• Nie Znaleziono Wyników

Letters to the Editor: Image contrast in the coherent apodized optical system

N/A
N/A
Protected

Academic year: 2021

Share "Letters to the Editor: Image contrast in the coherent apodized optical system"

Copied!
12
0
0

Pełen tekst

(1)

O ptica A p p l i c a t a , Vol. X I V , No. 2, 1984

Image contrast in the coherent apodized optical system4

An n a Ma g ie r a, Ka z im ie r z Pie t r a s z k ie w ic z

In stitu te of P h ysics, Technical U niversity of W rocław, W ybrzeże W yspiańskiego 27, 50-370 W rocław, Poland.

I t has been shown th at th e introduction of an am plitude phase apodizer into a coherent aberration optical system imaging a periodical amplitude or phase object results in th e change of th e contrast which, in turn, depends on the test m odulation depth, and on th e shape of the am plitude part of th e function describing th e apodizing filter. The change of contrast has been exam ined w ith respect to th e function of apodizing filter as well as to the system aber­ ration for am plitude apodizers of th e types

[ l / 2 ( l + r*)]*, ( 1 - r T , ( l - № for p = 1 , 2 , 3 , 4.

Let us assume th at in th e ex it pupil of a coherent optical system there is an am plitude-phase apodizer of th e transm ittance

A { r ) = t (r ) ei<l,(r\ 0 < r ^ l . (1)

If we adm it w ave aberrations in th e optical system W ( x , y ) , then th e total phase change in th e pupil will equal

W ( x , y) = W ( x , y ) + & ( r ) , r = V x i + y 2. (2)

Assume th a t in th e object space of an optical system there is a test of the am ­ plitude transm ittance

H ( x , y ) = a + b co s(2nfxx ) . (3)

M ichelson’s contrast of th e te st equals * ( / * )

2 ab

a 2 + b2 ' (4)

Energy contrast in th e image is [1]

* ' ( / * )

2 a b t { 0 ) t ( s ) ( r W (s) + W ( —s)

--- cos{ K I — ---

—---a 2t 2(0) + b2t2(s) \ |_ 2 (5)

where s = A/xE //a ( f g — cutoff frequency, R — reference sphere radius, f x spatial frequencies).

(2)

2 7 4 A . Ma g ie r a, K . Pie t r a s z k ie w ic z

Contrast change in th e image with respect to the object is t(s) D ( L ) = K' (f x) _ K (fx) (1 + m2) 1 + m --- cos < k , t*(s) \ i 2(0) W(s) + TF( — s) ~ 2 —TT(0)

]}

(m = bja — test m odulation depth).

The phase shift appearing in th e image will have the form O ( L ) = *

IF(s) — TF( - * )

(6 )

(7)

(k — 2jt/A, A — light wavelength).

The introduction of an apodizer causes th e change of contrast. Moreover due to th e introduction of the apodizer the change of contrast depends on th e test m odulation depth. For low-contrast object (m ->0), when t (0)-+0, con ­ trast will be strongly improved. For high-contrast object the apodizer m ay weaken th e contrast of the object.

For a phase te st of the transm ittance H ( x , y ) ~ 1 + i m sin x

the change of contrast with respect to the object equals

D { f x) = t(s) H 0) (1 + m2) 1 + m s ¿2(s) f 2 ( 0 ) . (7 r i F ( s ) + T F ( - s ) Sin K ---l L 2 (8)

From Equation (8) it results th at for low -contrast object, a t th-a-O, w hen TF(0) = 7t¡2 and TF(s) = 0, th e change of th e contrast is th e strongest one. In functions describing th e fall contrast for am plitude (6) and phase (8) tests, two parts m ay be distinguished, nam ely, a part depending solely on th e shape of apodizing function t(r) and a part which depends on th e w ave aberration of the system W { x , y). Let D t denote th e first part of the function, it will am ount

[1] to D t t(s) H 0) (1 + m 2) 1 + m2t 2(s) · i2(0)

For test of a small m odulation depth (m-> 0) th e run of th e function is given by th e formula

D.,m-»0 *(*) ¿(0) ·

(3)

Letter to the E d ito r 275

[Tl1«rJl] t r

MD-ftlW2)] m -0

Fig. 1. The effect of am plitude apodi zation t(r) on th e im age con trast o f am plitude te st for: t(r) = 1 /2 (1 + r2) (a), t(r) = [1/2(1 + r2)]2 (b), t(r) H r ) · [t I It 2)] m « 1 = [ 1 /2 ( 1 + r 2) p , p = 1, 2, 3, 4; m = 0 (c), t(r) = [1/2(1 + r 2) P ,

(4)

276 A . Ma g ie r a, К . Pie t r a s z k ie w ic z

F ig. 2. The effect of ap odization t (r) on th e im age contrast of am plitude test for : t ( r ) = 1 — ra (a), t(r) = (1 -r * )* (h), i(r) = (1 - r 2) P , p = 1, 2, 3, 4; m = 0 (c), f(r) = (1 - τ ψ , p = 1, 2, 3, 4; m = 1 (d)

(5)

Letter to the Editor 277

F ig . 3. T h e e ffe c t o f a p o d iz a tio n t(r) on t h e im a g e co n tra st o f am p litu d e te s t fo r: f(r) = 1 — |r| (a), t(r) = (1 - |r|)a (b), f(r) = (1 - |r|)P , p = 1, 2, 3, 4: m = 0 (c), t (r) = (1 - |r|)J>, p = 1 , 2 , 3, 4: to = 1 (d)

(6)

278 A . Ma g ie r a, K . Pie t r a s z k ie w ic z

Fig. 4. Contrast change D ( s ) for am plitude test in th e op tical system w ith aberrations:

W = 0.5 Ar2, Ar2, 2Ar2 apodized w ith th e fun ction t(r) = 1/2 ( 1 + r 2), m = 0 (a), t(r) =

[1/2(1 + r 2)]2, m = 0 (b)

F ig . 5. C ontrast ch a n g e D ( s ) fo r a m p litu d e t e s t in th e o p tic a l sy ste m w ith ab erration s W (r) = 0.5Ar4, Ar4, 2Ar4 a p o d iz e d w ith t h e fu n c tio n : t(r) = 1 /2 (1 + r 2), m = 0 (a), t(r) = [ 1 /2 (1 + + r2)]2, m = 0 (b)

(7)

Let ter to the E ditor 279

Fig. 6. Contrast cliange D ( s ) for am plitude te st in th e op tical system with aberrations TV (r) = 0.5 Xr2, Xr2, 2Xr2 apodized w ith th e fun ction s: t(r) = 1 - r 2, to= 0 (a), i(r) = ( 1 - r 2)2, m = 0 (b)

F ig . 7. C ontrast ch a n g e D ( s ) fo r a m p litu d e t e s t in t h e o p tic a l sy ste m w ith a b erration s W (r) “ · 0.5Ar4, Ar4, 2Ar4 a p o d iz ed w ith t h e fu n c tio n s : t(r) = 1 — r 2, to = 0 (a), l(r) = (1 — r 2)2,

(8)

2 80 A . Ma g ie r a, K . Pie t r a s z k ie w ic z

Fig. 8. Contrast change D { s ) for am plitude test in th e op tical system w ith aberrations IF(r) = 0.5Xr2, Ar2, 2Ar2 apodized w ith th e functions: t(r) = 1 - \r\, m = 0 (a), t(r) = (1 - |r])2,

m «· 0 (b)

F ig . 9. C ontrast ch a n g e Z)(s) for a m p litu d e te s t in th e o p tic a l s y s te m w ith ab erra tio n s I F (r) = O.oAr4, Xr*, 2Ar4 a p o d iz ed w ith th e fu n c tio n s: t(r) = 1 — |r|, m = 0 (a), t(r) = (1 — |r|)*,

(9)

Leiter to the E d ito r 281

Fig. 10. Contrast change D ( s ) for phase te st in th e optical system w ith aberrations TF(r) = 0.5Ar2, Ar2, 2Ar2 apodized w ith th e fun ction s: t{r) = 1/2(1 + r2), m = 0 (a) , t ( r ) = [1/2(1 + + r2)]2, m = 0 (b)

F ig . 11. C on trast ch an ge D ( s ) for p h a se t e s t in t h e o p tic a l s y s te m w ith a b err a tio n s W (r) = 0.5Ar4, Ar4, 2Ar4 a p o d iz ed w ith t h e fu n c tio n s t(r) = 1 / 2 ( 1 + r2) ,m * 0 (a), t( r ) = [ 1 /2 (1 + + r2)]2, m = 0 (b)

(10)

282 A . Ma g ie r a, K . Pie t r a s z k ie w ic z

Fig. 12. Contrast change D ( s ) for phase test in th e op tical system w ith aberrations W( r )

= 0.5Ar2, Ar2, 2Ar2 apodized w ith th e fun ction s: t(r) = 1 —r2, to = 0 (a), t(r) = (1 —r2)2, to = 0 (b)

F ig . 13. C ontrast ch a n g e D ( s ) for p h a se t e s t in th e o p tic a l s y s te m w ith a b erration s W (r) = 0.5Ar4, Ar4, 2AT4 a p o d iz ed writh t h e fu n c tio n s : t(r) = 1 — r2, m = 0 (a), t(r) — (1 — r2)2,

(11)

Letter to the E d i to r

Fig. 14. Contrast change D( s ) for phase te st in th e optical system w ith aberrations W (r) = 0.5Ar2, Ar2, 2Ar2 apodized w ith th e fun ction s: t(r) «= 1 — |r|, m = 0 (a), t ( r ) = (1 — |r|)2, m =■ 0 (b)

F ig . 15. C ontrast c h a n g e D l {s) for p h a se t e s t in th e o p tic a l s y s te m w ith a b erra tio n s W (r) => 0.5Ar4, Ar1, 2Ar4 a p o d iz e d w ith t h e fu n c tio n s: t(r) = 1 — |r |, m — 0 (a), t(r) = (1 — |r |)2, m = 0 (b)

(12)

284 A. Ma g ie r a, K . Pie t r a s z k ie w ic z

Figures 1 -3 present the functions D,(s) for th e apodizers [1/2(1 + r 2)]p , (1 —i·8)®, (1 — |r|)p, where p = 1, 2, 3, 4. For low-contrast object th e contrast increases w ith p for apodizer [ 1 /2 ( 1 + r2)]p (Fig. la - c ) , it however, decreases for high-contrast objects (Fig. la , b, d). For apodizers (1 —r2)p, (1 — \r\)p decreases both for low-contrast and high-contrast objects (Figs. 2,3). In Figs. 4-15 there are shown th e change of contrast D ( s ) in optical system s with apodizers l / 2 ( l + r2), [1 /2 (1 + r)2)2, (1 — r2), (1 —r2)2, 1 — |r|, (1 — |r|)2 for am plitude test (Figs. 4-9) and phase test (Figs. 10-15) with aberrations T7(r) — 0.5Ar2, Ar2, 2Ar2 (Figs. 4, 6, 8, 10, 12, 14) and w ith aberrations W (r) = 0.5 Ar4, Ar4, 2Ar4 (Figs. 5, 7, 9, 11, 1 3 ,1 5 ). I t follows from these figures th at the introduction of the aberration de­ teriorates th e contrast in the case of the am plitude test (Figs. 4-9) for p = 1, 2 and that in th e case of the phase test (Figs. 10-15) this contrast is improved for p — 1 and p = 2.

The change of contrast in incoherent aberration optical system w ith am ­ plitude-phase apodizers has been also described in papers [2, 3].

This work was carried on under the Iiesearch Project M.R. 1.5.

References

[1] Ma g ie r a A ., Pie t r a s z k ie w ic z K ., Optik 63 (1983), 305. [2] Ja is w a h l A. K ., Bh o g r a E. K ., O ptica A cta 12 (1973), 965.

[3 ] Ma g ie r a A ., Za ją c M ., Optica A pp licata 11 (1981), 29.

Cytaty

Powiązane dokumenty

The best operation characteristics of back-emitting gain-guided VCSE diode lasers were achieved by W A LK ER et al.. Their lasers were equipped with DBR mirrors

Celem tego artykułu jest ukazanie problemu przemocy ekonomicznej wobec kobiet i opisanie kilku przykładów tego zjawiska oraz działań, które są podejmowane na rzecz

Na dominację gminy Rewal wśród badanych jednostek wskazywał również rozkład gmin nadmorskich określający ich odległość od „wzorca” pod względem poziomu rozwoju

Celem artykułu jest rozpoznanie poszczególnych działań podejmowanych w ra- mach polityki fiskalnej w krajach Europy Środkowo-Wschodniej oraz próba oceny wpływu ekspansywnej

Celem artykułu jest przedstawienie wyników badań własnych na temat poziomu wiedzy finansowej mieszkańców terenów peryferyjnych województwa podkarpac- kiego.. Wybór

Podsumowując, warto podkreślić, że warianty generowane przez moduł consensusu pozwalają w danym okresie zarządzania łańcuchem dostaw uzy- skać niższe koszty magazynowania

The inherited problems of institutional structure (spatial planning system), public administration (territorial administrative system) and socio-economic instabilities

Mamy jednak podstawy przypuszczać, że takich miast było wię- cej, ponieważ jeszcze dla 23 zachowały się wzmianki o obecności w nich wójta, a zatem jeszcze jakaś część