2,3,...

where:

(8)

166 J. Respondek

4.2. Application o f Controllability Conditions to The Considered System 4.2.1. Conditions of Controllability Without Constrains

Basing on the theorem 1 the controllability condition has the form:

r a n k [ B f\= r a n k [ g -\X i) b ] . . . g - '{ W ; . . . g - \ X i)b?\= \ i = 1,2,3,... (6) Considering that g 1 (A,) * 0 condition (6) can be rewritten in the form:

4.2.2. Conditions o f Controllability With Constrains

Now, let us assume that the controls are nonnegative. So conditions (1) and (2) o f the theorem 2 are fulfilled. In this case let us observe that:

- The condition (3) receives the form:

where ut e U .

Considering that g ' 1 (A,.) 0 and «,• is non-negative the condition (4) reduces to requirement

5. Properties o f The E igenfunction o f The O perator A

In the further calculations the knowledge o f the properties o f the eigenfunctions o f the operator A appears necessary. Following this aim at first let us prove the following lemmas:

5.1. Lem m a 1

For every x e R+ the function f(x)=sinx-sinhx is negative and decreasing.

5.1.1. Proof

The proof is based on the following Taylor's expansion:

-The condition (4).

First o f all, let us calculate the Bt'w factor:

so that in the vector [¿>,',...,6*,...,6/’

j

there exist elements o fb o th signs.

(9)

= y Jr.1)' ,.x™ _ y 1 x*w _ _ y 1 «« 0

m (2i + l)! m (2/ + 1)!

à

(4/ +3)!

5.2. Lem m a 2

For every x e R + the function f(x)-co sx-co sh x is negative and decreasing.

5.2.1. P ro o f

The proof is similar as in Lemma 1.

c o s x - c o s h x = c o s x - - — = V ^ ^ x 21 - —

2 t S (20! 2 7S n\ ¡.o n\

^ ^ - , x < 0

t o ( 2 0 ! t o ( 2 0 ! ^ ( 4 / + 2 ) !

5.3. Corollary 1

Now it can be easily seen that:

Q.E.D.

Q.E.D.

d c o sfa x ) - c o sh fa x ) ; Q s i n ^ x ) - sin h ^ .x )

¡' = 1,2,3,..., x e ( 0 , / ) , k > 0

5.4. Corollary 2

Taking into account the form o f the eigenfunctions:

i/>i (x) = /c{cos(r/ix) - cosh(^¡x) + d i (x)[sin(77(x) - sinh(?7fx)]}

it can be seen that they are negative and decreasing.

6. Conditions o f C ontrollability For M echanical System s W ith Particular C ontrol Forces

6.1. Forces With F ixed Sign I n Considered Space Domain

For example 6.(x) = C(, C ,x" , C:m x belongs to this class. Let us remind the common condition for constrained and unconstrained controllability:

ra n k[b ],...,b t W \ = \

(10)

168 J. Respondek

It means that at least one element o f proper matrix must not be equal 0:

bj =< bk ,<j>i >H ^ 0 (7)

Let's rewrite scalar product appearing in equation (7) in form:

i

b■ =<bk,<t>, >„ = \b k(x)<f>i (x)dx 0

As proved in the section 5.3. the eigenfunctions ^¡(x) are negative. Respecting that in this section we are considering forces with fixed sign, i.e.:

V b A x )> O v V bk (x )< 0

« ( 0 ,1 ) * x e (0 ,/) *

it can be stated that:

i

j bk (x)(f>t (x)dx = b f ^ 0 0

and the condition:

ra n k\b ) 6,* j = l is fu lfille d .

6.1.1. Corollary 3

Systems (1) with fixed sign forces are controllable.

6.1.2. Conditions of Controllability With Constrains

As we stated in [11] for the non-negative controls the condition (4) reduces to the requirement so that in the v e c to r f /) ',...,^ ,...,b?\ there exist elements ofbot h signs.

6.1.3. Corollary 4

The necessary and sufficient condition for [/-controllability o f the dynamical system (1) with fixed sign controls is:

v 3 b?b; < 0

1 = 1,2,3,... q ,r & { \ , 2 , - , p } , q * r p > 2

6.2. Sine-like Force

IcTT

Now let us assume that bt (x) = C, si n— x, k e Z + . Similarly the necessary condition for both controllability without constrains and U-controllability has the form:

(11)

bf - < b t ,ifii >H& 0 (8) Let us calculate the scalar product b f :

f o x

6* =<bk ,(f>i >„= C, y ,( x ) s in — xdx

o ^

By performing the substitution x = — t the number h* can be expressed by the following k n

formula:

b * = C, -j— ]<!),(-}-t)s m td t k n ' k n

In order to prove the inequality (8) two cases are distinguished:

6.2.1. Case A : k Is an E ven N u m b e r

In this case the considered integral can be rewritten in the form:

* i * I

k x , 2 (2 y + 2 )jr . — 1 ( 2 /+ I ) »

IV/(— O sin tdt = Y f — t)sin td t =

0 k * j-o 2 J x k U U 2JM

ù ë - t ) - M - l - t + L )

k n k n k sin tdt (9)

As we proved in the section 5 the eigenfunctions Qrfx) are negative and decreasing, so:

k n k n k

Additionally in the range [2 j n , (2 j + \ ) n \ j e Z the function sin(t) is non-negative, so every integral in sum (9) is positive, thus the considered integral is not equal zero and condition (8) is fulfilled.

6.2.2. Case B : k is an O d d N um b er

The integral after similar substitutions can be rewritten as:

kx I " I 2 '

[<!>,{— - t) s m td t = t)sin td t + Y ,

0 k X 0 k * j-0 2> k n k n k sin tdt (10)

The first integral is obviously negative. So in the case B :

k n k n k

so every integral in sum (10) is negative, thus the considered integral is not equal zero and condition (8) is fulfilled and:

rank[bj b,p j = l

(12)

170 J. Respondek

6.2.3. Corollary 5

The system (1) with the forces:

fy(x ) ~ C, sin-^y-jr, k e Z + is controllable.

6.2.4. C orollary 6

The necessary and sufficient condition for U-controllability o f the system (1) with the forces:

bi (a:) = C, sin -^ -.r, k e Z+

is the same as for the fixed sign forces.

C oncluding R em arks

This paper is devoted to the application o f known representation o f partial differential equations with damping term, by linear abstract differential equation, to the investigation of the controllability o f elastic mechanical system w ith distributed parameters. First o f all the selection o f proper differential operator is presented and its properties are reminded. Next performed the investigations o f the properties o f the eigenfunctions o f the dynamical system, which used in the further investigations. Next given partial differential equation was rewritten in the form o f infinite series o f finite dimensional dynamical system. To this form known theorems on constrained and unconstrained controllability were applied. Finally using obtained conditions controllability' for some particular control forces were verified.

REFERENCES

1. Butkow'skij A. G.: Charakteristild sistiem s raspriedieliennymy parametrami.

sprawocznoje posobie, Glawnaja Redakcja fizyko-matemaficzeskoj literatury', “Nauka”, Moskwa 1979.

2. Burgree D., Brooklyn N.Y.: Free Vibrations o f Pin-Ended Column W ith Distance Between Pin Ends. Journal o f Applied Mechanics, June 1951, pp.135-139.

(13)

3. Chen G., Russel D.L.: A Mathematical Model For Linear Elastic Systems W ith Structural Damping. Quaterly o f Applied Mathematics. Vol 39, 1982, pp.433-454.

4. Dunford N., Schwartz J.: Linear operators. Vol. 1 and 2, Interscience, New York 1963.

5. Huang F.: On The M athematical Model With Analytic Damping. SIAM J. Control Optimization, 26-3,1988, pp. 714-724.

6. Ito K., Kunimatsu N.: Stabilization o f Non-Linear Distribuded Parameter Vibratory System. International Journal o f Control, Vol. 48, 1988, pp.2389-2415.

7. Ito K., Kunimatsu N.: Semigroup Model o f Structurally Damped Timoshenko Beam With Boundary Input. Vol. 54,1991, pp.367-391.

8. Klamka J.: Controllability o f dynamical systems. Kluwer, Dordrecht 1991.

9. Klamka J.: Approximate controllability o f second order dynamical systems. Applied Mathematics and Com puter Sciences, Vol. 2,1992, pp.135-148.

10. Kudrewicz J.: Analiza funkcjonalna dla automatyków i elektroników. PWN, Warszawa 1976.

11. Respondek J.: Controllability o f dynamical systems with constrained controls. Zeszyty Naukowe Politechniki Śląskiej, seria Automatyka z.137, Gliwice 2003.

12. Respondek J.: Controllability o f dynamical systems with damping term and constrained controls. Zeszyty N aukow e Politechniki Śląskiej, seria Automatyka z.137, Gliwice 2003.

13. Sakawa Y.: Feedback control o f second order evolution equations with damping. SIAM loum al Control and optimisation, Vol. 22, 1984, pp. 343-361.

14. Sakawa Y.: Feedback Stabilization o f Linear Diffusion System. SIAM J. Control an Optimization, Vol. 21, No. 5,1983, pp. 667-675.

15. Tanabe H.: Equations o f evolution. Pitman, London 1979.

16. Woikowsky-Krieger: The Effect o f an Axial Force Vibration o f Hinged o f Bars. Journal o f Applied M echanics, M arch 1950.

17. Wyrwał J.: Controllability and observability o f infinite dimensional systems, doctoral dissertation, Department o f Automatics, Electronics and Informatics, Silesian Technical Uniwersity, Gliwice 2001 (in Polish).

18. Wyrwał J.: Analiza układów o parametrach rozłożonych. Zeszyty Naukowe Politechniki Śląskiej, seria Automatyka z.120, Gliwice 1996.

Recenzent: Prof.dr hab.inż. Wojciech MITKOWSKI

Wpłynęło do Redakcji dnia 15 października 2002 r.

(14)

172 J. Respondek

Streszczenie

W artykule przedstawiono analizę sterowalności bez ograniczeń i z ograniczeniami elastycznego układu mechanicznego o parametrach rozłożonych. Do tego celu wykorzystano metody analizy funkcjonalnej, w szczególności spektralna teoria liniowych operatorów nieograniczonych, i wyniki uzyskane w poprzednich pracach.

Najpierw zostało podane wyjściowe różniczkowe cząstkowe równanie stanu, jego warunki brzegowe i początkowe. Następnie zdefiniowano odpowiedni operator różniczkowy i podano jego własności. Opierając się na nim dane równanie stanu przedstawiono w postaci abstrakcyjnego równania różniczkowego z czynnikiem tłumiącym. Ta postać pozwoliła na przedstawienie równania stanu w postaci układu dwóch abstrakcyjnych równań różniczko­

wych pierwszego rzędu. Kolejnym krokiem było pokazanie, jak z użyciem odpowiednich podstawień układ dwóch abstrakcyjnych równań różniczkowych pierwszego rzędu można przedstawić, na podstawie odpowiedniego twierdzenia, w postaci,układu dwóch nieskończo­

nych ciągów układów skończenie wymiarowych. Uzyskane równoważne reprezentacje równania stanu pozw alają na zastosowanie znanych kryteriów sterowalności bez ograniczeń i z ograniczeniami dla układów z czynnikiem tłumiącym. Zacytowano odpowiednie twierdze­

nia i opierając się na nich sformułowano konieczne i wystarczające warunki, dla przypadku dowolnej siły wymuszającej. W celu zbadania prawdziwości tych warunków dla konkretnych funkcji wymuszających konieczna okazała się analiza przebiegu funkcji własnych operatora układu. W tym celu m etodą rozwinięcia w szereg Taylora wykazano iż są one ujemne i malejące w dziedzinie równania. Zgodnie z tym wnioskiem podano szczegółowe warunki sterowalności bez- i z ograniczeniami dla przykładowych funkcji: o stałym znaku i sinusoidalnej.

Cytaty

Powiązane dokumenty

Następnie zapisz go w postaci macierzowej i podaj w odpowiedniej kolejności operacje jakie należy wykonać aby wykonać jedną iterację w

W trakcie eliminacji moŜe się okazać, Ŝe współczynnik przy zmiennej, którą chcemy w danym kroku eliminować z kolejnych równań (czyli element główny) jest

więc zmniejszając o jeden liczbę warunków zadanych na rozwiązanie w punkcie a{ , dla którego qi~qi &gt; 0, a nakładając na rozwiązanie jeden warunek w

Conclusion By utilizing certain properties of conjugate distributions we have obtained analytical expressions for the adaptive feedback control in the sense of Bayes for a linear

Ponadto dowolna funkcja postaci (27) jest rozwi¡zaniem równania (26).

Rozwi¡zanie: Jest to równie» równanie typu a), bo nie zawiera szukanej funkcji oraz jej pierwszej pochodnej.. Tym razem otrzymali±my równanie pierwszego rz¦du

Równanie kwadratowe niezupełne czyli takie o których mówiliśmy na ostatniej lekcji to takie, w których współczynnik a ≠ 0, ale przynajmniej jeden ze.. współczynników b, c

Zauważyliście już coś? Zgadza się! Wzory na rozwiązania równań kwadratowych są takie same, jak na miejsca zerowe funkcji kwadratowej i ilość rozwiązań równania kwadratowego