• Nie Znaleziono Wyników

Ocean temperature measurements for power plant design

N/A
N/A
Protected

Academic year: 2021

Share "Ocean temperature measurements for power plant design"

Copied!
36
0
0

Pełen tekst

(1)

CHAPTER 43

OCEAN TEMPERATURE MEASUREMENTS FOR POHER PLANT DF.SrGN H. O. Cheney

Chief, Department of Engineering Research Pacific Gas and Electric Company

Gordon V. Richards Supervising Civil Engineer Pacific Gas and Electric Company

ABSTRACT

For many years the Pacific Gas and Electric Company has been measuring 'Hater temperatures in the ocean and other bodies of water in connection with the design of thermal power plants. This subject is timely because of the '~idespread interest being shoon in the field. Since the beginning of this temperature measurement ~lork, various methods and devices have been employed, and these are described in this paper. In the absence of developed analytical methods for computing temperatures in the vicinity of warm water outfalls the results are given as field temperature surveys.

INTRODUCTION

There are three importal1t reas ons "hy temperatures in streams, estuaries, .and other bodies of water.,are important to those who use "ater for cooling. The first involves the effect on the ecology or composition of the biological population due to a rise in 'temperature. The second concerns the responsibility of a "ater user to the other users on the same body of water. The third reason is that an increase in the temperature of the cooling water used in a thermal genera~ing plant results in a reduc-tion in the efficiency of the plant. Neglecting thermodynamic refinements, the loss of .efficiency in a thermal plant due to an increase in inlet cooling ;rater temperature is approximately proportional to the amount by ;rhich the temperature difference bet;reen inlet steam and cooling water is reduced. For example, if a conventional steam plant op'erating "i th an initial steam temperature of 1050° F. and 60° F. cooling water were to have its inlet cooling water temperature increased by 1° F., the loss of efficiency could be in the order of 0.1%. A moderately ,large steam plant burns approximately $100,000 "orth of fuel per day, ,and therefore the cost represented by a single degree increase in the temperature of the cooling water could be approximately $100 ~er day.

There is much work still to be done before "e fully understand the influence of water temperature on the marine biological processes. Analytical methods of predicting temperatures in bodies of water around ~larm water out falls are needed. Some progress is being made in developing such methods.

Pacific Gas and Electric Company has been studying '-Tater temperatures adjacent to its thermal power plants for many years. The initial effort

(2)

956 COASTAL ENGINEERING

Has tentative and exploratory, but the program has been expanded greatly during the past fe" years because of increases in plant size and licensing requirements. The results reported in this paper generally cover studies made during the peri od 1962-65, but the methods used were developed from prior "ork.

EARLY STUDIES

From 1950 to 1962 studies were made from surface craft. Temperature measurements Here generally made on a 1,000 ft. grid system covering approxi-mately two square miles and augmented by measurements of surf temperatures. Costs averaged approximately $1,000 per square mile for a single coverage. A typical study during this period required three days to complete. Hith variations in "Ieather and tidal conditions, the result Has a poor composite of conditions during the study period.

Temperature senSing instruments operated from aboard the boat were mercury thermometers for surface temperatures and thermistor probes attached to 100 ft. reels of conductor for temperature-depth profiles. Profiles were obtained to a maximum depth of 100 ft. Individual profiles were quite accurate and the presence or absence of thermoclines could easily be recognized. However, the system did not develop an adequate resolution of surface temperatures, especially in areas adjacent to the outfall, because of the large distance between measur~ng points and the time lag betHeen successive measurements.

In mid-1963 a bathythermograph (Hallace and Tiernan Thermo Marine Recorder) Has substituted for the thermistor probe to determine temperature-depth profiles. The bathythermograph simultaneously senses temperature and pressure and traces a line on a gold plated glass slide. Each bathy-thermograph is equipped Hith an individually calibrated vieHer into which the slide is fitted for reading.

Surf temperatures were obtained by several methods depending upon the type and duration of the study. The most primitive method was to wade into the surf and measure the temperature with a mercury thermometer. As the length of studies increased and more complete data were desired, various types of recording thermometers Here employed. For short studies of a week or two, Foxboro temperature recorders (a self-contained circular chart recorder ,nth a spring-wound clock and expanding liquid sensor) were employed. The use of these devices was limited by the distance the probe could be placed from the recorder and by their inability to withstand the rigors of the marine environment. Later, a fairly successful recorder was developed by using a thermistor probe in conjunction with a battery powered Rustrak recorder. The recorder was sealed in a plastic bag and was placed with the battery in a padlocked aluminum housing.

1962 - 1965 STUDIES

Late in 1962 the U. S. Fish and Hildlife Service began using an air-borne infra-red thermometer to measure ocean temperatures along the

(3)

OCEAN TEMPERATURE

California coast. It was felt that this type instrument might have the capability for quick surveys of a relatively small ~Tater area adjacent to a steam po"er plant and thereby give an almost instantaneous picture of surface temperatures. A Barnes Engineering Company Model IT-2 infra-red thermometer (an updated model of the thermometer used by the U. S. Fish and Hildlife Service) "as acquired in mid-1963.

957

The first instrument "e obtained gave an erratic record, but it was later corrected by the manufacturer. Some characteristics of the thermome-ter were revealed during the preliminary check-out. The device was quite sensitive, though its calibration had a tendency to drift ~rom time to time. Atmospheric conditions, particularly fog and clouds and to a certain extent smoke, had a significant effect on the temperature readings. These difficulties "ere mini~zed by frequent calibration.

The infra-red thermometer "as adapted for use by adding a Varian Model G 14 null balance recorder 1'Thich ,Tas attached to a board usually held

on the observer I slap. The sensing head of the infra-red thermometer was mounted over a hole through the floor in the cabin of the aircraft. Remain-ing equipment 1{aS shock-mounted on a board fitted into the rear of the aircraft. This instrument combination has proven to be quite satisfactory.

A frequently used and suitable aircraft "as the Cessna 172, a high-1dng, single-engine airplane. This airplane "as flown at an air speed of

60

miles per hour "ith flaps down and engine at approximately 1500 rpm, close to its stalling speed. As a result, the aircraft generally lost altitude during a run, dropping from 500 feet to 100 feet in approximately t1W miles. Diameter of the water surface sensed by the infra-red thermome-ter at 500 feet altitude was approximately fifteen feet.

Field procedure "as to fly a number of known courses using the plant stack or other convenient landmark for orientation. Temperature profiles recorded along these courses .Tere later used to draw an isothermal map of surface temperatures. Infra-red thermometer measurements obtained in the air 1{ere continuously checked from a boat. Surface temperature, and fre-quently the temperature-depth profile, were taken as the airplane passed overhead. Many times pilot alignment over the boat was so precise that the boat I s exhaust "as sensed and shmTed as a pip on the infra-red recorder chart.

On a typical study, three complete runs could be made over a five square mile area in one day. The cost per run has averaged about $210 per square mile, including data reduction and report.

POSSIBILITIES FOR THE FUTURE

The ability to obtain rapid surface temperature records has added appreciably to the knowledge of the dispersion of "arm water. It would be quite helpful if i t 1{ere possible to obtain a truly instantaneous picture of the thermal pattern in a body of water. Some progress has been made by others along these lines by employing a multi-lens camera, infra-red film,

(4)

958

COASTAL ENGINEERING

and a combination of filters. Under favorable conditions the resultant prints can be used to define differences of four degrees Fahrenheit. The process is currently quite expensive, but improvements can be expected.

Another process, actually an extension of the sensor we currently use, employs an infra-red scanner coupled to an image-forming device which produces a temperature map instantaneously. HmTever, the equipment is exceedingly complex and very costly.

STUDIES OF HEAT REJECTION TO THE ENVIRONMENT

A recent research project of the Edison Electric Institute (Ref. 1) reviews the current knowledge on heat transfer processes within bodies of "rater. The elementary theory is developed by considering a pond "'hich gains heat by natural radiation from the sun and the atmosphere (diminished to some extent by reflection at the surface), and loses heat by (1) radia-tion at the surface, (2) conduction across the surface"and (3) evaporation. A point to notice is that the phenomena "Thich add heat to the pond depend on such things as the altitude of the sun and the cloud cover, but are independent of the pond temperature. The three phenomena "Thich remove heat, on the other hand, are dependent on surface temperature of the pond. ,·/hen-ever the heat gained by the pond is out of balance "Ti th the heat lost , the pond "rill appro.ach assymptotically a new equilibrium surface temperature.

Having established the naturally occurring heat transfer processes, it becomes theoretically possible to prepare a heat budget for a body of "Tater which has an artificial heat source such as a thermal power plant located on its bank. The literature contains a number of examples ",here this has been done in the Simpler cases (for example Refs.

3,

4, 5),

but the problem can become exceedingly complex and useful solutions are essen-tially, unobtainable ",hen it is necessary to include the hydraulic problems such as turbulent mixing, stratified flo"" and density currents. Inasmuch' as these conditions exist to some degree in most practical cases, i t seems that field observations of temperatures around existing thermal plants are appropriate, if only to make a beginning appraisal of the problem and possibly to indicate which factors' are important.

RESULTS OF TEMPERATURE MEASUREMENTS

Figure la shows the general layout of P.G.and E. Morro Bay power Plant and shovTs the surface isotherms obtained on Run No. 2, September 12, 1963. Related data on this run and others are given in Table I. At Morro Bay the circulating water is taken from a point ,-rithin the harbor, and is discharged outside the harbor int 0 Estero Bay, a long shallow indentation in the coast line. The discharge is thus essentially fully exposed to the Pacific Ocean. The isotherms shmm in Fig. la are typical. It ,rill be noted that the warm water tends to dissipate in fingers and islands as it advances into the sea. This phenomenon has been observed many times at this and other thermal pmrer plants. The cold ",ater immediately west of Morro Rock has also been observed before, but remains unexplained.

(5)

IP 5

OCEAN TEMPERATURE

I

a

SURFACE ISOTHERMS,Run No.2,Sept.12,1963. Run No. I 2 3 Average MW 758 833 868 00 I 00

I>~J~

00 ~ ~

7

50

~R

X

~

.2:

~ i'-.l

~

1'7)

"'-

~ 10

,r",

... ' ) 5

\~V

\ '

-"""""~,:::-,,,

'-

~,',

"'r--.:

,,~

4 570 'I""-Kl 5 poo poo 500 100 5 6 200 160

J4l

-=r

~~~

~

-..::t.::--17

81

'

~VG

9

~

'''~

)V

I~ 7 8 9 660 660 660

~

1,.-I :'I ~

15

f"ooo. ~

""

959 1.0 , .).. '

M-cP~

9

f:'I'

.q5

4

cp

0.1 ~

.,

( ) c:: o -;; :0

'"

O<J ~ 10~

at.

2!' 40 f}' eO 10" 120 14" U"

I

D Isotherm Temp. minus Intake Temp.(FO)

l

2!'c Temperature

~

above Ambient

~

(FO)

~

(6)

960

COASTAL ENGINEERING

Possibly it is due to up'felling. Sub-surface temperatures ",ere measured at the numbered stations shmln on Fig. la simultaneously ,nth the infra-red measurements of surface temperatures. During the run shmm in Fig. la the results obtained ",ere those Sh01fn in Fig. 4a. Comparison will show that the surface temperatures indicated in the vertical temperature pro-files are not in exact agreement with those shown by the surface isotherms. Inasmuch as surface temperatures for bathythermograph dives are obtained by mercury thermometer, there is little chance for error.. and the observed inconsistencies have been attributed to the infra-red method. From this kind of experience, it has been concluded that the infra-red device used for this work has an uncertainty of approximately + 10 F. even under ideal

atmospheric conditions. Attempts to use the infra:red thermometer in light fog or smoke have. shmm that its error under these conditions can be three or four degrees.

Figure 2a shmls the arrangement of Humboldt Bay Power Plant together with the isotherms obtained on Run No. 3, August 4, 1964. Similar iso~ therms have been obtained on three other occasions. Related data on all four runs are given in Table II. Humboldt Bay is completely enclosed by land except for the naVigational entrance channel. The Bay is generally shallow and covers some thirty square miles. It will be noted that the plant discharge is directly opposite the entrance to the Bay. Tidal cur-rents in the channel entrance range from 2.0 k ebb to 1.6 k flood. A flooding current at the entrance to Humboldt Bay has the effect of direct-ing the warm water at the outfall around the arc of the shore line immedi-ately north of the discharge. This is clearly shmm by the isotherms of Fig. 2a and has been confirmed on several different occasions by injecting dye into the discharge waters. The warm water is apparently confined to a narr01-I stream next to the shore line. In a situation of this kind it ",ould be well to supplement the infra-red data 'fith some land-based

observations of temperature at the shore line. The air-borne infra-red thermometer behaves erratically over land, and its readings are uncertain close to the shore line. Simultaneous sub-surface temperatures 'fere taken at the stations shmm in Fig. 2a. Results of sub-surface readings are given in Fig. 4b. As at Morro Bay, some differences between surface isotherms and the surface temperature shown on the vertical profiles llill be noticed. Infra-red work at Humboldt Bay is particularly difficult because of fog and occasional smoke.

Figure 3a Sh01fS the Contra Costa Power Plant located in the San Francisco Bay delta fifty miles by water from the Golden Gate. Off-shore temperature measurements have been made at the plant four times, as shmm in Table III. Fig. 3a shows the surface isotherms obtained during Run No.4, May 22, 1964. Sub-surface temperatures obtained during the run are sh01·m in Fig. 4c. Currents off-shore of the plant are tidal in nature though they are somewhat influenced by river flo",. The currents indicated in Table III were obtained by drogue in an area immediately off-shore from the plant.

At Bodega Bay, a promontory on the coast about forty-five miles north of San Francisco, a large number of water temperature measurements

(7)

OCEAN TEMPERATURE

2

a

SURFACE ISOTHERMS,Run No.3, Aug. 4, 1964.

1,00 50 0 0 0 "'; 10 ~ 50 .5 ~ Q) ~ o

'"

....

. E 0 5 :E 1.0 "30 0.5 c Q)

4

O. I 1\

(I

Run No. AverogeMW 1 1

3)

~f'

~'l'<

.....

~

L.~ I>- ,

2'

\

'

,

\ \

,

1\ -30 00 30 60 gO 12"

2

b

Isotherm Temp.minus Intake Temp(FO)

I 62 2 62 10,000 5pOO

~

1,000 ~ ~oo is E

.g

100 GO o c .g

..

'5 50 3 50

f\

--F~

~

j'<

v

4 50 j-...

~

~

f2

~

b<: ..

D-

....

~,

"

®

,,( 10 ~ 00 2" 40 60 SO 100

20

Temperature aboveAmblent.(FO) Figure 2. Off-Shore Temperatures. Humboldt Bay Power Plant

(8)

962 1,000 500

\

Or--.., 0

m

10 ~ 5 o 5 § ~ 10 ~ 5 o .'!l c :c 1.0

'i

0.5 ~ "'<;,: .... \ , \ \

1'-COAST AL ENGINEERING OONLAN ISLANO

30

SURFACE ISOTHERMS,Run NCl3,Moy21,1964

Run No.

AverageMW

I I I

leD

®

""-

f:t

fl-I!.

r-

"'" I'-

r-

... ". t -I""" ,

l\.

1 2 3 4 471 471 471 471 10pu.

~5PO

~~

...

~:"~

~

~)D

:E

IPOO

_

i'-Ii

::> 500 o E

,g

~ 100)r-+-+-+-+-+-+-+-+-+-+-+-~~ o

2

ro,r-+-+-+-+-+-+-+-+-+-+-+-~~

'"

'0 ~ ~

:r

o.

I

::;: 10'L-.l..-.l..-.l..-.l..-.l..-.l..-l.-l.-l.-.l..-.l..-

...

..J...-J _10 ff' 10 3° 5° 70 90 110 130 00 20 ~ so eo Iff' 120 14°

3

b

Isotherm Temp. minus Intake Temp. (FO)

3

C

Temperature above Ambient ( F 0)

(9)

OCEAN TEMPERATURE

were made over a period of more than a year in connection ,lith prepara-tions for licensing a pover plant at that location. The temperatures measured represent naturally occurring temperatures inasmuch as there is no power plant or other artificial source of heat in the vicinity. Figure 5 shQl{s the general configuration of the coast and the locations of the tempp.rature measuring stations. At the numbered stations tempera-tures vere measured at the surface, mid-depth, and bottom. The results are given in Table IV. The method used for this "ork ,TaS to take ,later

samples in Frautschy bottles and insert mercury thermometers in the samples as soon as they had been hoisted aboard the boat. The procedure was very rapid and it is believed that no significant errors "Iere made in the temperature readings. At the lettered stations shmm on Fig. 5,

temperatures were obtained in the surf by inserting a mercury thermometer in a dipped '-Tater sample. The results of this work are given in Table V. Blanks in both Tables IV and V are due almost entirely to periods of

963

severe "Ieather at Bodega Head "Ihen it ,TaS impossible to obtain the water samples. Figure

5 also shmfs

five named stations where continuous tempera-ture recording was attempted during 1962 and 1963. Weather conditions are so bad at Bodega Head} however} that it '·Ias very difficult to keep the recorders in operation} and there are many gaps in the record. Results of the continuous temperature recording are given in Table VI in terms of the daily maximum and minimum temperatures.

COMMENTS ON RESULTS

SURFACE ISOI'HERMAIB

The total flying time required to obtain the infra-red data for plots similar to Figs. la} lb} and lc was thirty to forty minutes. The isothermal maps thus produced are fair approximations to instantaneous surface temperatures and the maps are very useful .to discover ,'hat is happening to the warm discharge ,Tater. It seems reas onable that the area of warmed water ,/Ould depend on plant load, but might be approximately the same for any given load regardless of the manner in "hich the isotherms are distorted by the current. Figures lb, 2b} and 3b shoH the results of an attempt to relate the area "ithin each isotherm to the difference in temperature behleen the isotherm and the intake water. The abscissa thus represents the heat added to the intake water by the plant. As might be expected} there is a good deal of scatter in the data. Referring to ~ig. lb for Morro Bay} it wilJ be noted that the curves are generally in order of load on the plant} except for Run No.9. There is a temptation to disregard this run merely because it doesn't agree with th~ rest} but a very careful revie" of the data failed to shoH any convincing reason to reject the data. Figure 2b for Humboldt Bay would seem to be questionable because the lover pair of curves (Runs 1 and 2) correspond to smaller plant loads than the higher pair (Runs 3 and

4)

.

This} however} might be explained by the strong Vlinds during Runs 1 and 2 Vlhich probably mixed the surface varm ,Tater ,lith the underlying cooler ,Tater. This explanation could have been confirmed by the bathythermograph results} but it vas' impossible to operate a boat on the day Vlhen Runs 1 and 2 "Iere made and no sub-surface temperatures "Iere obtained. Figure 3b gives the isotherm areas for four runs during identical plant loads at Contra Costa. There is no apparent .explanation for the

(10)

964 COASTAL ENGINEERING

Figures lc, 2~ and 3c are intended to indicate the extreme dis-tances reached by the warmed discharge ,rater. Distances are measured from the outfall to the most distant point of each isotherm. Tempera-ture is shown in degrees above the ambient surface temperature of the receiving water. These plots thus indicate the radii of circles with centers at the outfall that will always contain all of the water having a temperature exceeding ambient by any specified amount. Such data are of significance to biologists who are sometimes interested in knowing the largest area vrithin which an organism might be affected at some time, ho"ever briefly, by temperatures exceeding ambient. One conclusion that can be drawn from the curves immediately is that the warming effect of a plant, "hether it discharges to the sea, a bay, or an estuary, does not extend to any great distance. Vlithin less than a mile, the "arming effect is undetectable, and even at a distance of 1000 feet from an outfall, the occasional maximum temperature to be expected is no more than

above ambient.

SUB-SURFACE TEMPERATURES

Vlhenever vreather permitted, sub-surface temperatures vrere obtained by bathythermograph simultaneously with the infra-red measurements of surface temperatures. The locations of the bathythermograph dives vrere chosen at random near the outfalls. The data obtained are far too volumi-nous to include in this report, but Fig.

4

is typical of the results.

Temperature profiles near an outfall inevitably show the vrater stratified. The vrarm vrater is confined to a relatively thin layer at the surface 1.ri th a sharp clearly defined boundary between the warm water and the underlying cooler water. Farther avray from the outfall, as mixing betvreen the surface layers and underlying water takes place, the boundary becomes less vrell defined, but the tendency for the warm vrater to remain on top is quite strong. Oceanographers have recognized that a temperature gradient indicates a stable body of vrater with a resistance to mixing pro-portional to the degree to "hich the temperature gradient is developed. Conversely, a constant temperature from surface to bottom indicates water that is being actively mixed.

The temperature measurements given in Table IV show very little difference in temperature from surface to bottom., and this is one of the evidences that the 1'rater around Bodega Head is thoroughly mixed. The naturally occurring variations in temperature as shown by Tables IV, V, and VI are VTorthy of note. At the same station, variation in temperature of about 10° F. during the year "as found, and a difference in temperature of

4

or

F. bet1-reen successive days was not unkn01m. One important reason for measuring naturally occurring temperatures is to evaluate the probable biological effect of proposed man-made temperature changes, for if the indigenous organisms are already accustomed to large natural temperature variations, they are not likely to be significantly affected by comparable man-made changes.

(11)

STATION NUMBER

I 2 3 4 5 6

r; • • • • • •

- 40600 650 700 600 650 700 600 650 700 550 60° 650 55° 600 65° 55° 600 65°

TEMPERATURE (FO)

40.MORRO

BAY POWER PLANT

Run No.2,Sept.l2,1963.

STATION NUMBER

r~

• •

56° 60° 65° 53° 55° 60°

i l . l l i l l

55° 600 58° 61° 55° 600 65° 60° 65° 55° 60° 56° 58° 55° 5ao 55° 58° TEMPERATURE(F"}

4b.

HUMBOLDT

BAY POWER PLANT

Run No.3, Aug.4,1964.

STATION NUMBER

i~~;.

\IIH

I\\\\llllll\\\\

1

I • I I

600 65° 67° 60° 65° 70° 75° 80° 60° 65° 67° 60° 65° 60° 65° 68° 600 650 600 650

TEMPERATURE(fO)

40.

CONTRA COSTA POWER

PLANT.

Run No.3,Moy21, 1964

(12)

966

COAST AL ENGINEERING

Figure 5. Bodega Head

NUMBERED STATIONS - Temperature measurements at surface, mid-depth, and bottom.

LETTERED STATIONS - Surf temperatures. NAMED STATIONS - Recorded temperatures.

TABLE

12.

TABLE

'1.

.

TABLE VI.

(13)

OCEAN TEMPERATURE

REFERENCES

1. Cooling "Tater Studies for the Edison Electric Institute) Research Project No. 49) The Johns Hopkins University) June 1) 1965.

a. Edinger) Dr. John E. and Geyer) Dr. John C,) Heat Exchange in the Environment. EEI Publication No. 65-902.

b. Wurtz) Dr. Charles B.) and Renn) Dr. Charles E.) Water Temperatures and Aquatic Life. EEl Publication No. 65-901.

967

2. Surface I-Tater Temperatures at Shore Stations. United States Hest Coast. University of California) Scripps Institute of Oceanography. Published annually.

3. Raphael) Jerome M.) "Prediction of Temperature in Rivers and Reser-voirs". Journal Power Division PO-2 Proc. ASCE July 1962.

4. Velz) C. J.; Gannon, J. J .) "Forecasting Heat Loss in Ponds and Streams") Journal I'Tater Pollution Control Federation 32) :April 1960) Vol. 32.

5. Messinger) Donald J., "The Effect of Stream Flow on Haste Assimilation CapaCity") 17th Purdue Industrial Waste Conference) May 1962. 6. Harbeck) G. Earl; Koberg) G. E.; and Hughes) G. H.) "The Effect of

the Addition of Heat from a Power Plant on the Thermal Structure and Evaporation of Lake Colorado City) Texas") Geological Survey Professional Paper 272-B.

7. Patrick) Ruth and Cadwallader) L. H.; "The Effects of High Temperatures on Aquatic Life") 108th Meeting Prime Movers Committee EEl)

February 1963.

8. Hock) Richard D.) "Hot Hater - A Growing Incustry Concern") Industrial vTater Engineering) April 1965.

9. Fetter) T. S') "Stream Temperature Control") Hydraulic Power Committee EEl. Presented at meeting) April 1960.

10. Arnold) Gerald E.) "Thermal Pollution of Surface Supplies") Journal American Hater Horks Association) November 1962.

11. Holter) Marvin R.; Nudelman.) Sol; Suits) G1"Ynn L.; Holfe) Hilliam L.; Zissis) George J.) "Fundamentals of Infrared Technology")

Macmillan 1962.

12. "Techniques for Infrared Survey of Sea Temperature") Bureau Circular

No. 202) U. S. Department of the Interior) Fish and lJildlife Service) Bureau of Sport Fisheries and Hildlife.

(14)

TABLE I

Off-Shore Temperature Measurements cD 0:>

Morro Bay Power Plant ex>

PLANT LOAD CIRC. WATER TEMPERATURE 2 "F

RUN NO. PST DATE AVG. MW GPM OUTFALL INTAKE TIDE WEATHER CURRENT

1 0850-0946 9-12-63 758 470,000 80 60 Falling High scattered

clouds Calm

2 1055-1211 9-12-63 833 470,000 81 61 Low High scattered

clruds

Calm ()

0

3 1338-1540 9-12-63 868 470,000 81 61 Rising High scattered

>

(f)

clouds ~

Calm

>

L'

4 0940-1020 12-18-63 570 470,000 68 55 High Low overcast J?:j

Wind gusts Z P

0-17 mph ...

Z

12-18-63 470,000 61 J?:j

5 1219-1304 200 55 Falling Low overcast J?:j

Wind gusts ::cJ ...

0-17 mph Z

P

6 1436-1527 12-18-63 100 470,000 60 55 Falling Low overcast

Wind gusts 0-17 mph 7 0910-1000 4-14-64_ 660 470,000 66 49 Rising Clear Wind 10 mph 8 1133-1220 4-14-64 660 470,000 66 51 High Clear Wind 10 mph 9 1356-1432 4-14-64 600 470,000 68 53 Falling Clear Wind 7 mph

(15)

TABLE II

Off-Shore Temperature Measurements

Humboldt Bay Power Plant

PLANT LOAD CIRC. WATER TEMPERATURE ~ of

RUN NO. PST DATE AVG. MW GPM OUTFALL INTAKE TIDE WEATHER CURRENT

1 0938-1129 4-17-64 62 103,200 71 47 Low Overcast Wind gusts 25-40 mph 2 1312-1405 4-17-64 62 103,200 65 48 Rising Overcast 0 (') Wind gusts trl 25-40 mph ~ Z 3 1503-1558 8-4-64 50 102,000 72·5 56 Rising Overcast ~ trl Wind 0-10 mph ~ '"d 4 1535-1627 8-5-64 50 103,200 70 54 Rising Overcast trl ::0 Wind 0-10 mph ~ ~

c:::

::0 trl

(16)

TABLE ill

Off-Shore Temperature Measurements Contra Costa Power Plant

PLANT LOAD CIRC. WATER TEMPERATURE l "F

RUN NO. PST DATE AVG. MW GPM OUTFALL INTAKE TIDE WEATHER CURRENT

1 1009-1050 5-18-64 471

*

639,000

**

79 65 Rising Sl. overcast 0.7 Kn Flood 2 1301-1348 5 19-64 471 639,000 80 65 Falling Clear 0.4 Kn () Ebb 0

>

UJ 3 1024-1058 5-21-64 471 639,000 80 65 Rising Clear 0.1 Kn >-'3 Flood

>

t-< 4 0913-0947 5-22-64 471 639,000 83 65 Falling Clear 0.7 Kn trl Z Evv

8

z

trl trl ~ Z

*

Of 7 unit s only 5 were running. Q

(17)

TABLE IV

Bodega Head, Off-Shore Temperatures at Surface,

Mid-Depth, and Bottom SEE FIG. 4 FOR STATION LOCATIONS

APPROXIMATE DEPTH AT STATION IN FEET IS GIVEN IN PARENTHESES

1 2 3 4 5 6 7 8

Date (60) (60) (60) (60) (60) (60) (50) (40)

Time Temp Time Temp Time Temp Time Temp Time Temp Time Temp 9~ime Temp Time Temp 3-13-63 1210 48.6 1225 48.6 1240 48.8 1300 48·9 1320 48.8 1330 48·9 1345 48·9 1430 48.8 48.2 48.4 48.2 48.2 48.2 48.2 48.0 48.6 48.0 48.4 48.2 48.0 48.0 48.0 47.3 48.2 3-14-63 0935 48.2 0955 48.2 0955 48.2 1010 48.2 1030 48.8 1045 49·1 1055 48.6 1030 49·1 48.0 48.0 48.0 48.2 48.2 49·1 48.0 49·1 0 47.7 48.0 48.0 48.0 48.0 48.6 47.7 48.8 (') 3-15-63 n40 48.6 t:tj 48.6 ~ 48.4 Z 3-16-63 0900 47·3 0848 47.1 0840 47·3 0830 46·9 0835 46.9 0820 47·3 0800 47.3 0755 47·3 >-,3 47·3 47.1 47.1 46.9 47.1 47.3 47·3 47·3 t:tj 47·3 47·5 47.3 47·5 47·3 47.1 47.1 47:3 ~ 3-17-63 0900 48.0 0855 48.0 0845 48.0 0835 48.0 0830 48.0 0825 48.0 0815 48.0 0810 47·9 '"d t:tj 48.2 48.0 48.0 47·9 48.0 48.0 48.0 47·9 ~ 48.0 48.2 48.0 47·9 48.0 48.0 48.0 47·9 ~ 4-24-63 0755 50·9 0745 51.3 0740 50.0 0705 49·3 0702 49.1 0700 49·1 0655 49·6 0650 49·6 >-,3 50 ·5 49·3 49·1 49·3 49·1 49·1 49·4 49·5

§3

49·6 49·1 48·9 49·1 48.9 49·6 49·1 49·1 t:tj 5-13-63 0830 49·3 0845 50.4 0855 49.8 0910 50·7 0920 50.4 0935 49·8 0945 50·7 1010 51.8 49.3 48·9 48·9 49·3 48.9 49·3 50.4 50·9 49·5 49·1 48·9 48.6 48·9 48.6 48.9 50.0 5-14-63 0940 51.8 0815 51.8 0755 52.0 0750 52.2 0745 52·5 0740 51.3 0735 53·2 0655 52.4 51,.1 51.4 50·9 50·9 50 ·5 50·7 52.2 50·9 50·5 50·7 50.2 50.0 50.4 50.2 50.4 49·8 5-~5-63 0820 50.0 0815 50·9 0805 49·6 0755 49·5 0745 50.0 0740 50.0 0725 49·5 0655 50.0 49.3 48·9 49.1 48.8 48.9 48.8 49·3 49.3 48.6 48·9 48.6 48.8 48.8 48.8 48·9 48.4 5-16-63 0830 50.0 0820 49·8 0815 49·8 0810 49·8 0745 49.1 0735 50.0 0740 49·6 0705 49·6 48·9 49·1 48,8 48·9 49·1 48·9 49·6 48.8 48.4 48.4 48.2 48.2 48.2 48.2 48.0 48.2 5-17-63 0825 52.2 0815 52·5 0805 52.0 0755 51.6 0750 53·2 0740 52.4 0735 52·5 0705 52.0 co -J 50·5 50.0 49·8 50.4 50.0 50·5 50.4 51.1 ... 50.4 49.8 49.8 50.4 49·8 49·3 49·3 50.2

(18)

TABLE IV

Bodega Head, Off-Shore Temperatures at Surface, to

Mid-Depth, and Bottom -.:J

t-.:)

SEE FIG. 4 FOR 3'l'ATION LOCATIONS

APPROXIMATE DEPTH AT STATION IN FEET IS GIVEN IN PARENTHESES

9 10 11 12 13 14 15

Date (60) (100) (30) (12) (50) (40) (30)

Time Temp Time Temp Time Temp Time Temp Time Temp Time Temp Time Temp

3-13-63 1210 49·1 1410 48.8 1440 49·6 1115 50.2 1200 50.4 1230 51.1 1510 50., 47·3 46.9 49.3 50.2 48.8 49·1 48.4 48.1 47.1 48.8 50.2 48.4 47.7 47·9 3-14-63 1100 48.0 1115 49.5 1135 49·1 1015 48.4 0955 48.6 1140 49.5 1115 49.3 48.0 49·1 48·9 48.4 48.2 48.6 48.4 () 47·9 48.6 48.8 48.4 46.9 48.8 48.6 0 3-15-63 1130 48.6 0915 48.6 1010 49·1 0950 47·9 0930 49·5

>

48.2 48.6 49·8 47·9 49·1 en 48.0 48.6 49·6 47·9 >-3

>

3-16-63 0915 47.7 0930 47·9 0750 47.5 0950 49·1 0915 48.2 0900 49·1 0830 48.4 t"' 47·9 47.7 47·5 49.1 48.2 48.8 48.4 tr:l 47·9 47·9 47.5 49·1 48.6 48.4 Z 3-17-63 0935 48.4 0930 48.2 0800 47·9 0745 49·3 0915 48.2 49·8 0845 48.6 0 48.2 48.0 47·9 49·3 48.4 49·8 48.4

...

Z 48.4 47·9 47·9 49·1 48.8 49·5 48.4 tr:l 4-24-63 0645 49·3 0815 50.4 0950 51.1 1000 51.1 0935 51.6 0920 54·3 0900 49.3 tr:l 49·3 50.0 50·9 51.1 51.4 51.6 50·9 ::0 ... 48·9 49·5 49.6 51.1 49.6 50.4 50.2 Z 5-13-63 0950 50·7 1000 50.4 1015 52.0 0800 54.8 0825 50·9 0850 53·2 0915 54.7 0 48.6 49·5 51.3 54·3 50.2 51.4 53·6 48.6 49·1 50.4 54.0 48·9 49.1 49. 6 5-14-63 0720 52·9 0710 52·7 0700 52.2 0645 55·2 0715 52·5 0735 52·5 0755 54.5 51.4 49·6 51.1 55·0 49·8 50.0 54.0 50.4 49·1 50.0 55·0 48·9 48·9 53·2

)-1)-63

G\G) 49·8 0115

49

,5

0645

49,6

0640

'5

4,0

0655

49,6

01

15

51.1

0130

53·0

4B,9

49,1

4B,9

54.0

48·9

50.0

52.2

48.4 54.0 48.4 49·3 49·1 48.6 48.4 49·3 0724 52.2 0745 52.7 0650 49·3 0640 52.4 0705 5-16-63 0715 48.6 0725 49·5 52.4 48.6 50.0 52.2 48.8 48.2 48·9 48.2 48.8 50.2 48.0 48.0 48·9 52.0 52.7 0745 52·9 0655 52·9 0645 52·5 0710 52·9 0725 5-17-63 0715 51.4 0742 50.0 49.6 49·3 50.0 50.4 49·3 51.4 51.8 48.8 49·6 47.7 48.6 49·3 51.8 48.6

(19)

1 2 3 4 5 6 7 8

Date (60) (60) (70) (80) (70) (70) (50) (50)

Time Temp Time Temp Time Temp Time Temp Time Temp Time Temp Time Temp Time Temp

6-26-63 0830 51.8 0825 51.6 0810 51.3 0800 51.4 0755 51.8 0740 51.8 0735 51.8 0720 52.4 50·9 50·5 50·7 51.1 51.4 51.3 51.3 51.6 50.4 50.0 50.2 50.0 50·9 51.1 50·5 50·9 7-15-63 0730 53.6 0740 54 ·3 0750 50.0 53·4 53·2 50.0 56.0 52·5 49·1 7-16-63 0820 51.8 0810 50·5 0755 50.4 0750 49·8 0740 50.0 0730 50.0 0720 50.2 0710 50.2 51.6 49·8 49.1 49.5 49·5 49.6 50.4 50.4 0 49·6 49.8 49·5 49·1 48·9 48·9 49·5 49·5 (') t:<:l 7-17-63 0845 50.4 0830 50·9 0820 50.0 0810 48.6 0800 50.0 0750 50.0 0740 50.0 0730 50.2

:>

50.0 48·9 48·9 49·6 48.8 48·3 49·6 49.6 Z 49·5 48.8 48.6 48.6 48.6 48.6 49·1 48·9 >-3 7-18-63 0905 50·7 0855 50.2 0845 49·8 0835 49·8 0830 50.0 0820 50.0 0745 49·6 0730 49.6 t:<:l 49·8 49·6 49·1 48.6 48.8 48.9 49·3 49.5 ~ 49·1 48.6 48.4 48.4 48.4 48.2 48.2 49·3 '"0 7-19-63 0835 51.4 0825 51.8 0815 50.2 0810 50.0 0805 50.4 0755 50.2 0725 49·8 0715 50·7 t:<:l 49.3 49.3 49.3 48·9 49.3 49.1 49.1 49.6 ~ 48.6 48.4 48.6 48.8 48·9 48.6 48.6 49.6

:>

>-3 8-8-63 0907 54·5 0900 54·5 0852 54·5 0847 54 ·5 0842 54.8 0835 53.6 0827 54.0 0820 54.2

~

54·3 53.8 53.8 54·3 54·5 53·6 54.0 54.2 53·0 53.6 54.2 54.2 53.6 53·8 54.7 t:<:l 9-23-63 0750 57.6 0815 57.6 0822 57.6 0830 57.6 0835 57.6 0840 57·6 0850 57.6 0855 57.6 57·2 56.8 56.8 56.6 56·3 56.8 57·0 57·0 56·5 56.1 56.0 54.7 55·0 56.1 55·6 55·6 9-24-63 0810 57.8 0805 57·9 0800 57·9 0755 58.4 0750 58·3 0745 58.6 0740 58·3 0730 57.6 56.8 57.6 57·6 58.1 5'T ·9 58.4 58.1 57·4 56.0 56.8 56·3 56.3 56·3 57.2 57·2 55.6 9-25-63 0800 57.6 0755 57.6 0735 58·3 0730 58.4 0725 58·3 0715 58.8 0710 58.6 0650 59·0 57.4 57·2 57·9 58.1 57·0 58.4 58·3 58.3 56.6 57·0 57·0 56·3 56.6 58·3 58.1 57.6

~

·t

6

·

6~

Q~Q)

)~.)

O~OO

)8

,

6

0155

55.4

0150 58

.

6

014'5 '58.6 0,],40 58.6 0135 58.8 0705 58.4

55

.

4

55·4

54.\

)).8

5,],.4 55.6 57·9

51·9

54·7 55.8 55·4 <D 55·4 54.8 54.7 54.2 54.0 -.J c..:>

(20)

TABLE IV

Bodega Head, Off-Shore Temperatures at Surface, <.0

-.;J

Mid-Depth, and Bottom

""

SEE" flG;1j FOR ST1\'l'ION ~ONS

APPROXIMATE DEPTH AT STATION IN FEET IS GIVEN IN PARENTHESES

9 10 1.1 12 13 14

'"

J../

Date (70 ) (120) (40 ) (12) (55) (50) (35)

Time

r"mp

Time Temp Time Temp Time Temp Time Temp Time Temp Time Temp

:;-26-63 091; 52.4 0900 52.0 0910 53·2 1055 53·8 0940 53·2 0955 53·8 iOl0 54·3 51.4 50·9 50.4 53·4 51.8 51.3 52·5 49·8 51.3 50.0 53·6 50·9 51.1 51.8 7-15-63 0800 53·6 0805 53. 4 0915 54·3 0915 56.1 0730 55·0 0800 56·3 0815 56.3 (') 53·0 53·0 54.0 56.1 55·0 56·3 56·3 0 51.8 52.0 53·2 55·8 53. 4 52·9 53.6 ~ 7-16-63 0855 50.0 0910 50.4 0850 51.1 0850 52.7 0725 52.4 0750 56.5 0815 57.4 Cf.l 50.0 51·3 50.7 52.2 52.0 54.5 54.0 >-,3 ~ 49 .. 5 48.4 50.0 52.2 49.6 51.8 51.4 t"' 7-17-63 0925 50.0 0915 49·8 0735 50 .. 5 0720 50·5 0745 51.3 0810 56.0 0830 56.8 t:rl 49 .. 1 49 .. 3 so.O 50·5 50·7 53.4 51.6 Z 48.6 48.6 ;'..: 0 50.4 49·6 51.4 50·7

8

7-18-63 0750 50 .. 0 0805 49·8 0725 5,).9 0720 50·5 0745 51.6 0805 56.6 0820 56.1 Z 49·1 48.2 49 .. 8 50.4 50.0 53·6 51.4 t:rl 48.6 48.2 493 50 ·5 49.5 50.7 50.0 t:rl 7-19-63 0740 50.0 083? 49·9 0710 502

o

no

50·9 0800 51..4 0820 56.0 0820 54·5 ::0

...

48.8 48 .. 6 496 50·9 50·7 54.7 53.4 Z 48.4 48 2 49 .. 1 50·9 49·5 51.6 50.2 0 8-8-63 0930 54·3 09:·(; ;il! ·3 1810 5f.: ·0 111.'. 55.2 1100 55·0 1045 56.0 1025 56.0 53·8 52.4 54.0 :'5·2 54·5 54.7 55·4 53·8 50,? )4.0 ;'5·2 54.2 54.3 54.8 9-23-63 0905 57.8 0910 58.8 0730 5'7.6 0720 57 .. 8 0750 57.6 0810 58.8 0835 58.8 57·2 57·2 57. 4 57.8 57·0 58.1 58.6 55 .. 8 54 ·5 56.1 57.8 56·5 57·0 57.8 9-24-63 0850 58·3 0840 58·3 0735 5'7·9 0715 57.6 0745 58·3 0805 59·7 0825 58.8 57·9 57·8 5'7·9 57.6 58.1 59·2 58.1 57 .. 4 56·5 57.8 57.6 '56.8 55.6 57 .. 2 9-25-63 0655 59.0 0700 58,,3 0645 580] 0630 58.4 0655 58·3 0710 59·9 0730 59·9 58·3 55.8 57.8 58.4 55·4 58·3 57.4 55 .. 6 54.0 56·3 58·3 54.5 55.6 56.0 9-26-63 0710 56.8 0720 58.0 0700 58.6 0645 60.1 0715 59·0 0730 60.1 0750 60·3 55·0 56.0 56·5 60.1 55.8 56.8 57.4 53·6 52·9 55·4 60.1 55·2 55.4 55·8

(21)

1 2 3 4 5 6 7 8

Date (60) (60) (70) (80) (70) (70) (50 ) (50)

Time Temp Time Temp Time Temp Time Temp Time Temp Time Temp Time Temp Time Temp

9-27-63 0845 57·0 0840 56.8 0835 56.3 0830 57·9 0825 58.3 0755 58.1 0800 58.1 0750 58·3 56.5 54.7 55·0 57-.6 55·0 56.0 56.0 57.6 55·8 53.6 54.0 56.0 53·8 54.7 54.7 55·6 10-30-63 0905 51.6 0855 51.8 0845 52.0 0835 52.4 51.3 51.4 52.0 52.2 50·9 51.3 51.6 51.4 11-18-63 0920 56.0 0915 55·8 0905 55.6 0900 55.6 0855 55.8 0850 55·8 0755 55·4 56.0 55·8 55.6 55.8 55·8 55·8 55·4 55.8 55·4 54.8 55·0 55·2 55.4 55.4 11-19-63 0 (J tlj

:>

11-20-63 Z ~ tlj 11-21-63 0825 54.8 0815 54.8 0810 54.7 0800 54.5 0755 54.8 0740 54·7 0725 54.2 ~ 55·0 53·3 54.5 54.5 54.7 54.7 54.2 "d 54.7 53·6 53.6 54.2 54·3 54.0 53·8 tlj 11-22-63 0855 53·6 0850 53·2 0845 53·8 0840 53·4 0835 53·4 0830 53·4 0825 53·4 0755 53·6 ::0

:>

53·6 53·4 53·8 53·6 53·6 52·9 52·7 53.6 ~ 52·5 52.4 53·2 52.4 52.7 52.4 51.8 53·4

§§

12-11-63 1141 53·0 1135 53·0 1129 53·0 1122 53·0 1117 53·0 l l n 52·9 1108 52.7 1045 52·7 53·0 52·9 53·0 53·0 52·9 52·9 52·7 52·7 tlj 52.7 52·7 52·7 52·9 52·9 52·9 52·7 52·7 1-27-64 0945 51.6 0936 51.8 0930 51.8 0924 51.8 0917 51.8 0908 51.8 0900 51.8 0830 51.6 52.2 52.4 '52.2 52.0 52.2 52.2 52.2 52.4 52.4 52.4 52.2 52.4 52.2 52.2 52.2 1-28-64 0925 52.2 0916 52.0 0910 52.0 0903 52.0 0859 52.0 0853 52.0 0847 52.4 0823 52.0 52·5 52.4 52.4 52.4 52·5 52·5 52·5 52.2 52·5 52·5 52.5 52.7 52.7 52·5 52·7 52.4 1-29-64 0952 52.2 0948 52.0 0942 52.0 0930 52.0 0930 52.0 0923 52.0 0918 52.0 0852 52.2 52.4 52.2 52.4 52.4 52·5 52.0 52·5 52.4 52·7 52·7 52.7 52·7 52·7 52·5 52·7 52·5 CD -J CJ1

(22)

TABLE IV

Bodega Head, Off-Shore Temperatures at Surface, <0

Mid-Depth, and Bottom -J CJ)

SEE FIG. 4 FOR STATION LOCATIONS

APPROXIMATE DEPl'H AT STATION IN FEET IS GIVEN IN PARENTHESES

9 10 11 12 13 14 15

Date (60) (100) (30) (12) (50) (40) (30)

Time Temp Time Temp Time Temp Time Temp Time Temp Time Temp Time Temp

9-27-63 0805 57.8 0810 57·0 0740 57·9 0726 57·0 0746 58.1 0806 59·4 0830 59·9 54.8 54.8 57.8 57·0 56·3 56.3 54·3 54·5 54·3 56.3 56.8 54.3 54.5 54.2 10-30-63 0915 51.8 0925 52.0 0825 52.4 0815 55·0 0945 53·2 1005 55·2 1025 55·4 () 51.8 51.8 51.8 55·0 51.8 54.5 55·2 0 51.1 51.3 51.8 54.8 51.3 54.0 54.0

:r>

11-18-63 0840 55·8 0830 55·6 0820 55·4 0815 54.8 0830 55·2 0900 55·2 0915 54.5 ro 55·8 55·4 55.6 54.8 55·2 55·2 54.5 >-3

:r>

55·8 54.0 55.8 54.8 55·4 55·2 54·5 t" 11-19-63 1150 56·5 1145 56.6 t:rl 56.3 56.6 Z 56·3 56·5

8

11-20-63 1110 55·6 0805 55·4 0805 56·5 0815 55·8 1100 56·3 Z 55.6 55.4 56.5 56.0 56·3 t:rl 55.6 55.6 56.5 56.0 56.7 t:rl 11-21-63 0900 55·2 0910 55·2 0745 52.4 0740 52.2 0800 54·5 0820 56.6 0835 54·3 ~ 55·2 54.2 52.0 52.2 53·8 54.7 54.5 Z 54.2 52·5 52.2 52.2 53·6 53.8 54.2 Q 11-22-63 0800 54.0 0805 53·2 0810 51.8 0800 52.0 0815 53·8 0840 53.8 0900 53·6 52·7 52·7 51.8 51.8 53.8 53·8 54.0 52.2 51.1 51.8 52.0 53·2 52.7 53·6 12-11-63 1050 52·7 1057 52·9 1040 52.4 0855 51.4 1028 52.0 1005 51.4 0950 51.8 52·5 52·9 52.4 51.4 52.0 51.4 52.0 52.4 51.8 52.4 51.4 52.0 51.8 52.0 1-27-64 0845 52.0 1020 52.2 082.5 51.1 0810 51.3 0845 51.3 0900 51.6 0925 51.1

~C.'\

)7.,'\

)l.l

)1·3

,)1.6

51.6

')1..1

)1.3

,)1.6

')1.6

')1..3

)~.\

)~,~

':iLl

0'61')

51.3

a\)u,a ')~.') agoa ,)'2..')

5'2·0 01,)') ,)'2..0 ,)'2..') ,)'2..') oB3'T

52.1

O~OS 52.0 51.3 52.7 52.7 l_28-64 0830 52.0 52.9 52.0 52.0 '51.4 0925 52.2 52.7 53. 0 52.0 51.4 0850 52.0 0910 52.2 52. 2 53.0 0840 52.0 0830 52.4 52.4 52.4 1-29-64 0900 52.2 0907 5252.7 .0 52.0 51 •4 5l. 4 52·5 52.7

-52.5 52.0 ~" '7 ,),.0

(23)

1 2 3 4 5 6 7 8

Date (60) (60) (60) (60) (60) (60) (50) (40)

Time Temp Time Temp. Time Temp Time Temp Time Temp Time Temp Time Temp Time Temp

1-30-64 1-31-64 0920 52.0 0915 52.0 0910 52.0 0905 52.0 0901 51.8 0857 51.8 0852 51.6 0830 52.0 52.0· 52.0 52.0 52.4 52.0 51.8 51.8 52.0 52.2 52.2 52.2 52·5 52.2 52.2 52.0 52.2 2-13-64 0830 49.5 49·5 49·3 3-23-64 0 (') t:tj 3-24-64 0845 48.4 0840 48.2 0835 48.4 0830 48.4 0825 48.2 0820 48.2 0810 48.2 0755 47·3

:x>

48.2 48.0 48.2 48.4 48.2 48.2 48.2 47.3 Z 47·9 47.7 48.2 48.0 48.0 48.2 47·5 47.3 ~ 3-25-64 0850 48.8 0840 48.4 0835 48.4 0830 48.4 0825 48.2 0820 48.4 0815 48.6 0755 48.6 t:tj 48.6 48.4 48.2 48.2 48.0 48.4 48.4 48.0 ~ 48.2 48.4 47·9 48.0 47·9 48.4 48.4 48.0 ~ t:tj 3-26-64 0830 48.6 0825 48.6 0820 48.6 0815 49·1 0810 49·1 0805 49·1 0800 48·9 0740 49·3 ::0 46.0 45·6 46.0 46.2 46.2 46.0 46.0 46·9

:x>

45·8 45.4 45.6 46.0 45.8 46.0 45·8 46.2 ~ 3-27-64 0840 48·9 0835 49·3 0830 49·3 0825 49·5 0820 49·5 0815 49·5 0810 49·5 0745 49·6

~

48.2 46.9 45·8 45.8 46.0 47·9 46.4 46.4 t:tj 47.9 46·9 45·8 45.8 46.0 47·9 46.4 46.4 4-22-64 5-25-64 1005 50·7 1000 51.3 0950 49·8 0945 49·3 0940 50.0 0930 50.0 0925 50.0 0845 49·6 49.3 47·9 48.0 48.6 49·1 49.8 48.8 48·9 48.8 47.5 47.7 48.2 48.2 48.6 48.4 48·9 5-26-64 0840 50.0 0835 49·8 0830 49·1 0825 49·1 0820 49·1 0815 49·3 0810 49·3 0750 49·8 47·9 47.7 48.4 48.8 48.2 48.6 49·3 49·3 47.1 47·5 47·5 47·3 47·3 46.6 46.8 47·7 <0 -'l -'l

(24)

TABLE IV

Bodega Head, Off-Shore Temperatures at Surface, co

Mid-Depth, and Bottom ..;J

ex>

SEE FIG. 4 FOR STATION LOCATIONS

APPROXIMATE DEPTH AT STATION IN FEET IS GIVEN IN PARENTHESES

9 10 11 12 13 14 15

Date (60) (100) (30) (12) (50) (40) (30)

Time Temp Time Te!!!e Time Tem12 Time Te!!!)2 Time Tem12 Time Tem12 Time Te!!!E

1-30-64 0915 52.2 0905 52.2 0917

51.B

52.2 52.2

51.B

52.2 52.2

51.B

1-31-64

oB36 51.B

oB42 51.B

OB20

52.4

OB10 51.B

oB30

52.2

oB45

52·5 0900 52.2

51.B

52.2 52.4

51.B

52.2 52·5 52.2 ()

52.2 52.4 52.4

51.B

52·5 52·7 52.4 0

2-13-64 1005 50·7 1020 50·9

oB50

52.2 0910 50·9 0930 51.3

>

rJ.l

50.2 50·9 52.0 50·9 51.3 >-3

50.2 50·9 51.6 50·9 51.3

>

3-23-64

oB35 4B.B

OB15

4B.6

0915 49·6

oB50

49·3 t'"

4B.

B

4B.6

49.6 49·3 t:<j

4B.B

4B.6

49·5 49.1 Z

3-24-64 oB05

48.6 0920

4B.6

0740

4B

.B

0730

4B.6

0755

4B

.6

OBlO 49.6

oB30

49.6 0 ...

4B.4

4B.4

4B

.B

4B.6

4B.6

49·6 49·6 Z

4B.2

47·9

4B

.B

4B

.6

4B.4

49·5 49·6 t:<j t:<j

3-25

-

64 oBoo 4B.2

oB05 4B.6

0750

4B.6

0735

4B

.

B oB05 4B

.

4

OB25

49·3

oB40

50.0 ::tl

4B.0

4B.2

4B.6

4B.B

4B

.4

49·1 49·6 ... Z

47·9 47·9

4B.6

4B

·9

4B.4

4B·9

4B.B

0

3-26-64 0745

4B.B

0755

4B

.

6

oBoo

49.5 0745

4B.B

OB10

49·5

oB30 49·B

oB50

50.0 45.6 46.0

4B.B

4B.B

4B

.B

49.6 49.1 45.5 45·5

4B.4

4B.B

47.9 49.6

4B.2

3-27-64 0750

4B.6

oBoo

49.1 0755

49.B

0745 50.0

oB05

49·B

OB25

50.4

oB45

50.4

45·6 46.0 49.6 49.6 49.6 50.4 49.1

45·5

45.B

49·6 49.6 49.1 49.6 49.1

4-22-64

B020

50·5

50·5 50·7

5

-

25-64 oB55

50.0 0900

49·B

oB35

49.1

OB25

49·3

oB45

49·5 0910 51.6 0930 54·5

49·1 49.6

4B.9

49·3 49.3 50.2 54.5

47·9

46.B

4B.B

49·3

4B.4

49·5 53.6

5-26-64 0755 49.3

oBoo

50.0 0740 49.3 0725 53·6 0750 50.0

OB10

52·5

oB30

55·0

4B·9

49·1

4B

·9

53·6

4B

·9

52.4 54.2

(25)

1 2 3 4 5 6 7 8

Date (60) (60) (60) (60) (60) (60) (50) (40)

Time Temp, Time Temp Time Temp Time Temp Time Temp Time Temp Time Temp Time Temp

5-27-64 0840 52.0 0835 51.6 0830 50.0 0825 52.0 0820 52.2 0815 52.4 0810 52·9 0745 52·9 51.4 51.6 49·3 50·7 50.0 50·5 51.3 52.2 50.0 49·8 49·1 48·9 48.8 49·6 50.0 50·9 5-28-64 0855 54 ·7 0850 54.5 0845 53·2 0835 52.4 0830 52·5 0820 52·9 0825 53·8 0750 53·8 50·9 50·9 52.2 51.8 51.8 52·5 52·7 53·2 50.0 50.2 51.3 50·9 50·9 51.8 52.0 52.4 0 5-29-64 0850 53·0 0845 53.4 0840 51.3 0835 50.2 0830 50.0 0825 51.3 0820 51.4 0800 51.4 (') 49.1 48.6 48.2 48.4 49·6 49·6 49·1 50.4 trl 48.4 48.2 48.2 48.4 48.6 49·3 48·9 50.0

>

Z >-3 trl ~ "d trl 9 10 11 12 13 14 15 ~

>

Date (60) (100) (30) (12) (50) (40) (30) >-3 Time Temp Time Temp Time Temp Time Temp Time Temp Time Temp Time Temp

§l

5-27-64 0750 52.2 0755 52.2 0750 53·4 0740 55·0 0800 52·5 0820 52·7 0840 55.4 trl 50.0 49·3 52·7 55·0 50·9 51.8 54.7 48.8 47·9 51.1 55·0 50.4 51.8 54.2 5-28-64 0810 54·3 0800 53·0 0750 54.0 0730 57·2 0805 54.2 0825 54·3 0845 56.1 51.8 50.0 53.4 57·2 52·9 52·5 56.1 49·3 48.2 51.4 57·2 52.2 52.0 55·8 5-29-64 0805 50·5 0810 50·5 48.6 48.0 48.4 47·5 CD ...;J CD

(26)

(0

00

TABLE V 0

Bodega Head, Surf Temperatures SURF TEMPERATURES - of

SEE FIG. 4 FOR STATION LOCATIONS

A B C D E F

Date Time of Time of Time of Time of Time of Time of

3-13-63 1145 50.0 1215 49.5 1235 50.0 1150 50.0 1215 49·1 1245 49·5 3-14-63 0910 48·9 0930 48.6 0945 48.0 0915 48.0 0945 48.4 1015 49·1 (') 3-15-63 0845 48.0 0915 48.4 0925 48.0 0830 46.9 0900 47·5 0935 47.5

~

3-16-63 0845 48.0 0905 48.0 0915 48.0 0830 48.0 0900 48.0 0935 48.6 3-17-63 0835 48.0 0850 48.6 0905 48.0 0935 48.2 0950 48.2 0930 48·9 Ul ~ 4-24-63 0830 52.2 0825 52·9 0845 50·5 0800 50.2 0750 50.0 0730 50.4 :;J> 5-13-63 0830 52.2 0850 51.8 0900 49·6 0958 51.1 t"' 5-14-63 0715 51.1 0735 50·7 0750 50·9 0700 50.4 0630 50.4 0707 50·7 t::rj 5-15-63 0750 51.4 0740 51.1 0720 49·5 0730 48·9 0724 49.1 0757 50.0 Z 5-16-63 0720 49·5 0735 49.6 0745 49·1 0700 48.2 0722 48.6 0752 49·3 0 5-17-63 0715 49·3 0730 49·3 0745 51.1 0800 51.1 0646 49. 6 0730 50·5 ... Z 6-26-63 0700 51.8 0715 51.8 0730 50·9 0820 51.1 0820 51.1 0745 51.3 t::rj 7-15-63 0805 55·6 0815 55.8 0825 54.2 0840 53.6 0800 53·6 0830 54.8 t::rj 7-16-63 0720 51.8 0735 52.2 0750 50·7 0700 50.4 0720 50·7 0740 51.1 ::0 ... 7-17-63 0715 50·7 0725 51.1 0745 50.4 0800 49·6 0720 50·9 0745 51.8 Z 7-18-63 0740 50.4 0805 50.7 0815 50.0 0730 49.6 0720 50.0 0800 50.2 0 7-19-63 0740 51.6 0750 54.2 0800 50.0 0715 50.0 0725 50.2 0750 50·7 8-8-63 0810 54.2 0820 54.2 0850 54.0 0915 54.0 0905 54·7 0845 54.7 9-23-63 0830 57·9 0840 58.7 0850 57·6 0800 57.2 0945 58.7 0834 58·7 9-24-63 0820 57·9 0830 58.7 0845 56.6 0750 56.1 0840 56.8 0715 57.4 9-25-63 0750 57·2 0810 57.8 0820 56.8 0730 56.8 0720 57.6 0718 57.4 9-26-63 0750 57.6 0800 57·9 0815 57.8 0720 57.6 0810 58.1 0915 58·5 9-27-63 0820 57·0 0830 57.4 0840 55.8 0745 55·6 0810 55.6 0745 56.0 10-30-63 0800 53·8 0810 54.0 0820 53·2 0845 52.7 0900 53·2 0930 53·4 11-18-63 0935 55.4 0950 55.6 0920 55.6 0900 55·8 1030 55·8 0915 55.6 11-19-63 1045 55.8 1055 56.1 1105 56·5 1125 56.6 1145 56.8 1145 57·2 11-20-63 0835 55·8 0855 55·8 0905 56.0 0820 56.1 0915 56.0 0900 56.1 11-21-63 0845 54.7 0900 54.7 0910 54·5 0830 54.0 0910 54.7 0855 54.5 11-22-63 0900 54·3 0910 54·3 0920 53.6 0835 53·8 0830 53·6 0935 53.6

(27)

Fl G H Hl J K

Date Time of Time ~ Time of Time of Time of Time of

3-13-63 1145 51.8 1235 50·9 1215 51.8 1245 49·5 3-14-63 0950 48.0 0910 49.1 0920 48.6 0900 48.9 3-15-63 0900 47.7 0930 47·9 0945 48.0 0900 48.2 3-16-63 0935 48.2 0910 47.9 0850 48.8 0900 48.2 3-17-63 1010 49·5 0850 47·9 0900 48.2 0900 50.0 4-24-63 0700 50.4 0940 52.0 0920 51.8 1020 56.6 5-13-63 0930 51.6 0850 50·7 0905 52.2 0730 53.6 5-14-63 0641 52·5 0730 51.6 0745 51.3 0800 54.7 5-15-63 0727 50.2 0800 51.3 0845 50.2 0800 54.2 0 5-16-63 0732 50.4 0755 50.4 0740 50.4 0800 52·7 () 5-17-63 0713 53·6 0725 53.4 0710 53.6 0800 54.0 t:tj 6-26-63 0720 51.3 0845 53·0 1000 54.0 0945 54.5 0940 53·6 1050 56.6

>

7-15-63 0920 54 ·3 0850 55·4 0720 54.8 0805 55·6 0750 55·2 0800 57·0 Z 7-16-63 0800 51.8 0725 51.4 0710 52.0 0700 51.6 0715 57.0 >-3 7-17-63 0810 52.0 0855 52.4 0825 53·2 0815 51.8 0805 52·7 0745 56.6 t:tj 7-18-63 0825 50.4 0925 51.8 0900 50·9 0840 52·5 0830 52.0 0810 57·9 ~ 7-19-63 0815 51.3 0800 51.4 0740 51.3 0730 51.8 0720 52.0 0725 55.4 '0 t:tj 8-8-63 0826 55.4 0805 55·6 1005 56·3 1010 57.6 1020 57·2 1115 57.8 ~ 9-23-63 0918 57.6 0900 59·0 0725 57·9 0940 59·2 0945 58.7 0822 5906

>

9-24-63 0803 57·6 0805 58·3 0855 58.7 0905 59·0 0915 61.2 0850 61.0 ~ 9-25-63 0720 58·3 0720 58.1 0800 58.7 0810 58·9 0815 58·9 0810 59·9

§3

9-26-63 0745 58.5 0735 58·9 0820 57.8 0840 59·0 0845 57.8 0805 59·9 t:tj 9-27-63 0750 57·6 0745 57.4 0820 57.6 0840 56.3 0850 56.1 0800 59·0 10-30-63 0950 53·6 0950 53·6 1130 56.0 1145 55·6 1140 55·0 1045 57·9 11-18-63 0940 55·8 0950 54.8 1100 56.1 1110 56.1 1120 56.1 0915 55·0 11-19-63 1210 56.8 1210 56.8 0955 56.1 1000 56.1 1420 56.8 0855 56·5 11-20-63 0840 56.1 0835 55·2 0930 55.4 0945 56.1 0950 56.1 0830 56.1 11-21-63 0830 54·7 0830 53·6 0920 52·5 0925 54·3 0920 54 ·5 0805 53·6 11-22-63 0850 53·8 0920 53·0 0825 51.4 0835 52·5 0840 53·2

(28)

<0

TABLE V co ~

Bodega Head, Surf Temperatures

SURF TEMPERATURES - of SEE 'FIG. 4 FOR STATION LOCATIONS

A B C D E F

Date Time of Time of Time of Time of Time of Time of

12-11-63 0900 52·7 0915 52·5 0925 52·7 0950 52·9 0950 52·7 1015 52·5 1-27-64 0930 52.2 0950 52.4 1000 52.4 0915 52.2 0920 53·2 0940 53·2 1-28-64 0835 52.2 0850 52.2 0900 52.4 0820 52.2 0930 52·7 1000 52·7 (') 1-29-64 0845 52.2 0900 52.2 0910 52.2 0830 52.2 0945 52.4 1600 52.2 0 1-30-64 0900 52.4 0910 52·5 0920 52.4 0835 52.2 0925 52.2 0900 52.0

~

1-31-64 0840 52.6 0850 52.7 0900 52·7 0810 52·5 0910 52·5 0935 52.4 >-3 2-13-64 0820 50·9 0830 50·7 0845 50.4 0910 50·9 0900 50·7 0915 50.7 ;J> 3-23-64 1028 49·6 1015 50.0 1005 50.4 0950 49·3 1105 50.0 0930 50.0 t'" 3-24-64 0830 49·6 0840 49·3 0850 49·3 0905 49·3 0945 49·3 0930 50.4 I?=:I 3-25-64 0830 48·9 0840 48·9 0850 48·9 0900 48.6 0920 49·3 0905 49·3 Z 3-26-64 0830 49·2 0840 49·3 0850 48·9 0905 48·9 0950 48.6 0935 48·9

8

3-27-64 0845 49·6 0855 49·6 0905 49·6 0915 48·9 0910 50·7 0855 50·7 Z 4-22-64 0850 49·8 0905 49·8 0915 50.2 0930 50.0 1000 49·8 0945 50.0 I?=:I 5-25-64 1115 51.8 1105 50.4 1055 50.4 1030 50·7 1005 50.4 0950 50·7 I?=:I 5-26-64 0840 50·7 0845 51.1 0855 49·6 0910 50.4 0930 49.6 0910 50·7 ::0

....

5-27-64 0840 52.2 0845 53·2 0900 52·9 0920 52.2 0920 52.2 0910 5?·9 Z 5-28-64 0840 54.2 0845 55·0 0900 52·9 0920 52·5 0930 53·2 0910 54.0 CJ 5-29-64 0830 54.2 0835 54 ·7 0845 51.8 0905 51.4 0955 52.0 0945 54.0

- - - -

- -

(29)

-F1 G H Hi J K

Date Time of Time of Time of Time of Time of Time of

12-11-63 1040 52·5 1040 51.8 1200 51.6 1215 53·0 1210 53·2 1125 52·5 1-27-64 1010 54.2 1030 52·7 0920 51.4 0930 52.2 0955 52·5 0945 52.2 1-28-64 0845 53·2 0830 53·2 0900 51.6 0845 52.2 0830 52.2 0835 52.2 1-29-64 0930 52.2 0905 52·5 0840 51.3 0850 51.8 0830 51.6 0820 52.4 1-30-64 0840 52.2 0830 51.1 0850 52·5 0930 53·6 1-31-64 1005 52·5 0830 51.3 0805 49·5 0810 51.4 0820 51.4 0830 50.0 2-13-64 0845 50·7 0830 50.4 1000 50.0 0950 50·9 0945 50·9 1000 50.4 0 3-23-64 0915 49·6 0905 49·6 0850 50.0 0925 50·5 0915 50·5 1035 50·5 (') 3-24-64 0900 50.0 0830 50.0 0810 48.8 0840 49·3 0830 49·5 0910 50.4 )-t%j 3-25-64 0845 49·6 0830 49·1 0755 48.4 0750 48.4 0745 48.2 0825 50.2 Z 3-26-64 0915 49.3 0900 49·3 0815 48.8 0810 48·9 0800 49·1 0845 50.4 >-3 3-27-64 0830 50.4 0815 50.0 0800 49·3 0755 49·3 0750 49·3 0830 50.7 t%j 4-22-64 0925 50·5 0900 50·5 1200 54.0 1215 54·3 1220 54.7 1105 54.8 ~ 5-25-64 0935 50.4 0915 50.0 0930 48.4 0937 48.4 0945 48.2 1000 50.2 '"d 5-26-64 0855 50.4 0830 51.1 0800 48.8 0750 48·9 0745 49·1 0835 50.4 t%j 5-27-64 0840 55·4 0815 54.0 0755 49·3 0750 49·3 0745 49·3 0825 50·7 ::0 5-28-64 0845 54.3 0820 55·0 0800 54.8 0750 54.2 0745 54.0 0830 55·6 )->-3 5-29-64 0925 52·9 0910 52·5 0815 52·9 0810 52·7 0805 52·9 0855 56·5

~

t%j

(30)

984 COAST AL ENGINEERING

TABLE VI

Daily Maximum and Minimum Temperatures near

Bodega Head, California

(See Fig. 5)

MUSSEL POINT STATION

Jan Feb Mar Apr May June July Aug Sep Oct Nov Dec

Number Days Recorded 0

Ii5

tiO

59

52

~

37

11

50

41i lib 0

Max. Recorded Temp. 57 55 58 57 56 56 56 60 60 57

Min. Recorded Temp. 50 46 47 47 47 49 51 49 50 48

Percentage of Daily Maximums Equal to or Greater than

64 63 62 61 60 6 25 59 14 32 58 3 24 36 57 24 3 2 32 55 11 56 40 5 4 20 3 9 49 57 28 55 46 2 18 7 27 16 36 58 70 41 54 64 5 34 21 33 40 55 80 72 50 53 78 27 53 40 44 65 81 92 82 61 52 98 64 64 52 67 100 100 100 98 65 51 100 69 80 83 87 100 72 50 77 100 100 97 83 49 93 100 100 48 95 47 100

Percentage of Daily Minimums Equal to or Less than

60 59 100 58 100 86 57 98 68 100 56 100 88 61 98 55 87 74 52 85 54 78 100 60 41 78 53 62 100 100 100 79 100 52 34 67 52 40 100 86 96 93 62 90 40 27 56 51 13 83 75 87 77 54 55 26 25 45 50 2 47 56 81 63 38 12 7 37 49 38 27 52 43 11 2 24 48 32 11 17 27 13 47 18 1 4 3 46 5 45

(31)

OCEAN

TEMPERATURE

985

TABLE VI (cont'd)

Daily Maximum and Minimum Temperatures near

Bodega Head, California HORSESHOE COVE STATION

Jan Feb Mar Apr May June July Aug Sep Oct Nov Dec Number Days Recorded ---0

13

23 29

To

EiO

47

3I 53

Ii3

59

3I

Max. Recorded Temp. 54 54 56 55 59 56 59 60 60 57 54

Min. Record'ed Temp. 50 47 46 46 47 48 50 50 51 51 51

Percentage of Daily Maximums Equal to or Greater than 64 63 62 61 60 6 11 59 1 6 17 14 58 1 6 29 25 57 5 19 44 34 20 56 3 13 11 29 56 46 41 55 3 2 25 36 42 73 60 60 54 15 4 7 15 27 44 61 88 69 67 16 53 85 13 10 25 37 63 76 95 79 75 74 52 100 40 14 30 51 83 89 100 100 100 100 51 73 30 42 75 100 100 50 87 58 67 88 49 96 83 82 100 48 100 96 100 47 100

Percentage of Daily Minimums Equal to or Less than 60 59 100 58 100 95 57 99 89 100 56 100 88 84 98 55 100 100 94 74 71 83 54 93 98 84 56 50 58 53 100 100 90 91 76 44 48 41 100 52 92 100 95 85 78 65 34 36 32 67 51 23 91 100 82 80 63 60 15 27 17 16 50 15 61 96 80 70 55 12 5 49 30 96 75 55 42 48 26 83 60 28 6 47 8 55 32 13 46 14 7 45

(32)

986

COASTAL ENGINEERING

TABLE VI (cont'd)

Daily Maximum and Minimum Temperatures near

Bodega Head, California

(See Fig. 5)

PROPOSED DISCHARGE STATION

Jan Feb Mar Apr May June July Aug Sep Oct Nov Dec Number Days Recorded 0

3

3ti 3b

38

50 59

22 bO

34

59

20

Max. Rec orded Temp. 57 56 57 58 58 58 59 63 60 59 57 Min. Recorded Temp. 56 49 48 46 45 47 50 50 48 47 49 Percentage of Daily Maximums Equal to or Greater than

64 63 3 62 5 61 10 60 17 59 4 23 24 2 58 2 2 5 22 27 29 3 57 100 3 2 4 13 36 42 32 7 5 56 8 14 5 12 24 50 48 60 13 10 55 29 25 8 14 37 59 60 74 24 10 54 32 36 16 20 59 82 77 97 25 15 53 58 47 32 36 75 91 90 97 52 20 52 82 55 42 54 92 100 96 97 88 30 51 100 67 60 62 93 100 97 93 85 50 92 74 74 100 100 100 100 49 100 85 90 48 100 96 47 100

Percentage of Daily Minimums Equal to or Less than

60 100 59

98

100 58 93 94 57 100 100 100 85 85 56 67

98

96 78 74 100 55 100 100 100 95 86 72 65

98

100 54 92 94 98 90 73 67 50 98 95 53 84 92 96 75 73 48 41 98 95 52 74 80 100 92 59 55 37 24 90 95 51 60 75 92 85 39 14 23 12 78 90 50 26 67 85 72 27 9 8 6 37 75 49 3 59 74 62 22 6 24 25 48 14 66 42 8 6 12 47 47 26 2 2 46 13 6 45 4

(33)

OCEAN TEMPERATURE 987

TABLE VI (cont'd)

Daily Maximum and Minimum Temperatures near Bodega Head, California

(See Fig. 5)

HARBOR STATION

Jan Feb Mar Apr May June July

~

Sep Oct Nov Dec

Number Days Recorded

15

2B

27

35 23

54

59 40

38'

29

22

Max. Recorded Temp. 54 58 57 58 59 63 61 61 64 59 60 53

Min. Recorded Temp. 48 50 48 48 48 48 48 50 51 47 51 47

Percentage of Daily Maximums Equal to or Greater than

64 2 63 2 10 62 4 15 61 5 5 12 22 60 13 15 34 35 10 59 4 15 31 49 45 2 28 58 3 14 9 26 44 59 58 11 45 57 43 4 20 30 46 51 71 88 18 48 56 82 7 26 52 52 53 81 98 48 48 55 97 18 34 57 65 58 84 98 58 59 54 7 97 41 69 83 78 92 96 100 60 93 53 13 97 59 92 91 96 98 100 63 97 4 52 94 97 82 100 91 100 100 71 100 32 51 100 97 100 96 84 55 50 100 100 92 77 49 98 82 48 100 100 47

Percentage of Daily Minimums Equal to or Less than

60 100 59 100 98 58 98 100 95 100 100 57 96 95 85 98 86 56 100 93 100 90 80 98 73 55 86 100 100 91 95 83 65 92 59 54 57 100 97 91 89 90 76 43 74 55 53 100 11 89 92 78 85 87 63 38 53 52 52 94 78 89 74 72 78 59 20 50 7 100 51 94 70 80 70 50 41 39 18 45 3 91 50 47 63 72 52 31 27 22 42 68 49 40 37 49 30 13 12 34 41 48 13 4 11 13 7 1 24 27 47 11 18 46 45

Cytaty

Powiązane dokumenty