• Nie Znaleziono Wyników

On proper subuniverses of a boolean algebra

N/A
N/A
Protected

Academic year: 2021

Share "On proper subuniverses of a boolean algebra"

Copied!
7
0
0

Pełen tekst

(1)

Л С Т Л U N I V Е К S I T A T ! S L О Г) Z I E N S I S FOLIA M AT IIE M AT ICA !), 1907

St ч и isla w Wroi) ski

O N P R O P E R S U B U N I V E R S E S O F A B O O L E A N A L G E B R A

Let. D be a b o o le a n a lge b ra w it h t he u niv er se H a nd let. F \ , F-> be dis tinct, ill trail Iters o f D . T h e n t he set o f t h e fo rm { j 1 6 В :

F\ П F'j(~\ { л \ ->.)■} ф 0 } is a m a x i m a l p ro p er s u b n n iv e r s e o f В w hic h w e

s h a ll call a ba si c . s ubuni ver s e. W e pr o ve t ha t e v er y pro per s u b nn iv e rs e o f В is an in t e r se c t io n o f a f a m ily o f basi c s u b u n ive r s e s . T h is im p lie s t h a t b as ic s u b u n iv e r s e s are p rec is ely m a x i m a l p ro pe r s u b u n iv e r s e s o f a b o o le a n a lg e b ra . T h e s a m e fact, pr ov e d in a n o t h e r w a y can be f ound in [3].

For general algebraic’ background we refer the reader to [1] and for boolean algebras to [2]. In order to sim plify notations we use th e sam e sym bols for boolean algebras and for their corresponding universes. If

В is a boolean algebra, Л* Ç В and b £ B . then by ->дЛ and (Ь]в we

denote the sets

{ ->.r : £ .V} and

{.r £ В : .r < h},

(2)

is a subuniverse of B . T he subnniverse of the form F U ~<uP will be further denoted by B \ F . Recall that a filter /? of F is an ultrafilter - i.e. a m axim al proper filter - if and only if, for every /> G В , we have

T his fact easily im plies tha t, for every proper filter F, the equality

В = B \ F holds precisely in the case when the filter F is an ultrafilter.

W e will deno te the setth eoretical operations of difference and sy m -m etric difference by \ and Д , respectively.

W e start with th e follow ing auxiliary proposition.

T w o U lt r a f ilt e r s L e m m a . I f В is a bo olean algebra, F \ , F2 are

u ltrafilters o f В a n d a , b G В , then

F\ П F-i П {»i. -m . I), ~>b, a -r />, ~>(a -j- b)} ф 0.

Here -r deno tes the operation o f sym m etric difference, i.e.

a - b = (a — h) V (l> — u),

where — and V denote difference and sum , respectively.

I ’rooJ. Suppose that

Г] П F-i П {« , -ia. b, —»/>, и 4- b. -i(a -j- />)} = 0. If a H- b G Fu then

{a — /), /) — а ) П l'\ Ф 0.

If « — 6 G F ], then

- ’/> G Fi and, therefore,

-i« , />, -i(rt -i- b) G /*2, which is im possible because

(3)

W e have shown that

« -7- b ^ F\ and this m eans that

~'{u -г- b) £ F\.

In the sam e m anner we can infer that ->(,f -f b) £ F2 which g iv es us that

->(a ~ b) £ F\ П F2,

thus, we get a contradiction.

By a basic subuniverse ol a boolean algebra H we m ean any sub-universe o f the form

where F \ , F, are distinct nit rafilters o f B . Recall that

В | ( /', П F2) = ( F\ П F i) U - й ( / ? 1 П F i) = {.r 6 В : Fi П Fi П {./•,- .* } ф 0} = В \ ( F XA F 2).

Let us note th e iollow ing proposition.

L e m m a 1. E v e ry basic su b n n iv e rse o f a boolean algebra is a max-im a l p r o p e r su bm iiv erse.

Prooj. Suppose that И is a boolean algebra and F\, F2 are distinct

ultrafilters i>l В . I hen l \ П F> is not an ultrafilter and consequently the subuniverse of t he form

В Д п / Ъ )

is proper. Now we pick an elem ent b £ B \ ( Æ |(F, П F2)) and we will show that the algebra genarated by the set

(/•, n F 2) u { b }

generates B. Indeed, by I wo I dtra.fiIters L em m a it follows that, for every а £ В \ ( B \ ( F , П F2)),

(4)

T h is m eans tha t every such a can be expressed in term s of generators because

ft ( ft -f- «■ ) — “ »ft -r (-»ft 4- ( i ) — (i .

L e m m a 2 . I f A is a p ro p e r su b n n iv e rse o f a boolean algebra B , th en for e v e ry ft € B \ A th ere e xists an ultra filter F o f A such th a t

(1>]в П F = П F = 0,

Proof. Suppose that ft G B \ A is such that, for every ultrafilter F

of A , we have

(ft]« П F Ф 0 or

( “'ft]« П F Ф (Л,

For every i|| trafi Iter F of A , we pick an element, (ц? G F such that

ар < /) or <//■• < —ift and we define a subset Q of A as th e set of all

<li?obtained in the above m anner. We aim at show ing that Q can be

ex tend ed to a proper ideal of A and thus we have to prove that every finite subset of Q has a non-unit suprem um . Suppose th a t, for som e finite .V Ç Q . sup(.Y) = l . Put

A', = (ft]« n A and A'a = H > ]« П .Y. Since A' Ç (ft]« U ( “»ft]«, then A = A , U A j and thus

i = su p (A ) = sup(A 'i) V sup(A^), where sup(A 'i) < ft and sup(A^) < -»ft. Now, we get that

(5)

b - snp( A', ) =

( /> - s u p (A i) ) A (siip(A'j) V sup(A'2)) =

(( b - sup(A'i )) A sup( A'i )) V ((/» - sup(A 'i)) A sup(A^ )) < (b — sup (A 'i)) A - ib= o.

T his would m ean tha t snp(A 'i) — b which is not possible since A \ Ç A and b E В A .

W e hav e shown that every finite subset o f Q has a non-unit supre-mum which im plies tha t the set ->AQ can be exten ded to an ultrafilter of A . This, however is a clear contradiction because - by the definition of Q - every ultrafilter o f A m ust contain the com plem ent o f an elem ent o f ->a

Q-T h e o r e m 1. E v e r y p ro p e r su b u n i verse o f a boolean algebra is an

intersection ol ;t fa m ily o f basic sub u niverses.

Proof. Suppose 1 hi»f .1 is a proper subuniverse o f a boolean algebra.

В and b E В \ A. YYe need only to show that ft does not belong to som e

basic subuniverse o f В containing A . By Lemma 2. we g et that, there ex ists an ultrafilter F of .1 such that

( b ] H П F = (->/)]д fi F = 0. Let F\ , F2be ultrafilters of В such that

b £ F \ . -t b f' 2 and F С F x D F2. Then we have b i B \ ( F \ П F-i) and B \ { F } П F-i) D A \ F = A , as required.

(6)

T h e o r e m 2. M a x i m a l e le m e n t s o f th e set o f all p ro p er su b u n ive rse s

o f a boo lean algebra are p recisely all its basic su b u n iv erse s.

Proof. B y Lem m a 1, it follows th at all basic sub uni verses are m

axi-mal proper subuniverses. To prove the converse inclusion observe that every proper subn niverse m ust be contained in a basic subuniverse - by Theorem I. T hus a m axim al proper subuniverse m ust be equal to the basic subuniverse co nta ining it.

Re f e r e n c e s

[1]. (J.CJnitzer, U n iv e rs al A lg e b r a , 2-i kI e d it io n , Sp r in g er - V e r lag , N ew Y ork, 197 9. [2]. R .Sik ors k i, B o o l e an A lg e b r a s , S pr ing e r- V e rlag , Be rlin, 1964.

[3]. J .D o n a ld M o nk w it h t h e c o o p e r a t io n o f R o b e rt B o n n e t , H an d b oo k o f B oo l ea n

A l ge br as , vo l. 2, N o r i h - H o ll a n d , 1989.

S la v isla in I Vronski

O P O D A L G E B R A C H A L G E B R Y B O O L E ’A

Niech В będzie algebrą B o ole’a z uniwersum В i niech

F u Fi bed a różnym i ultrafiltram i B . W ówczas zbiór postaci

{.)■ £ В : Fi fi Fi П {.г, -i./'} ф 0} jest m aksym alną podalgebrą В która nazywać będziem y podalgebrą bazową. Udowodnim y, że każda właściw a

(7)

podalgebrą В jest, iloczynem rodziny podalgebr bazowych. P ozw ala to stw ierdzić, że podalgehry bazowe są w szystkim i podalgebram i m aksy-m alnyaksy-m i algebry B o o le’a. Ten saaksy-m fakt jakkolwiek dow iedziony w inny sposób m ożna znaleźć w [:{].

I n s t it u t e o f M a t h e m a t ic s Łó d ź T e c h n ic a l U n iv e r s it y A l . l ’oliti'c hnik i 1 1 ,9 0 - 0 2 4 Łód ź, P o la n d

Cytaty

Powiązane dokumenty

Kuttner for pointing out an error in the first version of the author’s proof and for suggesting the present version.. (ii) Necessity of

As a particular case we get Ta˘ımanov’s theorem saying that the image of a Luzin space under a closed continuous mapping is a Luzin space.. The method is based on a parametrized

This indeed turned out to be the right approach since Baumgartner’s proof (see [3]) also shows that PFA implies that every uncountable subset of P(ω) contains an uncountable chain or

It is easy to see that the converse of Wilson’s Theorem also holds. Thus Wilson’s Theorem can be used to identify the primes. 21] and [12]) has conjectured that there are no

W i l k i e, Some model completeness results for expansions of the ordered field of real numbers by Pfaffian functions, preprint, 1991. [10] —, Model completeness results for

There are also known some examples of non-atomic vector measures with values in concrete infinite-dimensional locally convex spaces with non-convex or non-closed

Key words and phrases: fixed points, coincidences, roots, Lefschetz number, Nielsen number.... Hence f and g are deformable to be

topological ) algebra is a (Hausdorff) topological vector space provided with an associative separately (resp. jointly) contin- uous multiplication making it an algebra over the