• Nie Znaleziono Wyników

Effect of a triangle stria in the optical system on the intensity distribution in the diffraction-limitedimage of a point

N/A
N/A
Protected

Academic year: 2021

Share "Effect of a triangle stria in the optical system on the intensity distribution in the diffraction-limitedimage of a point"

Copied!
4
0
0

Pełen tekst

(1)

Opiica zipp/fcata F

777

/

3

,

7

P

7

d

№ ? / f< 2 x z , Æ a z / w f ^ z P / g ^ ^ z ^ f g w / c z , Z i T / q c *

Eiiect o f a triangle stria in the optical system

on the intensity distribution in the diffraction-limited

image o f a point

In the paper the influence o f the triangle stria in a optica) system on the intensity distribution in a diffraction fimited image of a point-object has been analysed. The respective numerical catenations have been illustrated by graphs.

1. Introduction

In this paper we have examined the action o f the striae in idea! (aberration-free) optical systems. Although in some papers the influence o f the striae on the image quality o f real (aberrated) optical sys­ tems was analysed [2, 6] it seems that this problem discussed for ideal optical systems may render cogni­ tive results, which may be next exploited to toleran- cing the striae in well-corrected optica! systems (such as high class telescope objectives, laser beam collimating objectives and so on).

2. Theory

Let us assume that there exists a single stria in an optical system pupil. The position o f this stria and its size may be quite arbitrary. Suppose, for the sake

Fig. 1. The stria position in the exit pupil o f the optical system: a — pupil radius, 2h — stria width, Xo, yo — the stria centre

coordinates

* Institute o f Physics, Technical University o f Wroclaw, Wroclaw, Poland.

o f convenience, that the X-axis o f the coordinate system in the stria plane is parallel to the stria. Let Xo.yo denote the stria centre coordinate, 2A — the stria length, and

2

h — its width (see fig.

1

). The coordinates in the image plane are denoted by ??, whereby ^ = pcos v , ?? = p sin ^ for /rap 2n: 9 = — and Zr = — , A X where

A — wavelength o f the light,

7

? — radius o f the Gaussian sphere,

p — radius (dimensional) in the imaging plane, a — radius o f the exit pupil.

Amplitude distribution 1/(p, ^) in the diffraction image o f a point-object is, apart from a multiplicative constant, a Fourier transform o f the pupil function [

1

]. In particular, for the Gaussian plane we have

X exp ( — %r F(x, y)) i

7

x<

7

y , (

1

) where

F(x, y) — wave aberrations o f the system. The intensity distribution in the diffractional image o f the object-point G(p, y) is a squared modulus o f t/(p, v), i.e.

<?(?, v) = [t/fy, v)l^.

In this work (like in [

3

]) the calculations o f the function i/(p, yj) has been carried out in three stages, nam ely:

(2)

H. Ptokarz et al.

c/ /Ae

iir/o ...

1

. The complex amplitude Pi(9, y) from clear aperture (F(x, y) — 0).

2

. The complex amplitude from that part o f the pupil which contains the stria assuming that there exist no wavefront deformation in this region (i. e. F(x, y) = 0).

3

. The complex amplitude (<7, generated by stria at presence o f wavefront deformation in the stria region (F(x, y) = 0).

Thus, the sought value o f the complex amplitude in the image plane is

the wavefront deformation due to striae has the form

f( * , y) = fo - ^ [ x -* o l (4)

for

X „ — & ^ X < X o + ^

-After introducing the expression (

4

) to the formula (1) the following formula for ^(<7, has been obt­ ained

P(9- V) = P i (9. ^ ) - P2(9- v ) + P3 (9. V) -As it may be easily shown, i/, (<7, after normali­ zing (comp. [1]) is P)(9, V) = P3 (9. where

27

,(

9

) (

2

) , o, . /?sin y = — - smc ]---\ a where 7,(9) — Bessel function o f the first kind and

the first order, i/2 (9. v) is given by

HrK.^cosk^o-cos hj ^ (

9

, V) = (

3

) where ^ ?cos^ rr' ^ \ \ C/2 — — s m c l— Q'sm^ smc! — Q'cosw}, o / = 2h 2A — stria area, 0 = — pupil area, 1 = 2?r(xo#+^o^).

Xo, yo — coordinates o f the stria centre, 1 for x = 0, , , . . . . . ¿9cosy . h?cos^ xPo smkMQ--- stn---u a smc x = smx for x # 0.

The value o f P3 (?, y) depends on the assumed shape wavefront deformation in the stria region. For striae discussed in [

3

] the respective wavefront deformation was defined as follows:

(5) a ) b) c)

F(x,y) = F .,

r ( * ,y )

The resulting amplitude t/(<7, is thus

P(9, V) = P ,(9, V )-P 2 (9 . + + i / ; ( ? , ^ (zf;+B). Hence,

G(?, y) = P f + P ^ + P ^ ( ^ - l - ^ ) - 2 i / , i/;co se+ + 2(/, f/^Bcos e— ^ sin i) — 2Bi/2 (/3. (6) In order to determine the Strehl definition I we must put <7 —

0

in formulas (

2

), (

3

), and (

5

). Then

P i = 1,

^2 — !

The case a) presents analytic expressions for Ps(9, v)' and G(y, ^), while the cases b) and c) have been illustrated by graphs obtained from numerical calculations.

As is follows from [

4

] and our own observations the stria occurring in the glass cause most frequently a triangular deformation o f the wavefront. Therefore, in further considerations we have assumed that

1 zf = ^ - ( c o s ^ F o - 1 ) , 1

B = --- sinA: Fn.

AF.

108

(3)

H. Piokarz et ai. E^cct c/ rAe itrfa ... By inserting the above values to the formula (6)

the Strehl definition takes the form:

l - - y j s i n c X F „ +

^

2 - 3

+ a ,s m c ^ - ^ - .

The above formula is a particular case o f the for­ mula for many stria case, derived in [5].

3 . Concluding remarks

The intensity distribution G(g, y) has been cal­ culated numerically from the formula (6). The results obtained are shown graphically in figs.

2

,

3

, and

4

.

Fig. 2. The graph o f the intensity distribution for the stria iocated at the pupii centre: yo = 0, Fo — considered as a

parameter

7 - F . = 0; 2 - F . = 0.25A, x . = 0; y = 0°; 3 - F . = 0.50A, x . = 0, y = 0°; 4 - F . = 1.0A, x . = 0, y = 0°

= G(

0

, y) = j ^ ( c - c r j^ -

2

acr, ^

Fig. 3. The graph o f the intensity distribution for stria iocated in the pupii centre: Fo = 1.0A, y — considered as a parameter 7 - x . = 0, F . = 1A, y = 0°; 2 - x , , - 0, F . = 1A, y = 30°; 3 - x . = 0, F. = 1A, y = 60°; 4 - x . = 0, Fo = 1A, y = 90°

Fig. 4. The graph o f the intensity distribution for stria iocated outside the pupii centre: Xo = 0.5, Fo = 0.5A, y — considered as a parameter

7 - F . = 0; 2 - F . = 0.5A, x . = 0.5, y = 180°; 7 - Pi, = 0; 2 - F . = 0.5A, x . = 0.5, y = 0°; 3 - F . = 0.5A, x . = 0.5, y = 30° 2— F . = 0.5A, x . = 0.5, y = 270°

(4)

H. Plokarz et al. Æyècf o/ /Ae Ггмд^/е ^ггм ...

From 6g.

2

it fbiiows that as F . increases, the intensity in the middle o f the diffraction spot (Strehi deBnition) decreases, while the intensity in the secon­ dary maxima increases. It is characteristic that the action o f stria causing maximal deformation Fo =

0

.

5

 is similar to that evoking stria Fo = 1.02.

The intensity distribution in the diffraction image o f a point-object is shown in 6g.

3

for a stria located in the middle o f the pupil for different y. From the graph it follows that the intensity distribution is disturbed most strongly in the direction perpendicular to the stria.

For a stria located outside the pupil centre an asymmetry of the diffraction spot is observed (6g.

4

).

References

[1] GOODMAN J. W., I^troiArcn'oH ?o PoMr/if OpM'cr, McGraw- Hill Book Co., San Francisco 1968.

[2] HOFMANN Ch., REICHARDT 1., Experimentalle Technik der Physik 23, (1975), 513-523.

[3] KELLER R., Optik 21, 7 (1964), 360-371. [4] KÖHLER H., Optik 21, 7 (1964), 339-359.

[5] LrSOWSKA B ., PtETRASZKIEWICZ K . , PLOKARZ H . , RATAJ- CZYK F., Opt. Appl. v m , 3 (1978).

[6] RATAJCZYK F., Opt. Appl. VI, 4 (1976), 137-139.

Received, TVove/nAer 73, 7977 Влияние треугольной полосы в оптической системе на распределение интенсивности в дифракционном изображении точки В работе определено влияние треугольной полосы в оп­ тической системе на распределение интенсивности в ди­ фракционном изображении. Численные расчеты проиллюс­ трированы графиками.

Cytaty

Powiązane dokumenty

Since geophones are commonly used in SHM systems to monitor vertical deformations and to calculate modal properties, the first natural frequency of both beams

Mimo że ograniczenie kosztów jest głów- nym motywem międzynarodowej fragmentacji produkcji, to dostęp do wysokiej jakości zasobów pracy i wzrost innowacyjności stają się

Praktyka prawodawcy przenoszenia wprost materii preambuł do cze˛s´ci artykułowanej (s. 515), a takz˙e solidnie udokumentowany w pracy fakt, z˙e preambuły wewne˛trzne czasami

Do ostatniego páukania podczas mycia rĊcznego narzĊdzi nie naleĪy stosowaü wody A... Opakowaniem wielokrotnego uĪytku jest

Na rysunku widzimy, że praktyka poradnicza dla osób niepełno­ sprawnych poszukujących pracy osadza się tylko osadzona tylko częściowo w obszarze doradztwa

We analyse the influence of magnetic interactions and strong potential fluctuations in a QW plane on exciton dynamics, on formation and recombination rate of

Na dominację gminy Rewal wśród badanych jednostek wskazywał również rozkład gmin nadmorskich określający ich odległość od „wzorca” pod względem poziomu rozwoju

Except for state budget subsidies, as well as grants and loans from the National Fund for Environmental Protection and Water Management and provincial funds, these sources may