• Nie Znaleziono Wyników

Klimatyczno-czasowa sekwencja czarnoziemów w górach Changaju w Mongolii

N/A
N/A
Protected

Academic year: 2021

Share "Klimatyczno-czasowa sekwencja czarnoziemów w górach Changaju w Mongolii"

Copied!
10
0
0

Pełen tekst

(1)

ROCZNIKI GLEBOZNAWCZE, T. X X X II, NR 3, W ARSZA W A 1981

A LO JZY K O W A LK O W SK I

CLIMATIC-TIME SEQUENCE OF CHERNOZEMS IN THE

KHANGAI MOUNTAINS (MONGOLIA) 1

D ep a rtm en t of S o il S cien ce and F ertiliza tio n F orestry R esearch In stitu te, W a rsza w a -S ęk o cin

IN T R O D U C TIO N

The recent archaeologic, palynologie and paleopedologic investigat­ ions proved a complex genesis of chernozems in Europe. A lready D o -

k u с h a e V [4] has proved th a t the steppe duration periods were unequal

in particular regions. Steppes were periodically superseded by forests. In this connection the hum us accum ulation and the form ation of cher­ nozem profiles were different. Sim ilarly M i k l a s z e w s k i [9] regards these soils as form ations changeable in time. Recently the concept of boggy origin of chernozems was p ut forw ard by T u r s k i [10]. A fter F i t z p a t r i c k [5], in the continental cool and hum id climate of Holo­ cene chernozem w ith different initiation moments developed. Variable in the tim e climates gave them the features of brown, podzol, red-brow n, chestnut, solonetz, solonchak and gley chernozems. The aim of the work is to present the concept of clim atic-tim e conditioned genesis of cherno­ zems on an example of the sequence of these soils on the southern slope

of the K hangai range in Mongolia (Fig. 1).

IN V E ST IG A T IO N OBJECT

In 1974-1975 investigations on the altitudinal zonality of soils of the southern slope of the K hangai range along the line of N-S of about 70 km in length were carried out. The investigations comprised the area of large synorogenic granite-granodiorite intrusions of the Perm o-Carbo- niferous age as well as of younger old Mesozoic intrusions of granite in the central Khangai. This area lay in the Pliocene w ithin the range of volcanic activity and in the Pleistocene underw ent 2-3fold glaciation.

1 C ontribution No. 93 to the M ongolian — P olish P h ysical-G eog rap h ical E xp ed i­ tion.

(2)

162 A. K o w a lk o w sk i

Fig. 1. S itu a tio n of th e stu d y area ag a in st the sou th ern slope of the K hangai M is

The altitude above sea level from 3500 m in the central K hangai to

2 0 0 0 m in its southern p art and the influx of dry air masses from the

Gobi desert cause a specific zonality of the climate and the exposition asym m etry of w ater and therm ic conditions. According to B r z e ź n i a k [2], m ean tem peratures vary here in the w arm est m onth of Ju ly from

< 4 ° to 12-14°C, m axim um tem epratures — from <C8° to 18-21°C and

minim um tem peratures — from < 0 .3 ° to 7.5-8.0°C. Precipitations accor­ ding to D a u k s z . a and S o j a [3|] fluctuate from over 500 mm in the central K hangai to about 200 mm in the south. Jointy w ith low

F ig. 2. D istrib u tio n of so ils in th e area of sou th ern slope of the K h an gai M ts, d ep en d in g on ev a p o ra tio n and typ e of hyd rologie con d ition s 1 — p erm a fr o st brow n so ils u n d er th e m o u n ta in tun d ra, 2 — p erm a fr o st so liflu c tio n b row n so ils u n d er th e a lp in e m ead ow , 3 — cry o h u m id b ro w n ch ern o zem s u n d er a lp in e m e a d o w -ste p p e , 4 — p e r m a -fo r st b row n ch ern o zem s u n d er a lp in a fo r e st-ste p p e , 5 — c r y o g e n ic ch e s tu n t ch ern o zem s u ndr sem ia rid fo r e st-ste p p e , 6 — dark c h e s tn u t so ils u n d er se m i arid ste p p e .

(3)

Climatic-time sequence of chernozems 163 tem peratures, they lead to the form ation of perm afrost w ith accompany­ ing processes of frost w eathering, solifluction and cryoturbation. The occurrence of three hydrologie types : prevalence of precipitations over evaporation (P > E ) at the altitude above 2900-3000 m a.s.l., equilibrium or periodical prevalence of precipitations over evaporation (P ^ E ) at the altitudes of 2500-2900 m a.s.l. and prevalence of evaporation over precipitations (P < E ) at the altitudes of 2000-2500 m a.s.l. (Fig. 2) distinct conditioned the development of the plant cover. Therm ic and hydrologie conditions, localization and length of m ountain ranges inside the K hangai massif, led to a differentiation of w ater and w arm th balances on slopes w ith different and the same expositions. Consequently, definite asym ­

m etries and inversions in soil altitudinal zones occurred [7, 8].

SEQ U EN C E OF C H ERNOZEM S

M ountain chernozems developed from cryogenic brow n wastes of granite are characterized by a lack of carbonates in profiles, w hat is closely connected w ith the ratio of precipitations to evaporation (Fig. 2). In the zone of prevalence of precipitation over evaporation cryohumid brow n chernozems (profiles 040 and 041) occur on sunny slopes. Charac­ teristic solifluction surfaces of these soils are covered w ith the alpine

Kobresia meadom, w ith typical species of Kobresia Bellardii (All.) Degl., Polygonum viviparum L., Thalictrum alpinum L., Carex macrogyna Turcz.

ex Steud., Crepis polytricha Turcz., Ptilagrostis mongolica (Turcz. ex Trin.) Griseb., Pedicularis Oederi Vahl. Of the continental character of the site numerous species of the m ountain steppe w ith Festuca lenensis Drob., Poa attenuata Trin., Koeleria cristata (L.) Pers., Arenaria capillaris Poir., Leontopodium ochroleucum Beauv. and of the alpine m eadow-step- pe w ith Pulsatilla ambigua (Turcz.) Juz., Senecio campester (Retz.) D.C.,

Polygonum angusttfolium Pall., Anem one crinita Juz., can bear evidence.

Beside rich vegetation and frost processes, tran sit w aters flowing down from the tu n d ra situated higher are taking p art in the form ation of contem porary brow n chernozems. By these w aters dissolved m ineral and organic compounds are sedimented, w hat resu lt in a significant enrichm ent in nutrients of the hum us horizon of chernozems, the thick­ ness of w hich usually exceeds 50 cm. This horizon distinguishes itself w ith a uniform distribution of humus and w ith high biological activity at pH 3.9-4.7 m anifesting itself on the crum ble stru ctu re of soil and num erous population of earthw orm s. The sorption capacity and the sa­ tu ration w ith bases are low (Table 1). In more humid sites cryogenic chernozems pass into cryohydrom orphic peat soils. On dry sunny slopes chestnut chernozems w ith higher percentage of plant species of arid

steppe appear [7, 8].

(4)

pre-T a b l e 1

E xchangeable c a t io n c o m p o sitio n and s o r p t i o n p r o p e r t i e s o f chernozem s in the K hangai m o u n ta in s

P r o f i l e Depth cm G e r.etic h o r is c n A l t i t u d e m a . 9 .1 . C o lo u r E xch an g eab le c a t i o n c o m p o sitio n m e /100 г o f a o i l I:h me Th me V % Са+Кя K-t- Ба No. Ca Mg К U a 1 2 3 4 5 6 7 8 9 10 11 12 13 040 5-10 A 2950 10 YR 2 /2 2 .7 5 . 0 .1 9 0 .5 1 0 .4 3 5.51 C .44 4 1 .6 2 .7 40-50 A 10 YR 2 /3 2 .2 5 0 .1 4 0 .3 5 0 .3 5 6 .7 3 0 .8 7 3 1 .3 3 .4 041 0 -5 A 2310 7 .5 YE 2 /2 2 .9 5 0 .1 9 1 .0 5 0 .8 5 5 .4 4 10.48 48.1 1 .7 35-40 A 7 .5 YR 2 /1 2 .7 5 0 .1 0 0 .7 1 0 .7 5 6 .4 5 1 0 .8 4 4 0 .5 2 .0 50-55 AC 2 .5 YB 4 /4 2 .3 5 0 .1 5 0 .1 5 С .51 оо 6 .16 5 1 .3 3 .8 70-75 Bv 2 .5 YR 4 /4 1.94 0 .1 2 0 .0 5 C . 34 2 .4 4 4 .8 9 50.1 5 .3 065 0 -5 A 2700 10 YK 2 /1 15.10 3.6 5 0 .7 3 0 e?3 5 .4 0 2 5.11 7 8 .5 1 4 .4 10-20 A 10 YR 2 /1 11.33 2 .9 2 0 .3 4 0 .2 0 5.5 b 2 0 .3 5 7 2 .7 2 6 .4 30-35 ABv 10 YR 3 /3 10.53 2.60 0 .2 4 0 .2 6 5.56 1 9 .2 4 7 1 .1 2 6 .4 55-60 Вт 2 .5 Y 4 /4 6 .8 0 1.6 8 0 .2 4 С . 17 4.01 13.10 6 9 .4 2 1 .2 064 0 -5 A 2665 10 YR 7 /1 16.61 5 .21 0 .8 3 0 ,2 6 6 .1 5 2 9.11 7 8 .3 19.1 15-20 A 10 YR 2 /3 12.46 3.85 0 .4 2 0 .4 1 5 .0 6 2 2 .2 0 7 7 .2 1 9 .6 40-45 Bv 10 YR 4 /3 10.20 3 .3 3 0 .3 2 0 .2 0 3 .5 4 17.99 7 8 .1 2 6 .0 55-60 DBv 2 .5 Y 4 /4 1 0.58 2 .5 0 0 .2 1 0 .2 0 2 .1 4 1 5 .6 3 8 6 .3 3 1 .9 009 0-5 A к 2524 10 YR 3 /2 6 .9 5 0 .3 9 0 .5 8 0 .8 7 4 .6 l 1 3 .4 0 6 5 .6 5 .1 25-30 Ak 10 YR 3 /2 6 .7 5 0 .4 4 0 .2 8 1 .1 3 4 .3 9 1 2 .9 9 6 6 .2 5 .1 40-45 Bvt 2 .5 Y 5 /4 3.7 0 0 .2 4 0 .1 4 0 .8 4 2 .1 8 7 .1 0 6 9 .3 4 .0 70-75 Bv 2 .5 Y 5 /4 3.4 5 0 .2 5 0 .1 4 1 .1 3 2 .3 2 7 .2 9 6 8 .2 2 .9 16 4 A . K o w al k o w sk i

(5)

Cl im ati c-t im e se q u en ce of ch er n o ze m s 1 6 5 1__________ 2____________ 3 4_____________ 5_____________ §___________ 2____________ §___________ 4 10 I 11 I 12_________ 13 062 0 -5 A 2435 10 YB 2 /1 37.8 3 12 .2 9 1 .6 4 0 .1 3 6 .7 9 5 3 .7 8 8 8 .4 2 7 .6 10-15 3yA 10 YB 3 /2 26 .6 3 5 .0 0 О. 6 3 0 .1 9 4 .5 8 3 7 .0 3 0 7 .6 39 .0 25-30 Вт 10 YB 3 /4 2 1 .7 5 4 .6 2 0 .9 1 0 .1 8 4 .4 0 31 .7 6 8 6 .2 2 6 .6 50-60 By 2 .5 ï 3 /4 14.63 3 .9 5 0 .9 3 0 .1 7 3 .2 6 2 2 .9 4 8 5 .8 16 .9 063 5-10 A 2422 10 YB 2 / 1 2 5 .5 0 7 .2 2 1 .5 2 0 .1 9 10 .4 3 44*90 7 6 .7 1 9 .2 10-15 BvA 10 YU 3 /3 1 9.53 4 .2 4 O.6 1 0 . 1 8 7 .0 7 31.98 7 7 .9 Ю .5 25-30 BvA 10 YR A/A 1 1 .5 0 3 .0 6 0 .3 4 0 .2 1 5 .2 8 2 0 .3 9 7 4 .1 2 6 .5 65-70 Вт 2 ,5 Y 4 / 4 3 . 33 2 .2 1 0 . 31 0 .2 0 2 .9 9 1 4 .0 9 7 8 .в 2 0 .7 002 0 -5 dA 2409 10 YB 2 /1 1 0 .2 5 0 .6 7 0 .9 6 1 .9 6 11.43 2 5 .3 2 5 4 .7 3 .7 35-40 dA 10 YR 4 / 2 7 .5 0 0 .5 2 0 .6 7 2 .2 6 7 .2 0 1 8 .1 5 6 0 .3 2 .7 60-65 dA 10 YR 4 /2 7 .7 5 0 .5 3 O.30 1 .7 4 9 .3 3 1 9 .6 5 5 2 .5 4 .0 001 0 -5 <lAk 2409 10 YB 2 /2 8 .1 3 0 .5 1 1 .6 7 4 1 .5 2 4 .2 3 16.11 7 3 .4 3 .9 20-25 dAk 10 YB 2 /1 6 .0 0 0 .4 0 1 .2 3 1 .3 0 2 .4 7 11 .4 0 7 8 .3 2 .5 6 0-70 dAea 10 YB 2 /1 8 .1 0 0 .5 2 0 .7 3 7 .9 1 0 17.31 100 .0 1 .0 120-125 Bv 2 .5 Y 5 /4 6 .7 5 0 .4 5 0 .2 6 2 .0 0 0 9 .4 6 1 0 0 .0 3 .2 155-160 Вт 2 .5 Y 5 / 3 2 .3 0 0 . 1 6 0 .2 1 0 .8 7 1 .0 1 4 .5 5 7 7 .8 6 .6

(6)

166 A. K o w a lk o w sk i

valence of precipitations over evaporation is characterized by the occur­ rence of non-carbonate brow n chernozems w ith perm afrost in u nder­ ground on no rthern slopes. Dry southern slopes are overgrown w ith the arid steppe vegetation on weakly developed and strongly denuded chest­ nu t soils.

Perm afrost brow n chernozems (profiles 062, 063) show numerous, usually relict features of cryogenic solifluction and earth slides and are usually covered w ith m ountain forest-steppe vegetation. In larch stands w ith Larix sibirica Ledb. xeromesophilic and xerophilic forest-steppe, m eadow-steppe und m ountain-steppe species are growing. To them be­ long : Lathyrus hum üis (Ser.) Spreng., Thalictrum m inus L., Calama-

grcstis purpurea (Trin.) Trin., Galium boreale L., Aquilegia sibirica Lam., Iris ruthenica Ker. Gawl., Aegopodium alpestre Ledeb., Lilium martagon

L., Carex amgunensis Fr. Schmidt, Anem one crinita Juz., Festuca rubra L., Poa sibirica Roshev. [!]•

The hum us horizon of these soils shows an unequal distribution of humus, at its m axim um accum ulation close under surface. The sorption capacity and the saturation degree w ith basic cations are high ones (Table 1). Thus there occur features of both more arid climate and of accum ulation of forest humus. They superimpose the profile of cryoge­ nic brow n chernozems. In drier places distinct features of chestnut soils occur.

In the hydrologie area, w here evaporation prevails over precipitations, on northern slopes among steppe chestnut soils islands of chestnut cher­ nozems w ith relict cryogenic features are to be found under plant communities of larch forest-steppe. In plant communities the following characteristic species occur : Festuca lenensis Drob., Koeleria cristata (L.) Pers., H elictotrichum schellianum (Hack.) Kitag., Bromus pum pell-

ianus Scribn., Trisetum sibiricum Rupr., Poa sibirica Roshev., Campanula turczaninovii Fed., Potentïlla nivea L., Myosotis asiatica Schischk. et

Serg., Rosa acicularia Lindl., Pedicularis rubens Steph. ex Willd., Trollius

asiaticus L., Anem one crinita Juz., Pulsatilla ambigua (Turcz.) Juz., Aster alpinus L., O xytropis filiform is DC, Heteropappus asiaticus (Willd.)

Novopokr. [6, 1].

G reater p art of cryogenic chestnut chernozems is under plant com­ m unities of m ountain steppe and meadow-steppe (profiles 006, 064 and 065) w ith predom inant species of Polygonum alopecuroides Turcz., San-

guisorba officinalis L., Leontopodium ochroleucum Beauv., Campanula turczaninovii Fed., Potentïlla nivea L., Pulsatilla ambigua (Turcz.) Juz.

A high percentage of alpine species w ith Ptilagrostis mongolica (Turcz.) Griseb., Gentiana algida Pall., Potentïlla gelida C.A. Mey, Polygonum

viviparum L., is observed. N on-carbonate chestnut chernozems form

frequently local ranges on no rth ern exposition, in the places of solifluction niches and tongues, i.e. more hum id th an the surrounding dry steppe

(7)

Climatic-time sequence of chernozems 167 area. These soils are characterized by different sorption capacity values, at a high prevalence of bivalent cations over m onovalent ones, and by a high saturation degree w ith bases (Table 1). Characteristic for soils of the arid steppe is less am ount of organic m atter in the upper p art of the humus horizon than in the deeper part.

On valley bottoms deluvial chernozems are to be found. They divide

into deluvial chestnut chernozems (profile 0 0 1) and salty deluvial

perm afrost chernozems (profile 002, Table 1).

R EC A PIT U LA T IO N

In the environm ent of continental climate the belts of m ountain chernozems occupy usually more hum id sites in particular climatic altitudinal zones. This fact, valid also for lowland areas, according to D o k u h a e v [4] and M i k l a s z e w s k i [9], confirms the data of S t e p a n o v [11] and F i t z p a t r i c k [5] concerning significant role of hydrologie and low tem perature factors in the hum us accumulation process and development of chernozems. On the area under study the saturation degree of sorption complex w ith basic cations and the hum us content in upper p art of the A horizon, are closely connected w ith hydro­ logie conditions (Fig. 3).

The contem porary intensive humus accum ulation is running in brown chernozems situated in the m oderately cold [2] and hum id [3] climatic zone at the altitudes of 2700-3100 m a.s.l. In the cool and arid steppe zone w ith higher tem peratures and low precipitations at the altitudes of 2000-2400 m a.s.l. a recent decrease of soil hum us reserves is taking place. It is an index of the clim atically conditioned change of hydro- therm ic conditions in soils.

Thus the chernozems in question form a chronosequence. Its youn­ gest link constitute contem porary cryogenic brow n chernozems under alpine meadow-steppe. Older elements are perm afrost brow n chernozems under forest-steppe and chestnut chernozems under sem iarid forest- steppe and steppe. They are relict chernozems superim posed by the features of younger aridic environm ent of soil form ation and plant com­ m unities adapted to them. Under favourable bioclimatic conditions chernozem can develop from alkali-poor rocks. The calcium carbonate accum ulation and salinization of these soils is a consequence of the climate aridization.

Hence the chernozems occurring in Europe are, in view of climatic conditions unfavourable for the hum us accumulation, relict Pleistocene and early Holocene soils, transform ed by the Holocene environm ent.

(8)

168 A. Kowalkowski

University, Institute of Botany, Krakow for the suply of unpublished plant cover description of the alpine meadow and meadow-steppe.

Fig. 3. R ela tio n sh ip b e tw e e n the a ltitu d e a.s.l. and the con ten t of organic carbon on the one hand and th e sa tu ra tio n d egree w ith b asic cation s in th e soil la y er

of 0-20 cm

1 — p erm a fr o st b row n so ils of tun d ra and a lp in e m ea d o w , 2 — p erm a fr o st b row n ch ern o zem s of a lp in e m e a d o w -ste p p e , 3 — p erm a fr o st c h e stn u t ch ern o zem s o f a lp in e fo r e st-ste p p e , 4 — dark c h e stn u t so ils of se m i arid step p e, 5 — w e a k ly d e v e lo p e d b rig h t c h e s tn u t so ils of arid

ste p p e

R EFEREN CES

[1] B a n n i k o v a J. A., K h u d y a k o v a О. I. : P o c h v e n n o -r a stite ln y e p odpoiasa lesn o g o p oiasa yu g o v o sto ch n o g o K h an gaia. S tru k tu ra i d in am ik a ob sh ch ik h e k o sistem o v v M NR. L en in grad 1976.

i[2] B r z e ź n i a k E. : T h erm al zon es on th e sou th ern slop es of th e K hangai. B u ll. A cad. *Po!on. Sei., Ser. S ei (le la T erre 25, 1977 3>-4, p. 211-218. [3] D a u к s z a L., S о j a R. : T he zon es and le v e ls of w a te r p h en om en a in the

(9)

Climatic-time sequence of chernozems 169

T sa g a n -T u ru tu in -g o l B asin . B ull. A cad. P olon . S ei, Ser. S ei. vde la T erre 25, 1977, 3-4, p. 203-210.

[4] D о k u с h a e V V. V. : R u ssk ii ch ernozem . S. P eterb u rg 1883.

[5] F i t z p a t r i c k E. A. : A sy stem a tic approach to soil scien ce. E dinburgh

1971. i

[6] K o w a l k o w s k i A., P a c y n a A. : T ypes of h abitats in the Sant V alley in S o u th ern K h an gai. B ull. A cad. P olon. ( S ei, Ser. S ei de la T erre 25, 1977,

3-4, p 235-245.

'[7] К o w a 1 ko w s k i A. : T he stru ctu re of a ltitu d in a l zon ation of so ils in the D on o in -D zh u n -n u ru u , m a ssif, K h an gai M ts. (M ongolia). G eograp h ia P olon ica 43, 1980, p. 111-123.

[8] K o w a l k o w s k i A., D o r s h g o t o v D. : G eneral regu larities in the g eo g ra p h ica l zo n a lity of soils in M ongolia. Q u estio n es G eograp h icae 2, 1980 (in print).

[9] M i k l a s z e w s k i S. : G leb y P o lsk i (S oils of P oland). W arszaw a 1930. [10] T u r s k i R. : C zarnoziem P o lsk i (P olish chernozem ). Mat. na zebr. V K om .

PTG 24-25 M ay 1980, Jab łon n a.

[11] S t e p a n o v J. N. : E k o lo g o -g eo g ra fich esk ii a n a liz p och ven n ogo p ok rova S red n ei A z i i ., M oskw a 1975.

A. KOW ALKOW SKI

K LIM A T Y C Z N O -C Z A SO W A SEK W EN C JA CZARNOZIEM ÔW W G Ó RACH C H A N G A JU W M ONGOLII

Zakład G leb o zn a w stw a i N a w o żen ia In sty tu tu B ad aw czego L eśn ictw a , W a rsza w a -S ęk o cin

S t r e s z c z e n i e

W środ ow isk u k lim a tu k o n ty n en ta ln eg o zasiągi g órsk ich 4czarn oziem ów zajm u ją w p o szczeg ó ln y ch p iętra ch k lim a ty czn y ch p o łu d n io w eg o sk łon u C h an gaju (rys. 1) zazw yczaj sied lisk a w ilg o tn ie js z e (rys. 2). Ten^ fak t, p o d k reśla n y ró w n ież przez D o k u c z a j e w a [4] i M i k l a s z e w s k i e g o [9], p o tw ierd za d ow od y S t ę p a - n o w a [11] i F i t z p a t r i c k a i[5] o isto tn ej roli czyn n ik a h yd rologiczn ego i n is ­ k ich tem p eratu r w ak u m u la cji p róch n icy i k szta łto w a n ia czarn oziem ów . Na b ad a­ n y m obszarze stop ień w y sy c e n ia t k om p lek su sorp cyjn ego zasad am i i zaw artość p ró ch n icy w p o w ierzch n io w ej części poziom u A m ają śc isłe zw ią zk i z w a ru n k a m i h y d ro lo g iczn y m i (rys. 3).

W sp ółczesn a in ten sy w n a a k u m u lacja p róch n icy p rzeb iega w czarn oziem ach b ru n atn ych zn ajd u jących się w k lim a cie u m ia rk o w a n ie zim n ym [2] i w ilgotn ym [3] w p iętrze na w y so k o ścia ch 2700-3100 m n.p.m . W gleb a ch pod su ch ym . step em z w y ż sz y m i tem p eratu ram i w sp ó łcześn ie n a stęp u je zm n iejsza n ie zasob ów p róch ­ n icy . .J e st to w sk a źn ik k lim a ty czn ie u w a ru n k o w a n ej zm ian y śro d o w isk a h yd ro- term iczn ego w glebach.

O m aw ian e czarn oziem y tw orzą w ię c ch ro n o sek w en cję. N a jm ło d szy m jej czło ­ n em jest w sp ó łc z e sn y czarn oziem b ru n atn y pod w yso k o g ó rsk ą łąką. .S ta r sz y m i w ie k o w o sk ła d n ik a m i są k o lejn o czarn oziem y b ru n atn e pod la so step em i czarn o­ ziem y k a szta n o w e p o d t su ch ym la so step em (rys. 2). S ą to czarn oziem y relik to w e, na k tóre n a k ład ają się cech y m łod szych arid ow y śro d o w isk gleb o tw ó rczy ch i d o ­ sto so w a n y ch do n ich zb io ro w isk ro ślin n y ch . W sp rzy ja ją cy ch w a ru n k a ch b io k

(10)

li-170 A. K o w a lk o w sk i

m a ty czn y ch czarn oziem y m ogą p o w sta w a ć z g ra n itó w ub ogich w zasady. A k u m u ­ lacja w ęg la n u i za so len ie w ty ch g leb ach n a stęp u je w sk u tek a rid yzacji k lim atu . Doc. d r A l o j z y K o w a l k o w s k i

I n s t y t u t B a d a w c z y L e ś n i c t w a w Sęk o c in ie , 05-550 R a s zy n

Cytaty

Powiązane dokumenty

The Court of Justice of the European Union shall have jurisdiction in actions on grounds of infringement of the principle of subsidiarity by a legislative act, brought in

Аналіз випадків руйнувань машин і конструкцій свідчить, що більшість із них (до 80%) відбувається внаслідок втоми металів.. З моменту виявлення втомних

Analizując reprezentacje digi- talnej animalistyki w fabularnym kinie live action 4 ostatniej dekady, wyróżniam kilka podstawowych konwencji obrazowania zwierząt, a także staram

The best fit to the EXAFS data was for the model assuming that majority of Zn atoms in MEO- DMC catalyst still have the local atomic order as should be in the

Goodness-of-fit tests based on characterizations of continuous distributions via expected values of two functions of order statistics or record values and U - statistics were

The aim of the study was to investigate the distributions of trace elements in water and their accumulations in sediment of meromictic Piaseczno pit lake (southern Poland) created in

p = ..., therefore we reject /do not reject the null hypothesis that the row and column variables are independent of each other (mark the right answer).. Hint: The χ 2 (2)

Stack-losses of