• Nie Znaleziono Wyników

Common part: polarisation tensor

N/A
N/A
Protected

Academic year: 2021

Share "Common part: polarisation tensor"

Copied!
30
0
0

Pełen tekst

(1)

Martini-Marteau and Nieves-Oset models in neutrino scattering

WNG seminar, 11.04.2011

Jakub ˙Zmuda

jazmuda@ift.uni.wroc.pl

Institute of Theoretical Physics, University of Wroclaw

(2)

Motivation

Neutrino interactions at energy transfers below

1 [GeV]: modern experiments (MiniBooNe, T2K...) Enough energy to reach multi-particle emissions (N, π, next slide), need for a consistent model.

Problems with detection of multiparticle final states, easy confusion with QEL.

No new physics without the understanding of ν-nucleus process.

(3)

Motivation- nuclear dynamics

QEL: mainly 1p1h excitation, some contribution from npnh?

∆: mainly excitation of the ∆ resonance, (mainly) 1p1h1π production, but npnh possible!

DIP: QEL and ∆ tails, Meson Exchange Currents, a lot of 2p2h.

(4)

Common part: polarisation tensor

Two main groups: M. Martini et.al. and J. Nieves et.al.

Typical inclusive cross-section formula (qµ = (ω, q)):

LµνWµν

Wµν = X

i

X

f

ΩEi

Z

d3xe−i(q+pi−pf)xD i

Jˆ†ν(0) f

EDf

Jˆµ(0) i

Eδ(Ef − Ei− ω)

µ → 1,2...n- body nuclear currents. Most simple form:

truncated to 1-body vector+axial current.

Dp, s Jˆµ

p, s

E= us(p)



F1(q)γµ+ iσµαqαF2(q)

2M + GA(q)γ5+ GP(q)γ5 qµ 2M



us(p)

From general q.m. and complex analysis properties :

(δ(x) = −1

π 1

x + iǫ, X

f

|f ihf | = 1 . . .)

LµνWµν = −1

πℑ(LµνΠµν)

(5)

Common part: polarisation tensor

The ideology of polarisation tensor:

Πµν(q) = ΩMT Z

d4xeiqx D i

T

nJν(x)Jµ(0)o i

E =

= ΩMT

Z

d4xeiqx D i

T

nJIν(x)JIµ(0)expiR d4xLint(x)o i

E

Perturbation expansions and Feynman graph level analysis possible

Polarisation tensor: gauge boson self-energy in nuclear matter.

(6)

Common part: polarisation tensor

Imaginary part of Πµν → final state particle propagators on-shell:

ℑG(p) ∝ ℑ 1

p2 − M2 + iǫ = −2πδ(p2 − M2)Θ(p0)

Example: Fermi Gas

p + q

p q

q

Example: Resonant π production

(7)

Basic elements

N res. N’

mes. mes. mes. mes.

mes.

mes.

mes.

res. N N’ N’’ N N’ N’’

N’

N

N N’

N N’

bos. bos. bos.

bos.

bos. bos. bos.

N’

N N’

N

bos.

a ) b ) c ) d )

e ) f ) g )

h )

bos. → W±, Z0, γ, mes. → π±, π0, ρ±µ , ρ0µ . . .

res. → resonances (here- ∆).

(8)

Martini-Marteu (PRC 80,2009)

a ) b ) c ) d )

e ) f ) g )

Graphs e, f, g : ∆ self-energy in nuclear matter, parametrisation of Oset NPA468

2p2h parametrised after Delorme and Guichon Apparent lack of most MEC

Usage of LDA

(9)

∆ Self-energy model

= + + + . . . =

= + ( + + . . .)

= + 1p i

1p i 1p i

1p i 1p i

1p i

Dyson equation as a sum of one-particle-irreducible insertions. Modification of free propagator:

G(p, ω) = 1

[G0(p, ω)]−1 − Σ(p, ω)

Usually matrix equations.

(10)

∆ Self-energy model

Oset’s Σ (NPA 468):

1p i

Physical channels:

ImΣ = ℑΣQEL + 12Γ˜ + ℑΣA2 + ℑΣA3. 12Γ˜ - ∆ → πN width with inclusion of Pauli blocking (first graph).

More, than Martini claims, but Marteu PHD shows them all.

(11)

∆ Self-energy model

Oset: replacement of π line with effective ρ + π+

Landau-Migdal repulsion

Vij(q) = Vl(q) ˆqiqˆj + Vt(q)(1 − ˆqiqˆj)

Renormalisation by the ph and ∆h excitations:

Replacement of the bare interaction with induced one W (q):

W (q) = V (q)

1 − V (q)(UN(q) + U(q)); U → Lindhard f unctions

Cuts: ρ on shell? mρ ≈ 770[M eV ], well outside limits of a nonrelativistic model!

(12)

The 2p2h parametrisation

Guichon-Delorme: extrapolation to W± of the 2N pion absorption model of Shimizu-Faessler NPA 433.

Following graphs: absorptive part of optical potential.

Martini:

a ) b ) c ) d )

e ) f ) g )

(13)

Is that it?

Possible polarisation propagators of some Shimizu graphs (red: two-nucleon absorptions):

Martini includes 2p2h through nucleon self-energy too!

(He admits that in PRC 81, 2010!)

Blue graphs- MEC+ MEC corr (π crossed)!, Violet: nucleon self-energy+ p − h

(14)

Nieves basic polarisation

Basic polarisation tensor components by Nieves (arXiv:1102.2777v1 [hep-ph]):

=

=

+ + + + + +

+ + +

a ) b ) c ) d ) e ) f ) g )

a’) b’) c’) d’)

1 ) 2 ) 3 ) 4 )

Single pion production (1)), 2p2h through π (2)), extra MEC (3)), 2p2h through ρ (4)) Graphs e), f ), g) and ρ-meson exchange a), b), c) and their interferences absent in Martini-Marteu (Contact term e) and some of the MEC in Marteau’s PhD! What happened?).

(15)

Nieves improvements:

Usage of LDA with nucleon energy E(p) = p

p2 + M22MkF2 , with local Fermi momentum kF(r) = (3π2ρ(r)/2)1/3.

Replacement of free π and ρ propagators with their ph + ∆h pion selfenergy

double-dashed line: effective interaction, explicit π and ρ exchange between forward and backward going

bubbles+ repulsive L-M parameter g.

(16)

Nieves improvements:

Replacement of following 2p2h graph with nucleon selfenergy (PRC 46,1992):

= + + + + + +

+ + + . . .

Hartree-Fock+ improved 2p2h+ polarisation...

(17)

Nieves improvements:

For all ∆ − h excitations selfenergy model from NPA 468!

1p i

Physical channels:

ℑΣ = ℑΣQEL + 12Γ˜ + ℑΣA2 + ℑΣA3. 12Γ˜ - ∆ → πN.

(18)

RPA

Basic idea behind the RPA summation:

= + + + . . .

= +

Two possible approaches to polarisation tensor:

q q ’

1. Because of finite size effects Π0 = Π0(ω, q, q), q 6= q (Martini-Marteu). Problem with Feynman analysis, momentum not conserved.

2. Nucleus as an uncorrelated sum of Fermi Seas (LDA) Π0 = Π0(ω, q), q = q (Nieves-Oset).

(19)

RPA by Martini-Marteau

All nuclear response functions:

R(ω, q) = −

π ℑΠ(ω, q, q)

One-loop polarisation propagator (ph or ∆ − h) in the angular momentum basis:

Π(0)J(ω, q, q) = Z

duPJ(u)Π(0)(ω, q, q) u = cos(ˆq, ˆq)

The example RPA sum (nucleon-nucleon interaction):

ΠJN N(ω, q, q) = Π(0)JN h (ω, q, q) +

Z d3p

(2π)3 Π(0)JN h (ω, q, p)V N N(P )ΠJN N(ω, p, q)

Disadvantage: angular momentum basis, matrix integral equations

(20)

RPA by Martini-Marteau

One of the potentials (NN):

VN N = (f + Vπ + Vρ + Vg(1) · τ(2) Vπ =  gr

2M

2

Fπ2(q2) q2

q2 − m2π + iǫσ(1)q · σˆ (2)qˆ Vρ =  gr

2M

2

CρFρ2(q2) q2

q2 − m2ρ + iǫσ(1) × ˆq · σ(2) × ˆq Vg =  gr

2M

2

Fπ2gσ(1) · σ(2)

Two sources of the imaginary part:

ℑΠ = |π2|ℑV + |1 + ΠV |2ℑΠ(0)

Imaginary part of the potential: π or ρ go on-shell

Advantage of resigning on momentum conservation:

Coherent pion production!

(21)

RPA by Nieves:

At vertices momentum exactly conserved → no

coherent process, but also no integral equations. RPA sum purely algebraic! (coherent π: other papers by Nieves, but not default inclusion in this model).

Also N h and ∆h bubbles, forward and backward.

Due to huge N π∆ and N ρ∆ interaction uncertainties no RPA for the Delta peak.

(22)

Theoretical part summary:

(23)

Coherent π by Martini

Longitudinal and transverse responses for 12C and

q = 300[M eV ]. High longitudinal coherent response in the ∆ region (PRC 81, 2010).

(24)

Different channels by Nieves

None of the listed contributions negligible (arXiv:1102.2777v1 [hep-ph]).

(25)

Martini vs. MiniBooNe

Flux-averaged theoretical inclusive CC "QEL"

cross-section vs. MiniBooNe data. np − nh contribution crucial, RPA resumations important. No need for high M ! (PRC 81, 2010)

(26)

Nieves vs. MiniBooNe

Flux-averaged theoretical inclusive CC "QEL"

cross-section vs. MiniBooNe data. Again 2p − 2h contribution crucial and no need for high MA!

(arXiv:1102.2777v1 [hep-ph]) Martini & Nieves models – p.25/29

(27)

Summary

Promising results in both models.

Inclusion of as many as possible dynamical effects crucial.

Nieves model more sophisticated in number of diagrams (MEC!) but coherent π by default in Martini-Marteau.

MiniBooNe MA puzzle solved by the np − nh effects?

(28)

Acknowledgements

The author was supported by the funds of European Union Project "Projekt Operacyjny KapitałLudzki" project number

POKL.04.01.01-00-054/10-00 and

grant 35/N-T2K/2007/0 (the project number DWM/57/T2K/2007).

(29)

Thank you!

(30)

Bibliography

Nieves model: J. Nieves, I. Ruiz Simo, M. J. Vicente Vacas, arXiv:1102.2777v1 [hep-ph]

M. Martini, M. Ericson, G. Chanfray, J. Marteau, Phys.

Rev. C81 (2010) 045502. [arXiv:1002.4538 [hep-ph]].

self-energy: E. Oset, L. L. Salcedo, Nucl. Phys.

A468 (1987) 631-652.

Cytaty

Powiązane dokumenty

the inverse problem of potential. An inv estigat ion of two models for the degree variances of global covariance functions. 275, Ohio State University. A deterministic

Classical linear connection, tensor field, linear frame bundle, natural operator.... The regularity of A means that A transforms smoothly parametrized families of sections into

Explicit results were derived in the case of HARA utility functions for two separate prob- lems of an optimal investment when maximizing an expected utility of a wealth at default

N a tę piękną okoliczność redakcja „Wrocławskiego Przeglądu Teologicznego”pragnie dedykować Księdzu Kardynałowi niniejszy, ukazujący się w miesiącu tej

Przemyt migrantów, generując dochód rzędu ponad 100 mln USD rocznie, stanowi liczącą się gałąź działalności transnarodowej przestępczości zorganizowanej. Napę- dzany

One can see that up to duality (see Lemma 1.2(e)) and up to the order of tensor products (Lemma 1.2(a)) all cases of pairs of bound quivers providing tameness of their tensor

Cantor and Gordon [1] solved the problem for the cases where M has at most two elements besides obtaining partial results for the general case.. Haralambis [2], besides giving

S z´ek e l y, Crossing numbers and hard Erd˝os problems in Discrete