• Nie Znaleziono Wyników

Design charts for the propulsive performances of high speed cargo liners with CB = 0.575

N/A
N/A
Protected

Academic year: 2021

Share "Design charts for the propulsive performances of high speed cargo liners with CB = 0.575"

Copied!
82
0
0

Pełen tekst

(1)

D E S I G N C H A R T S

F O R

T H E P R O P U L S I V E P E R F O R M A N C E S

O F

H I G H S P E E D C A R G O L I N E R S W I T H C b = 0 . 5 7 5

S H I P R E S E A R C H I N S T I T U T E

1-3-8, Mejiro, Toshima-ku, Tokyo, Japan

(2)

The Authors

Koichi YOKOO Ship Propulsion Division

Yoshio I C H I H A R A

Kiyoshi TSUCPIIDA Ship Powering- Division

Isamu SAITO

(3)

Contents

Preface

N o t a t i o n

L i s t of Tallies and Figures

Page

1. Parent F o r m 1

2. D e r i v a t i o n of Series Forms f r o m tlie Parent 1

3. Principle of D r a w i n g np Design Cliarts 1

4. Method of D r a w i n g up Contours Using a D i g i t a l Coniputer 1

5. Contours 2

6. Calculation of Effective Hoi'sepower ancl Delivered Horsepower Using the Design Charts 2

7. Acknowledgement 2

A j i p e n d i x 1. Tables of Coefficients f o r Polynomials of Ten Terms w h i c h Determine Contours

of the Design Charts 17

Appendix 2. Contours of S/F-^\ r„, 1 — /,, l - i o - , . , and ij^ f o r Series H a v i n g a Block Coefficient of 0.575 .

.

.

. 21

(4)

Preface

Ship Research I n s t i t u t e carried out tanlc tests on several series models of high speed cargo ships w i t h Cn=0.625

i n co-operation w i t h the Shipbuilding Research Association of Japan, while the I n s t i t u t e p e r f o r m e d itself t a n k tests on

the models w i t h C;, = 0.575 v a r y i n g breadth and d r a f t .

I n succession to the publication of design charts f o r the propulsive performances of h i g h speed cargo liners h y the

Association, the I n s t i t u t e has d r a w n up similar design charts of h i g h speed cargo liners w i t h C/,=0.575, hope this

addi-t i v e publicaaddi-tion of addi-the design charaddi-ts w i l l conaddi-tribuaddi-te a greaaddi-t deal f o r designers of shipyards.

T a k u j i O H E

(5)

Notation

Dimensions

Symbol

Description

U n i t

L or Lpp

L e n g t h between perpendiculars

m

L e n g t h at designed load w a t e r line

m

B

B r e a d t h including skin

m

d

D r a f t above b o t t o m of keel

m

D r a f t above b o t t o m of keel a t f u l l load condition

m

s

W e t t e d surface w i t h appendages

m '

F

Displacement excluding bilge keels and rudder

m '

A

ton

A,

Midship section area

m'^

W a t e r plane area

ni"

V

Ship's speed

m/sec

V,

Itnot

VA

Speed of advance of the propeller

m/sec

(J

Acceleration due to g r a v i t y

m/sec^

P

Density of w a t e r

k g secVm*

V

Coefhcient of kinematic viscosity

mVsec

RT

Total resistance

k g

RI.-

F r i c t i o n a l resistance

lïg

Rn

Residuary resistance

leg

AR

Resistance due to roughness

k g

T

T h r u s t

k g

Q

Torque

k g m

EHP

E f f e c t i v e horsepower

metric

D

Diameter of the propeller

m

P

P i t c h of the propeller

m

(6)

Coefficients

Symbol

Description

Definition

LIB or LrnlB

Length-bread t i l ratio

LIB

Bid

B r e a d t h - d r a f t ratio

Bid

c „

Block coefficient

FILrr-B-d

Prismatic coefficient

FILj.r-A„

c,,

Midship section coefficient

A,,IB'd

c „ .

"Waterplane coefficient

AnILrr-B

I Cll

Longitudinal centre of buoyancy f r o m midship i n percent

of Lrr

SIF'"

Relative w e t t e d surface coefficient

SIF'"

Specific f r i c t i o n a l resistance coefficient

R,.-lip-S-v-dCr

Roughness allowance coefficient

FRiy-S-v-r,.

Total resistance coefficient

Rrlhp-F"'-v-Frictional resistance coefficient

Rriy-F"'-v-r,,

Residuary resistance coefficient

Rr,iy-F"'-v'

F„

Froude number

vH (J-LnWL

R„

Reynolds number

Lnnr.-vlv

t

T h r u s t deduction f r a c t i o n

{T-Rr)IT

Wr

Taylor wake f r a c t i o n determined f r o m t h r u s t i d e n t i t y

iv-v,,)lv

Relative r o t a t i v e efficiency

•P

Pitch r a t i o

PID

kr

T l i r u s t coefficient

Tlp-n--D'

k.

Torque coefflcient

Qlp-n--D''

J

Advance coefficient of the propeller

VAIII-D

Vo

Propeller efficiency in open water

* Frictional resistance f o r m u l a used is the L T . T . C . 1957 model-ship correlation line. T h a t is

C,..=0.075 ( l o g i ? „ - 2 ) - ^

(7)

Liat of Tables ancl Figures

Page

Table 1. Particulars of the Parent 3

Table 2. Offsets of the Parent 4

Table 3. Particulars of the Model Propellers 5

Table 4. Particulars of the Series Models ö

Table 5. L i s t of the Combination of Model Ships and Model Propellers 10

Table 6. Suggested F o r m f o r the Estimation of E f f e c t i v e Horsepower f r o m the Charts 11

Table 7. Suggested F o r m f o r the Estimation of Delivered Horsepower f r o m the Charts 12

F i g . 1. Prismatic Curve of the Parent 13

F i g . 2. Body Plan, Stem and Stern Contours of the Parent 13

F i g . 3. General Plan of the Model Propellers 14

F i g . 4. Results of the Open W a t e r Tests of the Model Propellers 15

(8)

1. Parent F o r m

The parent f o r m of the series was designed i n reference t o

the lines of excellent cargo liners b u i l t in Japan and abroad.

The f o l l o w i n g principal particulars were assumed f o r the series

vessels.

L e n g t h between perpendiculars ISü.OOÜm

Displacement about 18,000 m '

Blocic coefficient 0.575

O u t p u t and revolutions of main engine

a t m a x i m u m continuous r a t i n g 22,000 HP x 115 R P M

The particulars of the parent (Model Ship N o . 1384) are shown

in Table 1, the prismatic curve i n F i g . 1, the body plan, stem

and stern contours in F i g . 2, and the offset in Table 2,

respec-t i v e l y . F u r respec-t h e r m o r e , respec-the parrespec-ticulars of respec-the modei propeller used

f o r the ]jarent are shown i n Table 3, the general plan in F i g . 3

and the results of the open water test in F i g . 4, respectively. A s

a highei- powered engine was assumed f o r the series vessels, the

diameter of the designed propeller became too large to be installed

in the closed stern f r a m e , therefore, an open stern f r a m e was

adoi)ted.

The tanlc tests of the series were performed by the f o l i o w i n g

methods:

(1) I n both cases of the resistance and self-propulsion tests, bilge

keels and a rudder were fitted as appendages.

(2) As a turbulence stimulation device, one row of studs was

fit-ted on the model a b a f t 5% L,.r f r o m the fore perpendicular,

(3) The I T T C 1957 ship-model correlation line was adoiited as the

f r i c t i o n a l resistance f o r m u l a f o r calculating the residuary

resist-ance coefficients as well as the f r i c t i o n corrections at the

.self-propulsion tests, assuming t h a t JC,. is n u l l .

(4) The continental method was used in the self-propulsion tests.

2. Derivation of Series Forms from the Parent

The prismatic curves of the series were the same as t h a t of

the parent. I n d e r i v i n g the lines of the series, the breadths and

d r a f t s were proportionally varied f r o m the parent, in accordance

w i t h the variation of the values of L/B and/or B/d. Particulars

of the series are shown in Table 4.

The particulars of the model propellers are shown i n Table 3,

the general plan in F i g . 3 and the results of the open w a t e r tests

in F i g . 4, together w i t h those of the model propeller used f o r the

]iarent.

3. Principle of Drawing up Design Charts

Similar to the ]n-inciple adopted b y tho 45th comittec of

Ship-building Research Association of Japan, contours f o r S / f ' ' ,

1—<, l — n)r and 7>„ have been d r a w n up, talcing the value of B/d

as the abscissa and t h a t of L/B as the ordinate.

W i t h these design charts, the wetted surface and propulsive

lierformances of h i g h speed cargo liners w i t h C„ = 0.575, L/B

6 . 5 ~ 8 . 0 , and Bjd 2 , 1 - 2 . 7 can be estimated, and also the cfl:ect

of L/B and Bid u]mn the pro]3ulsive performance of .such kind of

ships w i l l be obtained.

Contours have been d r a w n up w i t h the solutions of

])olyno-mials about L/B and B/d w i t h a digital computer.

4. Method of Drawing up Contours Using a Digital Coniputer

This series consist of ten model shijis and LjB and Bjd of

tliese model ships are shown in Table 4. Similar to the method

of the 45th Committee of S . R . A . J . , contours wore d r a w n up f o r

each value of Froude number assuming a single curved surface

passing the measured ten points and solving the polynomials by

a digital computer. The d i g i t a l computer used is I . B . M . 7090.

Since the details are given in the paper of the SR 45th

coni-1

(9)

mittee, only the final equation is given here.

T h a t is,

2 = a , + a;.i; -|- a , ; i ; - + O i : i ' ' + a j-i/ + a c x y + a

^x-y+(tty-

-\'a.iXy--\-ai^x°y-where, z is the values of S/F"', r,;, l — t, l~Wr, r^u

O i ~ a i o

are the coefiicients obtained by solving linear

sim-ultaneous equations of ten elements w i t h the data of the

ten model ships. Their values are shown in Appendi.\ 1.

5. Contours

Tlie f o l l o w i n g contours have been d r a w n up and are shown in

Ap]iendix 2.

S/r"-' • • • •Full load (even Ivcel)

H a l f load (7(l'-'« of tlic displacement at f u l l load

condition, \"/o (jf L , . , . t r i m by the stern)

L i g l i t load (45% of the displacement at f u l ! load

condition, 2''/ó of L,,,, t r i m by the stern)

F u l l load F„ = 0.20 0.22 0.24 0.25 0.26 0.27

0.28 0.29 0.30

H a l f load F„ = 0.20 0.22 0.24 0.26 0.28 0.30

0.32 0.33

L i g h t load 7^„ = 0.20 0.22 0,24 0.26 0.28 0.30

0.32 0.34

l - f F u l l load iï^„ = 0.20 0.25 0.30

H a l f load F„---0.20 0.26 0.32

L i g h t load /':, = 0.20 0.28 0.34

Contours of \—w and rm are d r a w n u j i for the same Froude

No. as tho.so of

V.

6, Calculation of Effective Horsepower and Delivered

Horse-power Using the Design Charta

Values of S/F''', r,, and self-propulsion factors f o r the given

LjB and Bjd of a normal singlescrew merchant ship may be d i

-rectly read f r o m the contours of A p p e n d i x 2. These values w i l l

be valid f o r such a ship w i t h Cn = 0.575, i t , v ; = + l - 9 % of Lp,,.

The methods f o r accomplishing the calculations mentioned

above using the contours are shown i n Tables 6 and 7, b y the

suggested f o r n i s .

7. Acknowledgement

The authors wisli to express sincere thanks to M i t s u b i s h i

Heavy Industries, L t d . f o r tlieir kind calculations of the data

us-i n g a dus-igus-ital computer, to K u r e Shus-ipbuus-ildus-ing and Engus-ineerus-ing Co.,

L t d . , U r a g a Heavy Industries, L t d . , N i p p o n K o k a n Co., L t d . ,

Ishikawajima-Harima Heavy Industries Co., L t d . and Kawa,saki

Dokyard Co., L t d . f o r their land co-operation in d r a w i n g up

dia-.granis and to staff members of Ship Propulsion Division and Slii])

Powering Division of Ship Research I n s t i t u t e f o r t l i e i r h a r d w o r k

-i n g -in the model tests and analys-is of the test results.

(10)

Table 1. Particulars of the Parent

Model Ship No.

1 3 8 4

1

Actual Ship

Model Ship

Length between Perpendiculars

Lpp

150.000 m

6.0000 m

Length at Designed Load Water Line

Lmri.

154.175 m

6.1670m

Breadth Including Skin

B

21.430 111

0.8572m

Rise of Floor

0..373 m

0.0149 m

Starting Poinl of Rise of Floor from Center Line

0.700m

0.02cS()m

Radius of Bilge Circle

3.455 m

(1.1382 m

Condition

Full Load

Half Loud

Light Load

Actual Ship

.Model Slii|3

Actual Ship

Model Ship

Actual Ship

Model Ship

Draft above Bottom of Keel

d (m)

8.930

0.3572

6.670

0.2668

4.590

0,1836

T r i m in % of Lpp by the Stern

0

1

2

Block coefficient

0.574

0.5.39

0.504

Prismatic Coeflicient

Cr

0.601

0.573

0.551

Midsliip Section Coellicient

CM

0.956

0.941

0. 914

Water Plane Coeflicient

Cir

0.734

L . C . B . in "Ó of Lj'i' from Midshi|3

hm

+ 1. B9

+ 2.86

+ 4 . B5

Displacement

r

( i n S )

16,518

1.0572

11,563

0.7400

7,433

0.4757

Displacement

J (t)

16,931

11,852

7,619

Wetted Surface

S (m2)

4,200

6.720

3,441

5.505

2,772

4.435

Bid

2.400

3.213

4.669

LJ'PIB

7.000

7.000

7.000

VjLppi X 103

1

4.894

3.426

2.202

(11)

Table 2. Offsets of the Parent

Model Ship No. 1384

Length of Model/Length of Ship=l/25.000

Length between Perpendiculars 6.0000 m Rise of Floor 0.0149 m

Length at Designed Load Water Line 6.1670m Radius of Bilge Circle 0.1382 m

Breadth 0.8572 m Starting Point of Rise of Floor from Center L i n e 0.0280 m

Draft above Bottom of Keel, Designed Full Load 0.3572m Water Lines, Bow and Buttock Lines Apart 0.0400m

Square Station Apart 0.6000 m

Half Breadth (mm)

No. of

Station

Bottom

of

Model

.5 W . L . I W . L . 2 W . L . 3 W . L . 4 W . L .

1

5 W . L . 6 W . L , 7 W . L . 8 W . L . ^ 9 W . L . l O W . L . U W . L . 1 2 W . L .

13W.L.

Top of

Model

. 5 B . L . I B . L . 2 B . L .

6 B . L . 8 B . L . l O B . L .

No. of

Station

No. of

Station

0

20.0

40.0

80.0

120.0 160.0 200.0 210.0 280.0 320.0 360.0 400.0

440.0

480.0

520.0

20.0

40.0 80.0 160.0 210.0 320.0 400.0

No. of

Station

B

21.2

53.8

79.7

102.2

121.6 358.9 381.5 440.2

B

A

49.5

87.8

117.7

142.8

164,7 336.4 351.9 390.7 511.0

A

A . P .

15.7

76.6

119.2

152.3

179.3

203.2 322.3 334.2 362-6 450.8

A . P .

1/4

67.6 128.2

174.1

210.8

240.8

266.2 292.2 ,303.6 327.3 386.5 478.6

1/4

1/2

10.2

14.8

18.2

21.8

23.8

26.2

29 6

36.8

59.0 117.5 176.0

221.1

258.0

288.2

313.1

55.1 249.6 297.3 347.8 419.3

1/2

3/4

20.4

29.8

37.0

47.6

54.1

59.3

66 2

79.8 110.2 164.7 218.3

261.5

296.6

325.7

349.7

0.0

48.1 240.1 316.5 378.8 471.7

3/4

1

25.6

46.2

58.8

74.3

84.0

92.3 103 4 123.1 159.3 208.5 257.1

295.6

328.1

354.7

376.7

II

12.6 101.5 280.3 345.0 429.3

1

Vh

28.0

85.2 107.2 132.3 148.8 163.8 182 0 209.5 245.2 283.0 319.4

349.8

374.3

394.6

412.0

It

1.6

16.6 149.9 274.1 360.6

491,6

I'A

2

tl

133.0 161.0 193.8 216.7 2.36.6 258 5 284.3 312.2 339.0 364.0

385.3

402.8

416.3

426.6

n

0.4

3.1

39.0 166.1 291.3

432.8

2

2'/2

ff

183.7 215.8 254.2 280.7 302.3 322 7 342.6 361.2 379.0 394.8

408.2

418.8

425.6

428.6

If

1.9

10.7

62.7 194.4

373.8

OJI,

3

tf

234.7 268.3 308.5 335.7 355.2 370 7 384.3 396.3 406.1 414.4

421.3

426.3

428.6

"

II

II

If

4.8

22.2

95.1

294.2

3

4

ft

312.6 348.2 384.6 405.1 415.6 421 4 425.0 427.3 428.6 428.6

428.6

428.6

428.6

"

It

II

II

If

7.7

23.1

107.2

4

5

ft

342.2 376.5 410.5 425.5 428.6 428 6 428.6 428.6 428.6 428.6

428.6

428.6

428.6

n

II

II

If

7.7

13.1

64.0

5

6

ft

295.0 329.0 364.6 386.0 399.3 407 9 413.3 417.5 420.3 422.6

424.4

425.9

427.2

428.6

II

ft

ft

4,8

8.0

33.4

162.3

6

7

tf

185.0 217.6 258.2 285.8 306.6 323 4 337.3 349.7 360.2 369.8

378.9

387.8

396.4

•105.2

It

tf

1.9

10.0

59.4 190.7

495.6

7

7V2

If

128.7 158.3 197.0 224.2 245.2 262 !) 279.3 294.1 308.2 321.8

335.2

348.2

361.1

373.8

II

0.4

3.0

41.4 149.2 354.5

Vh

8

28.0

81.7 106.4 138.6 161.9 180,9 197 9 214.1 230.3 246.4 262.6

279.2

295.4

312.0

328.7

if

2.0

18.9 116.2 303.6 499.0

8

81/=

24.5

47.1

64.0

87.4 105.0 120.3 135 5 150.5 105.7 181.2 197.3

214.2

232.1

250.7

a70.3

0.0

12.8

65.5 265.3 457.0

8'/i'

9

14.7

24.4

32.9

40.3

,58.0

69,2

80 3

91.6 103.6 116.6 130.5

145.8

162.6

180.8

200.0

10.3

60.1 199.0 434.2

9

9'/(

8 . 8

15.0

20.6

30,4

39.1

47.3

56 1

65.0

74.8

85.2

96.8

110.4

125.6

142.5

160.9

37.8 124.0 300.5 518.0

9>/,

9'/3

5.5

9.7

16.0

22.3

28.0

33 9

40.2

47.3

55.2

64.2

75.2

87.7

101.8

118.9 102.2 238.6 416.3

9V.

9VJ

4.2

7.4

10.6 14

0

17.6

21.8

26.7

32.8

40.5

49.7! 60.4 73.6 262.9 397.7

9Vi

F . P .

2.2

5.7

U . 2

18.3| 27.0

489.0

F . P .

Height above Bottom of Model (mm)

(12)

Table 3. Particulars of the Model Propellers

Model Propeller No.

13 5 7

1 3 5 8

1 3 5 9

1 5 3 6

Diameter (mm)

25G.0

240.0

224.0

192.0

Pitch (mm)

240.0

256.0

272.0

208.9

Pitch Ratio (constant)

0.9375

1.067

1.214

1.088

Boss Ratio

0.200

Expanded Area Ratio

0.650

Max. Blade Width Ratio

0.302

Blade Thickness Ratio

0.0,50

Angle of Rake

1 0 ° - 0 '

Direction of Turning

Right-handed

Number of Blades

5

(13)

Table 4. Particulars of the Series Models

Actual Ship

Model Ship

Length between Perpendiculars

Lrp

150,000 m

6.0000 m

Length at Designed Load Water Line

LDWL

154.175 m

6.1670 m

Model Ship No.

1393

1384

1394

1395

1583

1584

1585

1586

1587

1588

Rise of Floor

Actual Ship (m)

0.400

0.373

0.348

0.325

0,458

0.0183

0.425

0,373

0.355

0,330

0.290

Rise of Floor

Model Ship (m) 0.0160

0.0149

0.0139 0.0130

0,458

0.0183

0.0170

0.0149

0.0142

0.0132

0.0116

Starting Point of Rise of

Floor from Center Line

.'\ctual Ship (m)

0.755

0.700

0.653

0.613

0.755

0.700

0.613

0,755

0.700

0.613

Starting Point of Rise of

Floor from Center Line

Model Ship (ni) 0.0302

0.0280

0.0261

0.0245

0.0302

0.0280

0.0245

0.0302

0.0280

0.0245

Radius of Bilge Circle

Actual Ship (m)

3.720

3.455

3.225

3.023

4.005

3.720

3.250

3.493

3.243

2.8.35

Radius of Bilge Circle

(14)

Table 4. Particulars of the Series iVIoclels (Continued)

Condition

F u l l Load

Mode! Sliip No.

1393

1384

1394

1395

1583

1584

1585

1586

1857

1588

Breadth Including

B

Actual Ship (m)

23.078

21.430

20.000

18.750

23.078

21.430

18.750

23.078

21.430

18.750

Skin

B

Model Ship (m)

0.9231

0.8572

0.8000

0.7500

0,9231

0.8572

0.7500

0.92,31

0.8572

0.7500

Draft

d

Actual Sliip (m)

9.615

8.930

8.333

7.813

10.990

10.205

8.930

8.548

7.938

6.945

Draft

d

Model Ship (m)

0.3816

0.3572

0.3333

0.3125

0.4396

0.4082

0.3572

0.3419

0.3175

0.277«

T r i m in % of l.pr by the Stern

0

Block Coefficient

Cu

0.574

Prismatic Coeflicient

Cp

0.601

Midship Section Coeflicient

Cn

0.956

Water Plane Coeflicient

C„-

0.734

Vertical Prismatic Coefficienl

Cyp

0.782

L . C . B . in ":, nf L,,,. from Midship

+ 1 89

Actual Ship V ( m ' ) 19,114

16,518

14,355

12,623

21,829

18,844

14,434

16,973

14,642

11,231

Displacement

Model Ship r (mJ) 1.2233

1.0572

0.9188

0.8079

1.3971

1.2060

0.9238

1.0863

0.9371

0.7188

Actual Ship J ( t )

19,592

16,931

14,715

12,938

22,375

19,315

14,794

17,398

15,008

11,512

Wetted Surface

Actual Ship S (m^) 4,513

4,200

3,918

3,681

4,872

4,513

3,979

4,213

3,941

3,459

Wetted Surface

Model Ship S (m^) 7.221

6.720

6.269

5.889

7.795

7,220

6.367

6.789

6.306

5.535

Bid

2.400

2.100

2.700

LPFIB

6.500

7.000

7.500

8.000

6.500

7,000

8.000

6.500

7.000

8.000

riLpp'ixw

5.663

4.894

4.254

3.740

6.468

5,583

4.277

5.029

4.338

3.328

(15)

Table 4. Particulars

of the Series Models (Continued)

Condition

Half Load

Model Ship No.

1393

1384

1394

1395

1583

L584 j 1585

1586

1587

1588

Breadth Including ^

Skin

Actual Ship (m)

23.078

21.430

20.000

18.750

23.078

21.430

18.750

23.078

21.430

18.750

Breadth Including ^

Skin

Model Ship (m) 0.9231

0.8572

0.8000

6.225

0.7500

0.9231

0.8572

0.7500

0.9231

0.8572

0,7500

Draft (I

Actual Ship (m)

7.178

6.670

0.8000

6.225

5.835

8.215

7.628

6.665

6.385

5.923

5.163

Draft (I

Model Ship (m) 0.2871

0.2668

0.2490

0.2334

0.3286

0.3051

0.2666

0.2554

0.2369

0.2065

T r i m in % of LPI- by the Stern

1.0

Displacement

Actual Ship P (m-^) 13,380

11,563

10,019

8,836

15,280

13,191

10,104

11,881

10,249

7,862

0.5032

Displacement

Madel Ship T (m^) 0.8503

0.7400

0.4631

0.,5655

0.978

0.8442

0.6466

0.7604

0.6560

7,862

0.5032

Displacement

Actual Ship J ( t )

13,7M

11,852

10,300

9,057

15,662

13,521

10,356

12,178

10,505

8,058

Wetted Surface

Actual Ship.S (m2) 3,692

3,441

3,209

3,020

3,969

3,672

3,223 j 3,498

3,254

2,852

Wetted Surface

Model Ship 6' (mz)

5.907

5.505

5.134

4.831

6.,3,50

5,875

5.157

5.597

5.206

4.563

B/./

3.215

6.500

3.213

3.213

3.213

2.809

2.810

2.813

3.614

3.618

3.632

LrplB

3.215

6.500

7.000

7.500

8.000

6.500 7.000 8.000

e.500

7.000

8.000

FILpp> K nil

3.964

3.426

2.978

2.618

4,528

3.908

2.994

3.520

3.037

2.329

(16)

Table 4. Particulars of the Series Models (Continued)

Condition Liglit Load

Model Ship No.

139.3

1384

1,394

1395

1583

1584

1585

1586

1587

1588

Bieadth Including

Skin

Actual Ship (m)

23.078

21.430

20.000

18.750

23.078

21.430

18.750

23.078

21.430

18.750

Bieadth Including

Skin

.Model Ship (m)

0.92,31

0.8572

0.8000

0.7500

0.9231

0.8572

0.7500

0.9231

0.8572

0.7,500

Draft (/

.Actual Ship (m)

4.948

4.590

4,275

4.010

5.675

5.250

4.()00

4.400

4.068

3.540

Draft (/

Model Ship (m) 0.1979

0.1836

0.1710

0.1604

0.2270

0.2100

0.1840

0.1760

0.1627

0.1416

T r i m in of Li-r by the Stern

2.0

Actual Ship T (m •) 8,601

7,433

6,460

5,680

9,823

8,480

6,495

7,638

6,589

5,054

Displacement

Model Ship f (mS) 0.5505

0.4757

0,4135

0.3635

0.0287

0.5427

0,4157

0.4888

0.4217

0.,3235

.Actual Ship J ( t ) 8,816

7,619

6,622

5,822

10,069

8,692

6,658

7,829

6,753

5,180

Wetted Surface

Actual Ship S {m''} 2,980

2,772

2,586

2,433

3,1,53

2,924

2,571

2,849

2,648

2,321

Wetted Surface

Model Ship (m^)

4.767

4,435

4.138

3.893

5.045

4.679

4.113

4.559

4.237

3,714

Bl<l

4.664

4.669

4.678

4,676

4.067

4.082

4.076

5.245

5.269

5.297

Lrrlli

6,500

7.000

7.500

8.000

6,500

7.000

8.000

6.500

7.000

8.000

2.549

2.202

1.914

1.683

2.911

2.513

1.924

2.263

1.9,52

1.497

(17)

Table 5. L i s t of the Combination of Ships and Model Propellers

LjlJ

Bid

6.5

7.0

7.5

8.0

2.1

Model Ship

M.S. No. 1583

M.S. No. 1584

1

M.S. No. 1585

1

2.1

Model Propeller

M . P . Nu. 1357

M . P . No. 1357

1

iM.P. No. 1357

2.1

Model Ship

M.S. No. 1393

.M.S. No. 1384

M.S. No. 1394 M . S . No. 1,395

2.1

Model Propeller

M . P . No. 1357

M . P . No. 1357

M.P. No, 1358

M . P . No. 1359

2.7

Model Ship

M.S. No. 1586

M.S. No. 1.587

iM.S. No. 1588

2.7

Model Propeller

M . P . No. 1358 M . P . Nu. 1359

M . P . No. 1536

Abbreviations

M.S. No Model Ship No.

M . P . No Model Propeller No.

(18)

Table 6. Suggested F o r m f o r the Estimation of Effective Horsepower f r o m the Charts

SHIP_

DIMENSIONS

/-zmv.

LIT

B

rfFl.l.I,

-F

p / 3

Displacement

L O A D C O N D I T I O N

M O D E L

C O E F F I C I E N T S

C O N S T A N T S

m

ni

m

ni

in'

m-ton

Lio-IB

leu

ni/sec2

kg-sec'/m'

ni'/sec

(I'L mrr.

of Lpf

m/sec

kg • m/sec

1

2 1 3

4*

5*

6*

7 8 9

10

11

12

13

11

15

Fn

rn

dog/i',,

-2)=

Sir-'-i

from

contours

Lm !.•>'

log h'n

log/v',,-2

dog/i',,

-2)=

C> J C ; -

Cy + JCr

from

contours

rr

; t

EHP

in knots

vj^/(J-Li,nL

contours

from

Lm !.•>'

dog/i',,

-2)=

from

contours

in knots

t ]

!

i

!

i

1

1

1 1 1

Column

Procedure

Column

Procedure

1

Values are given in contors in Appendix 2

10

From contours in Appendix 2, using given values of LrrjB

2

From contours in Appendix 2, using given values of Lj-j'/B

and C/rfi Ti.i,

and BIdvm.L

11

Col. Ox Col. 10

3

{Lmi r.

X

Col. 1

X

• m L )/v

12

Col. 2-l-Col. 11

7

0.075H-CO1. 6

11

Col. 12 X Cnl. 1 3 x C ( ,

8

Roughness allowance coeflicient

15

1.9438xCol. l x Vo'Ljiir,,

(19)

Table 7. Suggested F o r m f o r the E s t i m a t i o n of Delivered Horsepower f r o m the Charts

M O D E L

SHU-D I M E N S I O N S

Lim

1.

11

L O A D C O N D I T I O N

C O E K E I C I E N T S

C O N S T A N T

m

111 Ml 111

C„

Bjdvvu.

Icii

ui/sec=

of

Lpi-ni/sec

1

2

3

4

5

6

7

8

9

10

11

12

13

Fn

\ - t

from

contours

1 — tvr

from

contours

1 — wr

correction

factors for

Cll Prop. dia.

1 - tvr

corrected

et

1

I I Y

1 - ii'rs

»/«

from

contours

V

EHP

DHP

in knots

t'l\'g-LDWL

\ - t

from

contours

1 — tvr

from

contours

1 — wr

correction

factors for

Cll Prop. dia.

1 - tvr

corrected

1 - «r.ï

1 - ii'rs

»/«

from

contours

V

in knots

1

Column Procedure

1 Values given in contours in Appendix 2

2, 3 and 8 From contours in Appendix 2, using given values of Lrfjli and Hjiln-iA.

4 Correction of ( l - i i r ) for the difference in propeller dia. Harvard's chart is recommended for this purpose.

5 Col. 3

X

Col. 4

6 Ship-model correlation factors of l - i i ' r

7 Estimated values of 1-ii'y for given ship, C o l . 5 ^ - C o I . 6

9 Read from propeller design chart

10 Col. 2

X

Col. 8

X

Col. 9 ^ Col. 7

11 From Col. 14 in Tahle 6

12 C o l . l l + Col. 10

13 1 . 9 4 3 8 x C o l . l x V ( 7 - Z . / m - £

V/.

(20)

F i g . 1. Prismatic Curve of tlie Parent

OF

(21)

F i g . 3. General Plan of the Model Propeller

(22)
(23)

Appendix 1

Tables of CoelTicients f o r Polynomials of Ten Terms w i t h Determine Contours

of the Design Charts

(24)

Relative Wetted Surfuce Coefficient. SjF"

Load " 1 at tli Ol " 1 Ui u.

at

un F u l l H a l f 1-igln 0.6.1755998x10 0.67285997 X 10 0.72779998X10 0.31760002 0.33039998 0.35426669 - 0 . 1 0 3 9 9 9 3 6 x 1 0 - ' -0.31400083 X 10-1 -0.5999<.1221 X 10-' 0.71999244 x 10-' 0.36400079x10-1 0.157.33242 X 10-1 0.35516669 0.529833:n 0.8383:1326 0.41555664 x l O - i 0.97555649x 10-1 11.6.5(1.55526 X 10-1 - 0 . 8 8 8 8 8 9 9 3 x 1 0 - 1 -0.98889004 x 10-' -fl.745,5541Sx lO i 0,37222167X10-1 0.87221890X 10-1 0.6-2-2224:t8x 10-1 -0.174.14457 -0..39<I2.5970 -0.16018535 0.30000008 0.21703768 0.18518937x 10 '

Resiihiary Resistance Coefficient, y„

F u l l L o a d ( E v e n keel) CoelTicients Froude " Number 111 U i III U : UL UJ U n 0.20 0 . 2 2 0.2.1 0.25 0.26 0.27 0.28 0.29 O..TO

o.-aioooooxio->

0 . 2 6 2 0 0 0 0 0 X I 0 - > 0 . 2 9 4 0 0 0 0 0 x 1 0 - ' 0 . 3 1 0 0 0 0 0 0 x 1 0 - ' 0 . 3 3 6 0 0 0 0 0 X 1 0 - ' 0 . 3 9 1 0 0 0 0 0 X l O - l 0.489000()0x 10-' 0.57500000X 10-' O.635O0fXK)xl0-' - 0.14666667 X 10-' - 0 . 3 1 0 0 0 0 0 0 x 1 0 - 1 - 0 . 5 0 6 6 6 6 6 7 x 1 0 - 1 - 0 . 5 5 6 6 6 6 6 7 x 1 0 - 1 -0.51666607 X K ) - ' -0.57000000 X 10-1 - 0 . 7 7 6 6 6 6 6 7 x 10-1 -0.72000000 X 10-1 - 0 . 8 5 6 6 6 6 6 7 x 1 0 - 1 0.12600000 X 10-' 0.11200000 X 10-' fl.78(XXXX)Ox 10-' O.70(XXX)00xlO-' O.86<J0OO00x 10-' 0.12000000x10-' 0.80000000 X 10-1 0.68000000x10-1 0.920(HX)ü(lx 10-1 -0.145333:13 X 111-1 -0.12400000 X 10-1 - 0 . 8 1 3 3 3 3 . 3 3 x 1 0 - 1 - 0 . 6 9 3 3 3 3 3 3 x 1 0 - 1 - 0 . 8 5 3 3 3 3 3 3 x 1 0 - 1 - 0 . 1 1 6 0 0 0 0 0 x 1 0 - ' -0.813333:13 X 10-1 -0.80000000 x K r ' - 0 . 8 9 3 3 3 3 3 3 x 1 0 - ' O.Ull'jGOeT . 0.43333:133/ 0.3166r>667 . 0.3,500(XX» ^ 0,38333333> 0.15000000^ -0.5:1.33:13:13 > - 0 . 7 0 0 0 0 0 0 0 ^

-0.56333333--io-«

10-1 10-1 11)-' 10-1 10-' 10-1 10-1 10-1 0.938B8889X lO-i 0.12777778x 10-1 o.ie,3;i:i.333xio-> 0.19144444X10-1 0.15555556X10-1 - 0 . 6 1 1 1 1 1 1 1 x 1 0 - 1 -0.35,5.55558x 10-1 -0.36666667 x 10-' - 0 . 4 8 8 8 8 8 8 9 x 1 0 1 -n.21888,'W9 X 10-," -0.74444444 X IO"' - 0.76666607X 10-1 -0.81111111 X 10-' - 0 . 8 2 2 2 2 2 2 2 x 10-1 -0.52222222 x 10-' 0.22222222X10 ' 0.133,3:1333 X 10"' -0.31111111 X 10-1 0.72222222X10-' 0.122-22222x 10-' 0.27777778x 10-1 (l..5(XKX»00x 10-1 0.11666667x 10-' 0 . 1 7 2 2 2 2 2 2 X 1 0 - ' O.UXXXXKXlxlO-' O.lOOOfKXIOxlO-' 0.11666667 X 10-' I1.161SI478X 10-« 0.47692593X 10-' n.48333333x 10-' 0.42037037x 10-1 0.3.35ia518x 10-' 0.62407407X 10-' 0.62222222X10"' 0.38I48148X 10-' 0 . 5 2 9 6 2 9 6 3 X 1 0 ' -0.48148118 X 10 1 - 0 . 4 9 2 3 9 2 5 9 x 1 0 - ' - 0..38888889 X 10-' -0.31481481 X 10-' - 0 . 5 1 8 5 1 8 5 2 X l O - i - 0 . 6 I 8 3 1 8 5 2 X 10-1 -0.4888.8889x 10-1 -O.370370:i7x 10 ' -0..58518519 X

10--Half Load (70';'ó of the displacemenl at full load condition; l " . , of 7./>;. trim by the atern) Coeflicients F r n u d e Nuinber Ul

"'

•ll U l u: u, U | ) 0.20 0.22 0.2.1 0.26 0.28 0..10 0..32 0.33 0 . 2 4 1 0 0 0 0 0 X 1 0 - ' 0 . 2 6 2 0 0 0 0 0 X 1 0 - ' 0,2810(XXXlx 1 0 ' 0 . 3 4 0 0 0 0 0 0 X 1 0 - ' O.441OOO0OX 10-' 0.5030OOnOx 10-' O.,56200000x 10-' 0 . 6 2 2 0 0 0 0 0 x 1 0 - ' O.SOIKXIOOOx Ifl-i -0.22(»X)OOOxlO-i - 0 . 1 0 6 6 6 6 6 7 x 10-1 -0.1.5666667x 10-1 -0.62,333333x 10-1 - 0 . 8 2 6 6 6 6 6 7 x 10-1 -0.83(XXX)0Ox 10-1 -0.96(l(X)00Ox 10-' 0,66(«XXXX)xlO-' 0.5201X1000x10-' O llOOOOOOx 10 ' O.1120OOOOX 1 0 ' 0.46000000x10-' 0.44000000x10-1 ll.iJIXXXXIOOx 10-' n.l-24(XHXXIx H I - ' -0.1160fl0(X)x 10-1 - 0 . 8 8 0 0 0 0 0 0 x 1 0 - ' - 0 . 1 5 3 3 3 3 3 3 x 10-' - 0 . 1 5 3 3 3 ; ) 3 3 x l O - ' -0.66666667 X 10-1 - 0 . 5 3 3 3 3 3 3 3 X 10 ' -O.lOlOOOOOx 10-' -0.1.360<XXX)x 10-' 0.53:1:1:1333 > 0.25(XXXX.I0^ 0.60666667 > 0.B66C6667 ' - 0 . 2 3 : « 3 3 3 3 - . - 0 . 3 6 6 0 6 6 6 7 : -0.11666657 ; -0.28:13:13:13 . 10-1 10-1 10-1 10-1 10-1 10-' 10-1 10-1 0.29440(XX)x 10 -1 -o.333:i3:i:i3x 10-1 - 0 . 1 8 8 8 8 8 8 9 x 1 0 ' - 0.88888889X 10-1 fl. 12777778 X 10-' -0.31111111 x l O - l -(1.1-2777778x 10-1 (1.144-14444 X 10-1 -0.10111111 X 10-1 -0.3333,3333x 10-' -0.24444444 x 10-' -0.51111111 10-' -0.67777778 X 10-1 - 0 . 8 8 8 8 8 8 8 8 X 10-1 -0.45555,5.56x 10-1 -0.71111111 X 10 I -0.14444444 X 10-' -0.27777778-.-10 1 (1.16666667 X 10-1

o . n i u i i i x i o - i

0.133333:13x 10-' 0.2»S8,'i8.'!9x 10-' 0.2:iFS8S89x U)-' (l.->5()IHllH>llx 10-1 -0.31481481 x 10-1 0.28148148X 10-' 0.50740741 X 11)-' 0.36666667X10-1 0.39444444 x 0.5G666607X 10-' 0.61666667 X 11)-' O . O l l l U l l x 10 1 0.159-25926 • 10-' 11.14814815x 111 -0.54074074 x K ) - ' -0.400000(X)x 10-1 - 0.27777778 x l O - ' -fl.l)OOOOOC>Ox 10-1 - 0 . 7 8 S 8 8 8 S 9 X I 0 - ' 0.80000000 X 1 0 - 1

Light L o a d of the displacement at full load condition: 2",') of Lrr trim by the 9LERU) Coeflicients Froude^ N u m b e r Ul " I m us Uf u: Ul u? U | l 0.20 0 . 2 2 0.2-1 0.26 0.28 0.30 0.32 0.34 0..30100000X 10-' 0.32300000 X 1 0 - ' 0 . 3 6 0 0 0 0 0 0 X 1 0 - ' 0.41200000x10 ' 0 . 4 6 9 0 0 0 0 0 x 1 0 - ' 0.52200000X10-' 0 . 6 1 8 0 0 0 0 0 x 1 0 - ' 0 . 8 2 0 0 0 0 0 0 x 1 0 - ' 0.1:1666667 X 10-1 0.7,333.33.33x10-1 -0.1633.3333x10-1 - 0 . . 1 4 0 0 0 0 0 0 x 1 0 - ' -0.76666667 x lO-l - 0 . 8 7 3 3 3 3 3 3 x 1 0 - 1 - 0 . 1 0 8 6 6 6 6 7 x 1 0 - ' - 0 . 1 9 5 6 t i 6 6 7 x l O - ' 0.56000000x10-' 0.64000000x10-' 0.66000000 X 10-' 0.64000000x10-' o . 4 0 o o o a i o x i o - i 0,16000000 X 10-' 0.20000000x10-1 0.16000000x10-' - 0 . 1 1 8 6 6 6 6 7 x 1 0 - ' - 0 . 1 2 5 3 3 3 3 3 x 10-1 - 0 . 9 4 6 8 6 6 6 7 x 1 0 - 1 - 0 . 7 2 0 0 0 0 0 0 x 1 0 - 1 -0.29333333 X 10-' - 0 . 2 6 6 6 6 6 6 7 x 10-1 0.22666687x 10-1 0.54660667 x 10 ' -0.7IXX)tXKX)x 111-1 0,56666667 x 1 0 - ' 0.36666667x10-1 0,1:1333333x10-' 0,5tlO(XXX)Ox 10-1 O.B3.333333X 10-1 -0.1,5IXX)OIX)x 10-1 - 0 . 1 4 1 6 6 6 6 7 x 1 0 - ' II.42222Z22X 10-1 0.47777778X10-1 0..56111111 X l O - l 0.52777778x 10-' 0.2833:1333 X 10-' 0 . 5 1 6 6 6 t » 7 x l O - l 0.6-2777778 X 10"' 0 , 4 3 3 : 1 : ™ X 1 0 - ' -0.75555.5,56 X 1 0 ' -0.124-14444 x 1 0 - ' -0.14111111 X I 0 - ' - 0 . 1 1 4 4 4 4 4 4 x 10-' - 0 . 7 0 0 ( K X X X ) x l ( ) - ' - 0 : 9 0 0 0 0 0 0 0 x 1 0 - 1 - 0 . 1 0 7 7 7 7 7 8 X 10-1 - 0 . 2 6 0 6 6 6 0 7 X 10-' fl.77777778x 10 ' 0.11111111X10-1 0.77777778X10-1 0.33333333X10-' 0.94444444x 10-1 0 . U 6 6 6 6 6 7 X 10"' - 0 . 1 6 6 6 6 6 6 7 X 10-' 0.116C6667X10-' fl.62963000x l O - l ( I . I 2592593 X 1(1-' 0.19144444 x 1 0 - ' 0.;f4629629x I t ) - ' 0.5092.5925 X 10-' 0.30925925X10"' 0.46296296X10-1 0,l851B519x 10-1 -0.18518519 X 10 1 -(I.17(l370:i7xl()-i - 0 . 1 8 8 a 8 8 8 9 x 10 ' 0.351B5185X 10-' - -0.51481481 X 10 1 -0.381.181.|8x 10-1 - 0 . 1 5 1 8 5 1 8 5 X l O - i - 0 . 8 Z 9 6 2 9 6 2 X U ) - '

19

(25)

^ ^ - . . . ^ C 00 Hi c i e n 13 F r o u ( l e ^ ~ \ , N u m b e r ^ . . ^ ^ ^ ^ «1 Ol

"1

" I

a:

I/, F u l l Load ( K v e n keifl)

l - (

0.20 0.2,S 0.30 0.7970(KI0n o.eoootHiiw 0.79100000 0.966fi6l;67x 10-' O.UOOOIIOOxlO-i 0.18656667 X 10-1 Ü.4III000OOX 10-1 0.:i4(XKXXX)x 10-1 O.tWOOOlXXIx 10-1 - 0 . 2 2 6 6 6 6 6 7 ' 10-1 - 0 . 3 2 0 0 ( H : 0 0 X 10-1 - (1.58660:67 X U'.-l 0 . 6 1 6 6 6 6 6 7 X l O - l 0.4a;i3:i:i:i3x 10-1 0.250000<X)x 1 0 ' 0.7IXXXXlO()x 10-1 Il.783:i3:t33xln-l 0.9:1888869 X 10-1 -O.SOfXXXXXlx 10-1 - 0 . 7 6 ( i 6 6 6 6 7 x 10-1 -0.455,55356x 10-1 (1.37222222 n.:l0555556 0.37222222 0.1,3333:133 0 . •20555551) 0 . 3 ' 1 5 i e ö l H - 0 . 4 0 6 6 6 6 6 7 -0.,32222222 -0.596296311

I L i l f L o a d (70';i of the displacement at full load c(mdition: 1',','. ol Lpy trinl bj- the stern) 0.20 0.26 0.32 O.BOlOOfHX) 0.7770<K)OO 0 . 7 9 7 0 ( K H » 0.6633,3333X lO-i Ü . 8 5 3 3 3 3 3 3 X 10'l 0.240lXXX)Ox 10-1 O . 1 2 M 0 O 0 0 x l O - l 0.96000000 X 10-1 O.2IX)001XI0x 10-1 - 0 . 5 7 3 3 3 3 3 3 x 1 0 - 1 -0.12533.3:43 -0.160000I10X l l l - i 0.633333:i3x 10-1 O.625IX)0(X)x 10-1 0.61666667x 10-1 O.20555556X 10-1 0.25277777x 10-1 0.21111111x10-1 - 0 . 3 8 8 8 8 8 8 9 X 10-1 - 0 . 6 2 7 7 7 7 7 8 X l O - l - 0 . 5 1 1 1 1 1 1 1 x 1 0 - 1 0.26666667 0.463H8HH9 0.350IXXX10 - 0 . 3 0 1 8 3 1 S 5 0.3981.1814x 10-1 0.5.5555556x 10-1 - 0 . 1 1 1 8 1 4 8 1 -0..57.59259:1 -0.4'J222222

L i g h t Ltmd ('tf)','.') of the displaceiueut al full toad condition; 2';,', of L f p trim by the stern) 0.20 0.28 0.31

u.&nmm

0.79500000 0.79.|000<Xl 0.68666667x10-1 0.24000000x10-1 0.64333333x10-1 0.241X10000 K 10-1 O.460O00IX)x 10-1 0.38110(1000x10-1 - 0 . 5 0 6 6 6 6 6 7 x 1 0 - 1 -0.2800O0OOX 10-1 - 0 . 4 5 3 3 3 3 3 3 x 1 0 - 1 0.16666667x 10-1 0.35000000X10-1 O.'20G06li67xlO-l 0.10222222 0.68888889X l O - l 0.31111111X 10-1 -0.48,883889x10-1 - 0 . 2 2 2 2 2 2 2 2 X 1 0 - 1 - 0 . 4 4 4 4 4 4 4 4 x 1 0 - 1 0.40(«XXXXI 0.:i61111U 0.47777778 - 0 . 2 9 0 2 9 6 3 0 0.14814815 0.70:l70370x 10-1 0.37037037 0.63703701 -0.52.592,59:1 F u l l Load ( l i v e n Ueel)

l-Wr

0.20 0.25 0.30 0.721lKX)0<) 0.73200000 0.73800000 0.51000(XXIxl0-l 0.3UHXHXX1X10-1 0.40333333x10-1 - 0 . 3 6 0 0 0 0 0 0 X 10-1 - 0 . 3 0 0 0 O ( X X ) x l 0 - l 0,l.tOOOOOOx 10-1 0.20000000x10-1 0.16000000X 10-1 - 0 . 2 9 3 3 3 3 3 3 X 10 1 O.SOOtXKXIOx 10-1 0.1333:1.3:13 X 10-1 0.13:03:133 X 10-1 -l).2IXXXX)00x 10-1 -0.'28888889x l O - l - 0 . 1 1 6 6 6 6 0 7 X 10-1 -0.66666667 X 10-1 0.15555556x 10-1 0.1IX)(XH)OOxlO-l - 0 . 6 1 1 1 1 1 1 1 x 1 0 - 1 -0.44444444 X 10-1 0.77777778X l O - l -(1.1.3333.3.33 - 0 . 8 5 1 8 5 1 8 5 x 10-1 - 0 . 4 2 5 9 2 5 9 3 x 10-1 0.241-14444 0.11851851 -0.107.10741 Half Load (70';;, of the displacemenl -tt full load condiliot : 1% of Lpv trim by the stern)

0.20 0.26 0.32 0.1)6900000

u.rncma.

0.73800000 0.ri0l)B6667x 10-1 0 , 3 3 0 0 0 f l ( » x l 0 - l 0.4200flOOOxlO-l 0,94000000x10-1 -0,2O0IXXXI0x 10-1 - 0 , 1 6 0 0 0 0 0 0 x 10-1 - 0 . 9 4 0 6 6 6 6 7 x 1 0 - 1 0.12000<XX)x 10-1 - 0 . 1 9 7 3 2 ; i 9 7 x 10-1 (l.7500(KXX)x 10-1 0.133:1.3:133X l U - l -0.333:133:13X U) 1 - 0 . 5 : t 6 l l H l x 10-1 - 0 . 4 7 7 7 7 7 7 8 X 10-1 0.30555656 X lO-i 0.42777778X l(l-i 0.21444144 X 10-1 0.62222222x 111-1 0.:i9722222 -0.555.55556 X 10 1 -0.3333.3;i33x 10-1 0.34166667 0.11814815x10-1 - 0 . 3 8 8 8 3 8 8 9 x 1 0 - 1 -0.7.51 XllXX 111 -0,141114815 X 10-1 O . l l l l l l l l X l U - i L i g h t Load (45',', of the displacement at full load condititm; 2'),'i of A/,/- trim by the stern)

0.20 0.28 0.3-1 0.71800<X)0 0.746nn(XXI 0.74800) KX) 0.2733:1333x10-1 O.-lOOOOOOOxlO-i 0.-143333.33x10-1 - 0 . 6 6 0 0 0 0 0 0 X lO-l - 0 , 2 2 0 0 0 0 0 0 x 1 0 - 1 -O.SOOflOOOOxlO-l 0.62666667x10-1 0 . 4 0 0 0 0 0 0 0 x 1 0 - 1 - 0 . 9 3 3 3 3 , 3 3 3 x 1 0 ' 0.2,500(XXK)x 10-1 0.2000(X)lX)x 10-1 0.1333:1333x10-1 - 0 . 8 6 5 5 5 5 5 6 X 10 1 - 0 . 5 7 2 2 ' 2 2 2 2 x l 0 - i - 0 . 5 9 1 4 1 4 4 4 x 1 0 - 1 0.25,55555Bx IO ' 0.18888889X lO-l 0.47777778x10 1 -0,1,5001X««I -0.66666667 X 10 1 -0.37,369318x 10 ' - 0 . 5 5 5 3 6 3 7 6 X 10-' - 0 . 1 8 5 1 8 5 1 8 x 1 0 - 1 0.42592593x10-1 0.12222222 -O,;i7():i7037x 10 • - 0 , 2 , 5 9 2 5 9 2 6 x 111 • F u l l L o a d (F.ven keel)

ReUilive Kotativu ICflioieiic.v, <,,..

0.20 0.25 0 . 3 0 O.KigiXXXXI 0.1lX)3(KXIfl-xlO 0.10230000x 10 0.8000(XKX)xlO-' 0,16060667x10 ' - 0 . 2 9 6 6 6 6 6 7 X 10 ' 0..5,S(XXX100xlO-l 0.70(XX)(XX)x 10-1 0.2IXXXXXXIX 10-1 - 0 . 2 0 ( K X X ) 0 0 x l 0 - l - 0 . 2 6 6 6 6 6 6 7 x 1 0 - 1 0.4'2606667x 10-1 O.KXXXKXKlx 10-1 0.835333:13 X 10-1 0.3083:13:13 X 10 1 0.(-,(XXX)(XXIxlO-l 0.38333:133 X l O - i 0.458333:i3 x 10 1 -0.533:l3:)33x 10 1 0.:i3'i:i,3333xlO 1 - 0 . 1 1 8 3 3 3 3 3 -0.66666667 X 10 1 -0.11606667 -0.-14166667 O . l l l l l l l l (I.:i0925926 0.1046296:1 -(I.4H8H8889 -0.7H148l.18 - 0 . 4 4 6 2 9 0 2 9

H a l f Load (70?,1 of the displacement It full load i;oiiditiot ; l'.'ó of I.pp trim by the stern) 0.20 0,26 0.32 o.ofiioaxx) O.lOOStXXXIxlO n.iooioiHxi.xio - o . a o i K x x x x i x 10 1 - 0 . 2 1 6 6 6 6 6 7 x 1 0 - 1 0.16666856x 10-' 0.96<XKXXH1 X ll) -1 0.6000(XXX)x 10-1 0.7IXXXXW0X 10-1 -0.441XX10t)0x 111 1 - o . i : i 3 : i : i 7 4 6 x 10-' - 0 . 3 4 6 6 6 6 6 7 X l ü ' - ( ) . i a : ö : j : i 3 3 x ui ' - 0 . 6 6 6 0 0 6 6 7 X 10-1 O.ISOOOOIXlx 10-1 1I.:I55555;.6K 10" • 0.47222222 X 11)1 0,16111111x10-1 0.,51111111X10 1 - 1 I . 4 1 1 1 I 1 1 1 X 10-1 - U . 2 r ( T Ï 7 7 S x 10-1 0.116661)67 - n . l l l l U l l - o . i s a s s . S M i 0.51851862 0.47592,592 0,34259259 - 0 . 1 0 ^ 9 6 2 9 6 X 111 - 0 . 8 2 . 5 9 2 5 9 2 -0..59259:259 L i g h t L o a d (45';.i of the displacement al fidl load condititm; 21;.', of /./'ƒ• Irinl by the stern)

I J . 2 I I 0.28 0.3+ O.lOlSOOOflx 10 O.lOlOOOOOx 10 0.10190000x10 0.11000000x10-1 - 0 . I O 6 6 6 6 6 7 X 10-1 0.26606667x 10-" O.30OÜO0OOX 10 1 -n.800(XXXX)x 10-1 -0.140000<X)x 10-1 - 0 . a 4 ( X X X X X ) x l O 1 0.42666667X10-1 0.3:1:1,33333 X 10-1 (i.:i8333:i:(3x 10 1 ().133333:i3x 10-1 0.3,333:1:1:13 X 10-1 0.10222222 0,62222222x10-1 0,51111111 X 10-1 -0.11555556 -0.22222Z'22x 10-1 -11.91111111 X 10-1 -0.26111111 -0.-261I1111 - 0 . 3 7 2 2 2 2 2 2 0.15<J259'25 0.81431481 X10-1 -0.'20296296 -0.2,59'2,5923 -ii.:io:i7o:i7i) . 0.59259'259x 10-1

?.(}

(26)

Appendix 2

Contours of S j f - ' \ r,t, \ — t, \ — WT, and v]n for Series

Having-a Block Coefficient of 0.575

(27)
(28)
(29)
(30)
(31)
(32)
(33)
(34)
(35)
(36)
(37)
(38)
(39)
(40)
(41)
(42)
(43)
(44)
(45)
(46)
(47)
(48)
(49)
(50)
(51)
(52)
(53)
(54)

50

6 . 5

7 , 0 7 . 5

Lpp / B

(55)
(56)
(57)
(58)
(59)
(60)
(61)
(62)
(63)
(64)
(65)
(66)
(67)
(68)
(69)
(70)
(71)
(72)
(73)
(74)
(75)
(76)
(77)
(78)
(79)
(80)
(81)
(82)

D E S I G N C H A R T S

F O R

T H E P R O P U L S I V E P E R F O R M A N C E S

O F

H I G H S P E E D C A R G O L I N E R S W I T H C / , = 0.575

1966

mm \m)mm:scn^

mi-M\ '11 8

J l

31

II

3t fr

mmmk

iin

m Vi f-iï m %

m

5Ê ff W

ffit

fli

'l

K W

Wf

m

nil llll] r)f © i

1:

:^>: Cll ffli)

» rr m

K

!l!

Tt tf Br 2 6

ti

iOi

Ship Resarcli Institute

Cytaty

Powiązane dokumenty