• Nie Znaleziono Wyników

Some recent advances in the prediction of ship motions and ship resistance in waves

N/A
N/A
Protected

Academic year: 2021

Share "Some recent advances in the prediction of ship motions and ship resistance in waves"

Copied!
18
0
0

Pełen tekst

(1)

1

International Jubilee ]S4eeting

on the Occasion of the

40th Anniversary of the

Netherlands Ship Model Basin

August 30 - September 1, 1972

The NSMB - 40 years of scientific industrial service in marine

technology

and

synopsis of papers

1972

Netherlands Ship Model Basin

Wageningen the Netherlands

(2)

Contents

Preface

D r R . J. H . K r u i s i n g a , Secretary o f State

The NSMB-40 years o f scientific i n d u s t r i a l service i n m a r i n e technology

Prof. Dr Ir J. D. van Manen

C o n t r i b u t i o n s o n some c u r r e n t p r o b l e m s o f ship resistance

Prof. Dr L. Landweber

O n w i n d resistance

Prof. Dr Ing. K. Wieghardt

Recent developments i n marine p r o p e l l e r h y d r o d y n a m i c s Dr Ir M. W. C. Oosterveld and Ir P. van Oossanen 35 35 36

Some developments i n the area o f strength and

v i b r a t i o n s o f ships 40

Dr E. Abrahamsen

Propeller v i b r a t o r y s h a f t forces affected by design

and e n v i r o n m e n t a l c o n d i t i o n s . 41

Prof Dr Ir R. Wereldsma

C o m p u t e r aided ship p r o d u c t i o n , management and

c o n t r o l 41

Prof E. G. Frankel

D e s i g n and operations 42

Ir J. HoUrop and Ir A. Koops

C a v i t a t i o n and its d e t r i m e n t a l effects

Ir J. H. J. van der Meulen

36 A p p l i e d mathematics i n ship h y d r o d y n a m i c s Prof. Dr R. Timman 37 F i s h p r o p u l s i o n Prof Th. Y. Wu 37 M a n e u v e r a b i l i t y , State o f the a r t Prof. Dr S. Motora 38

Some recent advances i n the p r e d i c t i o n o f ship m o t i o n s

a n d ship resistance i n waves 38

Prof. Ir J. Gerritsma

R e t r o s p e c t i o n o n 15 years NSMB seakeeping activities 39

M. F. van Sluijs and Ir S. G. Tan

Ocean T e c h n o l o g y

Dr Ir J. P. Hooft

(3)

Some recent advances in the prediction of ship motions and ship resistance in waves

P r o f . I r J. G e r r i t s m a

U n i v e r s i t y o f T e c h n o l o g y , S h i p b u i l d i n g D e p a r t m e n t , D e l f t

Synopsis

Since the p u b l i c a t i o n o f the strip theory m e t h o d , as f o r m u l a t e d by K o r v i n - K r o u k o v s k y and Jacobs a n d m o d i f i e d by others, the c a l c u l a t i o n o f heaving a n d p i t c h i n g m o t i o n s i n a given seaway c o u l d be carried o u t w i t h sufficient accuracy f o r m a n y p r a c t i c a l purposes. Substantial experimental evidence to c o n f i r m the theory is available and the n u m e r i c a l methods based o n the strip theory m e t h o d are n o w used f o r design purposes a n d strength calculations. The use o f ship m o t i o n theory i n ship design to o b t a i n o p t i m u m seakeeping quahties under given wave c o n d i t i o n s is slowly expanding. T i m e r e d u c t i o n o f the calculations used f o r this purpose is essential and some interesting developments i n this d i r e c t i o n liave been r e p o r t e d .

There is an increasing d e m a n d f o r the analysis o f six degrees o f f r e e d o m m o t i o n s a n d l o a d i n g . F o r this m o r e general case, the s i t u a t i o n is somewhat d i f f e r e n t f r o m the ship m o t i o n p r o b l e m i n head waves: there is n o c o m -parable v e r i f i c a t i o n o f the theory available. Despite this f a c t considerable progress has been r e p o r t e d i n the analysis o f lateral m o t i o n s d u r i n g the last f e w years.

I t s h o u l d be m e n t i o n e d that i m p l i c i t l y the s t r i p theory methods are restricted to certain s h i p f o r m s because parts o f the three-dimensional effects are i g n o r e d .

A systematic series o f seakeeping experiments is p l a n n e d at D e l f t S h i p b u i l d i n g L a b o r a t o r y to investigate the l i m i t s o f the a p p l i c a b i l i t y o f the strip t h e o r y methods. The tests i n c l u d e a very w i d e v a r i a t i o n o f the l e n g t h / beam r a t i o to include a very t h i n a n d a very f a t m o d e l .

A d d e d resistance i n waves is another subject w h i c h draws the a t t e n t i o n . A recent treatment o f this p r o b l e m employs the o u t g o i n g energy o f the d a m p i n g waves, caused by the o s c i l l a t i n g ship. The results are c o n f i r m e d by experiments w h i c h , i n a d d i t i o n , show t h a t the resistance

(4)

Some recent advances in the prediction of ship motions and ship

resistance in waves

P r o f . I r J. G e r r i t s m a / U n i v e r s i t y o f T e c i i n o l o g y , S h i p b u i l d i n g D e p a r t m e n t , D e l f t

Introduction

I n the last f e w years some interesting i m p r o v e m e n t s have been i n t r o d u c e d i n the n u m e r i c a l methods f o r p r e d i c t i n g the seagoing qualities o f ships and other f l o a t i n g objects. Since the p u b l i c a t i o n o f t h e s t r i p theory m e t h o d , as f o r m u l a t e d by K o r v i n - K r o u k o v s k y and Jacobs and m o d i f i e d by others, tlie c a l c u l a t i o n o f heaving and p i t c h -i n g m o t -i o n s -i n a g-iven seaway c o u l d be carr-ied o u t w i t h sufficient accuracy f o r m a n y practical purposes, w i t h o u t using e m p i r i c a l or experimental data. F o r this p a r t i c u l a r case there is substantial experimental evidence to c o n f i r m the theory, and the numerical methods based on the strip theory m e t h o d are n o w used f o r instance f o r design purposes and strength calculations. The wave load c a l c u l a t i o n p r o v e d to be a valuable t o o l f o r the extra-p o l a t i o n o f strength rcqtiirements f o r very large sliiextra-ps, a l t h o u g h the statistics, w h i c h are used f o r the l o n g t e r m predictions are sometimes questionable. Wetness calcula-tions are i n use f o r the d e t e r m i n a t i o n o f m i n i m u m free-b o a r d and p r e d i c t i o n o f s l a m m i n g and s p r i n g i n g is carried out w i t h a view o f the local load o n the construc-t i o n . The use o f ship m o construc-t i o n construc-theory i n ship design construc-to o b t a i n o p t i m u m seakeeping qualities under given wave c o n d i t i o n s is s l o w l y e x p a n d i n g . The advantage o f a t o o l to compare a large n u m b e r o f alternatives w i t h regard t o seakeeping behaviour is o b v i o u s f o r certain designs, b u t m o s t o f the existing c o m p u t e r p r o g r a m s are n o t adapted to this purpose because o f the relatively large t i m e c o n -s u m p t i o n . T i m e r e d u c t i o n f o r -such calculation-s i-s e-s-sen- essen-t i a l and some inessen-teresessen-ting developmenessen-ts i n essen-this d i r e c essen-t i o n have been r e p o r t e d .

There is an increasing demand f o r the analysis o f six degrees o f f r e e d o m m o t i o n s a n d l o a d i n g . F o r this general case, represented by the ship sailing i n o b l i q u e waves, the s i t u a t i o n is somewhat d i f f e r e n t f r o m the ship m o t i o n p r o b l e m i n head waves: there is no c o m p a r a b l e v e r i f i c a -t i o n o f -the -t h e o r y available. Despi-te -this f a c -t consider-able progress has been reported i n the analysis o f lateral m o t i o n s d u r i n g the last f e w years.

A p a r t i c u l a r d i f f i c u l t y i n the linear strip theory presents

the r o l l i n g m o t i o n , w h i c h can be very non-linear due to n o n - l i n e a r d a m p i n g and restoring moments. Significant scale effect i n r o l l i n g o n ship models can be expected because o f f r i c t i o n a l a n d e d d y i n g effects and dependable scaling methods to extrapolate m o d e l values to the ship are n o t available. C l e a r l y there is a need f o r systematic research i n this area. I t s h o u l d be m e n t i o n e d that i m -p l i c i t l y the stri-p theory methods are restricted to certain ship f o r m s because parts o f the three-dimensional effects are i g n o r e d . O n the other h a n d an astonishing c o r r e l a t i o n w i t h experimental results is sometimes f o u n d where the ship f o r m c o u l d be described as f a t or b l u n t .

A systematic series o f seakeeping experiments is p l a n n e d at D e l f t S l i i p b u i l d i n g L a b o r a t o r y to investigate the l i m i t s o f the a p p l i c a b i l i t y o f the strip t h e o r y methods. The tests include a very w i d e v a r i a t i o n o f t h e length/beam r a t i o to include a very t h i n and a very f a t m o d e l . Some o f the results are available and w i l l be presented i n the f o l l o w -ing chapter.

A d d e d resistance i n waves is another subject w h i c h draws the a t t e n t i o n . H a v e l o c k ' s w e l l - k n o w n m e t h o d to calculate the average net resistance force i n head waves, by using the u n d i s t u r b e d wave pressure, is not c o m p l e t e l y satisfactory and can o n l y be regarded as a first a p p r o x i -m a t i o n .

A recent treatment o f this p r o b l e m employs the o u t g o i n g energy o f the d a m p i n g waves, caused by the o s c i l l a t i n g ship.

The results are c o n f i r m e d by experiments w h i c h , i n a d d i -t i o n , show -tha-t -the resis-tance increase c o m p o n e n -t varies as the wave height squared.

I n the f o l l o w i n g , some o f the subjects m e n t i o n e d i n the i n t r o d u c t i o n , w i l l be reviewed i n m o r e d e t a i l , i n p a r t i c u l a r w i t h respect to their practical a p p l i c a t i o n i n naval a r c h i -tecture.

(5)

Improvements of fhe strip theory method

Detenninatioii of Iw o-dimensioiial added mass and damping

The first refinement o f t h e s t r i p t h e o r y m e t h o d , as i n -t r o d u c e d by Korvin-Kroul&l-t;ovsl&l-t;y and Jacobs was a m o r e accurate d e t e r m i n a t i o n o f the h y d r o d y n a m i c mass and d a m p i n g f o r actual ship cross sections. The p r o b l e m to cope w i t h was equivalent to that o f the l i a r m o n i c m o t i o n o f a cylinder w i t h a r b i t r a r y cross section i n the free surface o f a fluid.

UrselTs s o l u t i o n f o r the vertical o s c i l l a t i o n o f a circular cylinder [1] was generalized to ship cross sections by using a 2-parameter c o n f o r m a l t r a n s f o r m a t i o n (Lewis f o r m s ) by G r i m [2] and Tasai [ 3 ] . P o r t e r f u r t h e r extended this w o r k to a r b i t r a r i l y shaped sections by using m u l t i -coefiicient t r a n s f o r m a t i o n s a n d he also treated the case o f finite water depth [4]. D e Jong [5] a n d Tasai [6] also developed Ursell's m e t h o d f o r swaying and r o l l i n g m o t i o n s .

The use o f the m u l t i - c o e f f i c i e n t t r a n s f o r m a t i o n or the so-called close fit methods, avoids the restrictions imposed by the Lewis t r a n s f o r m a t i o n . The resulting shapes show indeed a very good fit f o r actual ship sections, i n c l u d i n g extreme b u l b o u s f o r m s .

I n the analysis o f t h e h o r i z o n t a l cylinder o s c i l l a t i o n the s o l u t i o n o f t h e p o t e n t i a l is given i n the f o r m o f a d i p o l e i n the o r i g i n and a hnear c o m b i n a t i o n o f a s y m m e t r i c m u l t i p o l e potentials, instead o f an analogous s y m m e t r i c s o l u t i o n f o r the heaving m o t i o n .

There is an extensive experimental v e r i f i c a t i o n o f the calculated h y d r o d y n a m i c properties o f o s c i l l a t i n g cy-linders, n o t a b l y by Tasai [ 7 ] , Porter [4] a n d V u g t s [ 8 ] . I n general the agreement is satisfactory as s h o w n f o r instance i n Figs. 1, 2 and 3. T h e a s s u m p t i o n o f l i n e a r i t y and o f a non-viscous fluid seems to be acceptable f o r the heave a n d p i t c h m o t i o n s , b u t f o r r o l l viscous effects are t o o i m p o r t a n t to be neglected.

A n alternative s o l u t i o n f o r the d e t e r m i n a t i o n o f added mass a n d d a m p i n g is given by F r a n k [9],

H e uses a p u l s a t i n g source d i s t r i b u t i o n o n the surface o f

1 K 3 | PA ^2g 100

\

1

tb

\

\

— - • • \ O 0 —^—• > 0 §•0 1é> ° °^ 0 2 5 0 5 0 0 7 5 1,00 125 1.50 1.75 2 0 0 >-B/T = 2 A 8 0 <> • 2a = 0 0 » • D • 0 0 1 m 0.02 m 0.03 m / « / " / • t V ^ / • / Cl 1 / • / 0 n 0 0 2 5 0 5 O 0 7 5 100 125 150 1.75 2 0 0

C L O S E FIT APPROXIMATION O F S E C T I O N CONTOUR L E W I S - F O R M APPROXIMATION O F S E C T I O N CONTOUR O O O M E A S U R E M E N T S

Fig. 1 Added mass and damping coefficient i n heaving [8].

C L O S E F I T A P P R O X I M A T I O N O F S E C T I O N C O N T O U R L E W I S - F O R M A P P R O X I M A T I O N O F S E C T I O N C O N T O U R o o o M E A S U R E M E N T S ° yy PA O 9y O Ó

0 0.25 0.50 0,75 1 0 0 , 1.25 1 5 0 175 2 0 0 P A 2 g ° o 0 0 B / T O

= 2 4 8

°/l

1 0 . O \ s ° OS

-VJ-—

- S ^ Ö c J / /

^^^^^

0 2 5 0 5 0 0 7 5 100 1,25 1,50 175 Z O O

(6)

i k P A B / / — _ / / s ° ° 0 — — -^li / / 1/ 1 u O A lo \ Ir / / u O \ / / ' / ° O 0 ' 0 2 5 0 5 0 0 7 5 1.00 , 1.25 1 5 0 175 2 0 0 C L O S E F I T A P P R O X I M A T I O N O F S E C T I O N CONTOUR L E W I S - F O R M A P P R O X I M A T I O N O F S E C T I O N CONTOUR O o o M E A S U R E M E N T S 0 1 0 0 P A B ^ o . o s d

-

•1 1

0^ O « O O 0 O V O O 0

lis

O O 0 O V O O 0

lis

jg S 8 6 ** • ° o • , • • t r 0 5 0 0.75 1 0 0 125 150 175 2 0 0 2g p A B ^ 2 g - 0 2 O l O 0 ° \\ \ \ 0 \ O o ° O 0 O 0 O O 0 2 5 Q 5 0 Q 7 S 1.00 , 1.25 1,50 175 2.00

Fig. 2b Coupling coefficients o f sway into roll [8].

P A B ^ 2g 0 * a = 0 0 0 5 0 1 0 0 2 0 n • a D ' • • o • • < T T t \ a 8 8 3a - 0 1 ol p A B - Q I 51 0 2 5 0 5 0 0 7 5 1.00 155 150 175 2 0 0

1 1

/

/

l l

/

\ \ ^ \ 1 1 II 1 ' f " o \ _ 0 / / / 0 0 Q25 0.50 0.75 1.00 125 1 5 0 175 2 0 0

Fig. 3a Added mass moment of inertia and damping coefficient in roli [8].

Fig. 3b Coupling coefficients of roll into sway [8].

- 0 . 1 0 pAB 2g - Q 1 5 - 0 2 0

^

0 \ \ o O 0 0 2 5 0 5 0 0,75 1.00 125 150 175 2 0 0 3b

(7)

the cylinder in the mean p o s i t i o n . The source strength f o l l o w s f r o m the b o u n d a r y c o n d i t i o n o n the c y l i n d e r surface, by means o f an integral e q u a t i o n .

The results o f b o t h methods are very close to each other except at certain frequencies where irregularities are observed i n the values according to the F r a n k m e t h o d . T h i s d i t f i c u i i y c o u l d be removed by r e s t r i c t i n g the m o t i o n o f the "fluid" inside the considered c y l i n d r i c a l b o d y . A t h i r d m e t h o d employs finite element techniques. Opsteegh [10] f o u n d a complete agreement w i t h the results o f the close fit methods f o r a rectangular cross section o f w h i c h the experimental values were also given, see F i e . 4.

T H E O R E T I C A L ( 2 P / a = 5 ) M E A S U R E D ( „ ) y 2 " x A ( O N E C Y L I N D E R )

Fig. 5 The amplitude ratio (wave amplitude/lieaving amplitude) [12]. p A P A " 2 9 - C A L C U L A T E D B Y U S I N G C O N F O R M A L T R A N S F O R M A T I O N . C A L C U L A T E D WITH F I N I T E E L E M E N T M E T H O D . E X P E R I M E N T A L R E S U L T S ,

Fig. 4 Added mass and damping coefficient, calculated with a finite element method f o r a rectangular cross section

BIT = 2 [10].

A f u r t h e r development o f the t w o - d i m e n s i o n a l t h e o r y concerns cross sections i n use w i t h catamarans a n d other m u l t i h u U c o n f i g u r a t i o n s . De Jong gives the a n a l y t i c a l solutions f o r heave, sway a n d r o l l o f t w o i d e n t i c a l sym-m e t r i c a l cylinders o f a r b i t r a r y f o r sym-m w h i c h oscillate i n the free surface [11].

O l i k u s u [12] c o m p a r e d calculated values f o r t w o c i r c u l a r cylinders w i t h the results o f experiments f o r several distance/diameter ratios 2P/a. F i g . 5 shows the results f o r 2P/a = 5.

The close fit m e t h o d , using c o n f o r m a l t r a n s f o r m a t i o n to derive the actual ship's cross-section f r o m a circle, gives

a very satisfactory s o l u t i o n w i t h regard to the goodness o f t i t .

H o w e v e r , the n u m e r i c a l procedure consumes too m u c h t i m e w h e n f o r instance a great n u m b e r o f ship designs have to be c o m p a r e d . The t r a n s f o r m a t i o n f o r m u l a : Z = C + Z " 2 „ + l c 11 = 0 - ( 2 ; i + 1) (1) w o r k s s a t i s f a c t o r i l y f o r instance w i t h A'^ = 10 — 20 f o r ship crosssections. F o r extreme bulbous f o r m s a p p r o x i -mately 20 — 30 coeflücients c o u l d be necessary.

The accuracy o b t a i n e d w i t h the close fit m e t h o d is seldom necessary and f o r m o s t cases the Lewis t r a n s f o r m a t i o n (A^ = 1) is sufficient, except f o r bulbous sections. A n impression o f t h e differences between the actual a n d the derived f o r m s a n d the calculated wave b e n d i n g m o m e n t s w i t h A' = 1 and A' = 9 is given i n Figs. 6 a n d 7 f o r a Series 60 b l o c k .70 s h i p f o r m [13]. O n l y at the highest speed there is a s m a l l , n o t significant diflference i n the calculated values o f t h e wave l o a d .

L o u k a k i s [14] p r o p o s e d a simple 2parameter t r a n s f o r m a -t i o n f o r b u l b o u s sec-tions:

z = C +

C + A (2)

w h i c h gives sufficient accuracy, also f o r extreme cases, see Fig. 8.

Thus a c o m b i n a t i o n o f t w o simple t r a n s f o r m a t i o n s can be used f o r m a n y purposes to save c o m p u t e r t i m e . A n a d d i t i o n a l advantage o f o n l y tvvo parameters is the d e f i n i t i o n o f a cross section by o n l y the b r e a d t h / d r a f t r a t i o a n d the area coefficient, w h i c h determine and

(8)

A C T U A L S E C T I O N L E W I S F O R M C L O S E F I T

X / L = r 2 5

Fig. 6 Two and ten coefficient fit to sections of series 60,

Cb = .70 [13]. 1 X= 0.025 1 a =4.1 5

;

/ J NO LEWIS-FORM FITS T H I S STATION • STATION OFFSETS I X = 0 2 2 2 2 0 \ CT.1.815 \ . STATION V 2 0 1 0 NO LEWIS-FORM FITS 0 T H I S STATION 0

Fig. 8 MIT b u l b f o r m , Lewis f o r m [14].

o r A and B f r o m (1) and (2). T h i s is a useful s i m p l i f i c a -t i o n i n -the p r e l i m i n a r y design s-tage,

A^eu' developments of the strip theory

A s already m e n t i o n e d , there is progress i n the develop-m e n t o f the 6 degrees o f f r e e d o develop-m p r o b l e develop-m , b u t an exten-sive and detailed c o m p a r i s o n , i n c l u d i n g the effects o f f o r w a r d speed is only available f o r heave and p i t c h i n g m o t i o n s i n head waves. We shall restrict ourselves to this p a r t i c u l a r case. The new methods w h i c h were i n t r o d u c e d i n the last few years show some small b u t interesting differences w i t h the o r i g i n a l K o r v i n K r o u k o v s k y f o r m u -l a t i o n [15], and those w h i c h were derived f r o m it [13]. These were criticized f o r n o t h a v i n g the s y m m e t r y

rela-o 2 0 E X P E R I M E N T CALCULATION Fn=,30 O 2 C a / L = l / 4 8 • 2 C a / L = V ' ' 0 LEWIS FORM CLOSE FIT

(9)

tions. as l o r m u l a t e d f o r instance by T i m m a n and N e w m a n [16]. The o m i s s i o n o n l y concerns tlie mass cross-coupling coefficients and n o t the m o r e i m p o r t a n t d a m p i n g cross-c o u p l i n g cross-coeflicross-cients, w h i cross-c h were already i n t r o d u cross-c e d by K o r v i n - K r o u k o v s k y . The s y m m e t r y r e l a t i o n and the absolute values o f the latter terms were c o n f i r m e d by forced o s c i l l a t i n g tests at f o r w a r d speed w i t h a ship m o d e l [17]. It was also s h o w n t h a t these terms are essen-tial to get agreement between calculated and measured amplitudes and phases o f the ship m o t i o n s i n waves. I n the new \ ersion o f the strip theory methods as derived by Shintani [18] S ö d i n g [19] S e m e n o f - T j a n - T s a n s k i j , Blago-wetsjenskij, G o l o d i l i n [20] Tasai [21] a n d others, the expressions f o r the h y d r o d y n a m i c mass c o n t a i n a d d i t i o n -al f o r w a r d speed dependent terms and the mass cross c o u p l i n g terms have the desired s y m m e t r y .

A c o m p a r i s o n o f t h e calculated and experimental values o f t h e pitch mass cross-coupling t e r m itself by Beukelman [22] shows the i m p r o v e m e n t at h i g h f o r w a r d speeds f o r the D a v i d s o n T y p e A destroyer, a rather radical ship f o r m h a v i n g a p r o n o u n c e d b u l b o u s f o r e b o d y , see Figs. 9 a n d 10.

H o w e v e r , the p i t c h and heave amplitudes calculated w i t h the i n c l u s i o n o f f o r w a r d speed eflFect i n the p i t c h mass c o u p l i n g term show differences w i t h the results o f the earlier m e t h o d over a f a i r l y wide frequency range. T h i s is also the case f o r less extreme ship f o r m s as s h o w n by V u g t s [ 8 ] , see F i g . 11. I n p a r t i c u l a r the p i t c h amplitudes do n o t tend to the m a x i m u m wave slope at l o w f r e q u e n -cies o f encounter i n head waves, w h i c h c o u l d have been expected.

T o analyse the new expressions f o r the h y d r o d y n a m i c coefficients o f the equations o f m o t i o n i n m o r e d e t a i l , a c o m p a r i s o n o f calculated and e x p e r i m e n t a l values was p l a n n e d f o r a systematic series o f ship models, w h i c h have a wide v a r i a t i o n o f l e n g t h / b e a m r a t i o . T h e models are derived f r o m the T o d d 60 Series .70, by m u l t i p l y i n g the offsets w i t h constant f a c t o r s . I n t o t a l five models w i t h

LjB respectively 4, 5.5, 7, 1 0 a n d 2 0 w i l l be force oscillated

w i t h three f o r w a r d speeds {Fn = 0.15, 0.20, 0.30) and a wide range o f frequencies to o b t a i n the h y d r o d y n a m i c mass and d a m p i n g . Some p r e l i m i n a r y results o f the i n v e s t i g a t i o n are given here and a c o m p a r i s o n is made w i t h c o r r e s p o n d i n g calctilated values, a c c o r d i n g to the earlier and new strip theory methods f o r three l e n g t h / beam ratios [23]. F o r easy reference the expressions o f the various coefticients are given as w e l l .

T h e equations o f m o t i o n i n s t i l l water are given b y :

{pV + a)z -^ bz -t- cz ^d'Ó - eb — gO = 0 (heave)

(3)

{ly, + A)'Ó + BÓ + CO — Dz — Ez - Gz = 0 ( p i t c h )

Fig. 9 Davidson type A destroyer.

0 2 4 E X P E R I M E N T C A L C U L A T I O N o r . 0 . 0 1 0 m • r = 0 0 2 0 m N E W S T R I P T H E O R Y E A R L I E R .

(10)

125 15Q S H I P P I N G OF WATER 0 0 3 Q s F n ^ O 0 2 0 \ \

\ \

\ \ \ \

\ ^

0 2 5 0 5 0 0 7 5 1 0 0 0 2 0 J

H

k . V \ 0 2 0 \ 0 2 0 \ > \ " \ F n = 0 / ^ 125 150 0 2 5 0 5 0 0 7 5 1 0 0 1 2 5 1 5 0 S H I P P I N G O F WATER

\

1 / \ \ \

u

l'J \ 2 0 \ ^ l = O y ' • /

/

/ 0 3 0 / rn=oX T l ' ' 1 • \ 0 2 5 0 5 0 0 7 5 1 0 0 125 ).50 0 2 5 0 5 0 0 7 5 1 0 0 125 U p y B / 2 g

Fig. 11 Vertical motions in liead waves for a model of the Todd 60 series, Q = .70, L/B = 1 [8].

The expressions f o r the various coefficients are f o u n d f r o m : pyz I j F'dx, F'x.dxu A c c o r d i n g to K o r v i n - K r o u k o v s k y : f ' = - 2 p g v,„ (= - x,0} - N ' { z - x,Ó + VO) - - {m' ( i - .v„() + I/O)} dt F'= 2pg3^„ (z A,0) N ' i z X, Ó + ]0) -- m' (z -- x,Ö + 2V0) + (z -- x,i) + I'0) (5) dx,

w h e r e : A ' ' and m' are the sectional d a m p i n g coefficient and the sectional added mass and is the h a l f w i d t h o f the load waterline.

(11)

The new f o r m u l a t i o n can be f o u n d easily f o r instance f r o m [19] a n d [ 2 0 ] : F ' = - 2pgy,, (z - x,0) ct dXk. m - — o r : F' = - 2 p g y „ , (z - x,0) - m' (z - x,Ö + 2VÓ)-- A2VÓ)--' (z 2VÓ)-- x.Ó + 2VQ) + F — (z 2VÓ)-- x,Ó + VO) + dx„ + V dN' dx (6) w h e r e :

(o^, is the frequency o f o s c i l l a t i o n .

F r o m equations (3), (4), (5) and (6) it f o l l o w s t h a t : lu'dx, VE ( V B m'xi,^dx, + N'dx N'x,\lx, + N'xulx, V' N'dx c = 2pg C = 2pg Vs^dx, y,,xldxi, d = D = m'x.dx. + Vb CO,. E = g = 2pg G = 2pg ,Vb w x^dx, - I —^ N'x,d.x, - Va N'x,dx, + Va y,,xi,dxi, y,,Xi,dx. (7) T h e coelficients a c c o r d i n g to K o r v i n - K r o u l c o v s k y are f o u n d by replacing the terms i n brackets i n (7) by zero. I n the i n t e g r a t i o n o f the sectional values over the l e n g t h o f the ship, it is assinued that b o t h A ' ' and in' are zero at the ends. W h e n this is n o t the case, f o r instance w i t h a t r a n s o m stern, the c o r r e s p o n d i n g a d d i t i o n a l terms are easily f o u n d f r o m (3), (4), (5), and (6) by t a k i n g i n t o account the p r o p e r l i m i t s o f i n t e g r a t i o n . I t s h o u l d be r e m a r k e d that the expressions f o r d and A, w h i c h c o n t a i n

Vb VE

respectively — - and — a r e not equivalent w i t h the

CO, CO,

o r i g i n a l K o r v i n K r o u k o v s k y version. T h e y were i n t r o -duced by G e r r i t s m a and B e u k e l m a n [24].

The expression f o r the sectional h y d r o d y n a m i c f o r c e as given by (6) not o n l y contains 'l'"-, as already k n o w n ,

dN'

but also I n p r i n c i p l e G r i m m e n t i o n e d this result i n

dx,

1963 [25].

F o r the considered ship m o d e l f a m i l y the results o f t h e c o m p a r i s o n are given i n Figs. 12 and 13. T h e n u m e r i c a l results s h o w t h a t the new a d d i t i o n a l t e r m o f A is t o o small to be o f any practical i m p o r t a n c e . T h e new a d d i -tions t o the p i t c h mass cross-coupling coefficient D and to the p i t c h d a m p i n g B are the o n l y terms w h i c h are o f interest. T h e y c o n t a i n the squared frequency o f encounter i n the d e n o m i n a t o r a n d consequently the large values result at l o w frequencies.

T h e e x p e r i m e n t a l values f o r added mass and d a m p i n g agree f a i r l y w e l l w i t h the predictions, except f o r the p i t c h d a m p i n g , where the experimental values at the l o w e r frequencies do n o t correlate so well w i t h b o t h o f the calculations. T h e d a m p i n g cross-coupling coefficients show a g o o d agreement w i t h the p r e d i c t i o n , i n p a r t i c u l a r w h e n the absolute m a g n i t u d e o f the c o r r e s p o n d i n g terms i n the equations o f m o t i o n is taken i n t o account.

T h e e x p e r i m e n t a l p i t c h mass cross-coupling coefficients do n o t reveal a preference f o r one o f the t w o methods, b u t also i n this case the absolute value o f the c o u p l i n g terms has t o be considered i n the c o m p a r i s o n . F o r h i g h speeds the p r e d i c t e d values a c c o r d i n g t o the new m e t h o d give a better c o r r e l a t i o n w i t h the experiment, as s h o w n already i n F i g . 10, b u t a c c o r d i n g to [22] the a d d i t i o n a l t e r m D is the cause f o r erratic behaviour o f the p i t c h / wave slope r a t i o over an i m p o r t a n t p a r t o f the frequency range, as i l l u s t r a t e d i n F i g . 11. T h i s aspect s h o u l d be investigated m o r e closely.

The e x c i t i n g forces a n d m o m e n t s due to waves are cal-culated i n tvvo p a r t s : one w h i c h uses the u n d i s t u r b e d

(12)
(13)
(14)

wave pressure i n tlie e v a l u a t i o n o f the vertical forces o n a s t r i p , w h i c h is sometimes called the F r o u d e - K r y l o f f p a r t , and the other is the estimation o f the d i f f r a c t i o n effects. The first p a r t is i m p o r t a n t in magnitude and due care must be given to account f o r the actual s h i p f o r m i n the n u m e r i c a l process.

T h e d i f f r a c t i o n part o f the e x c i t i n g force and m o m e n t is calculated by using the now well k n o w n H a s k i n d relations [26]. These relations require the s o l u t i o n o f the oscilla-t i o n p r o b l e m i n c a l m waoscilla-ter o n l y and oscilla-therefore eliminaoscilla-te the d i f f i c u l t p r o b l e m o f the d i f f r a c t i o n o f the waves due t o the presence o f the ship at zero speed o f advance.

N e w m a n [27] removed the l i m i t a t i o n o f zero speed and showed that the extension to a f o r w a r d m o t i o n f o r t h i n or slender ships and f o r deeply submerged bodies is possible, p r o v i d e d that the disturbance o f t h e free sur-face is s m a l l . A p p l i c a t i o n o f the H a s k i n d relations is s h o w n i n the w o r k by Salvesen et al [28] a n d by Vugts [ 8 ] , w h o used N e w m a n ' s extension to the f o r w a r d speed case. F o r zero speed o f advance no difference exists w i t h the w i d e l y used relative m o t i o n concept [12], [14].

T h e difference between the various methods is extremely small and not o f m u c h practical significance f o r p i t c h i n g and heaving m o t i o n s , as shown f o r instance i n F i g . 14.

Resistance increase of a ship in head waves

A n o t h e r subject where corrections to the F r o u d e - K r y l o f f hypothesis are necessary to arrive at an acceptable pre-d i c t i o n , is the apre-dpre-depre-d resistance i n waves.

H a v e l o c k ' s r o u g h estimate is f o u n d by i n t e g r a t i o n o f the l o n g i t u d i n a l c o m p o n e n t o f the u n d i s t u r b e d wave pressure forces over the wetted p a r t o f t h e h u l l . This e s t i m a t i o n avoids the d i f f i c u l t p r o b l e m o f the e v a l u a t i o n o f t h e d i f f r a c t e d waves. A s p o i n t e d o u t by FirsofF [29] the F r o u d e - K r y l o f f hypothesis is clearly n o t applicable i n this case, b u t i t s h o u l d be realized that i n the c a l c u l a t i o n o f the m o t i o n s , w h i c h is a basic p a r t i n H a v e l o c k ' s m e t h o d , h y d r o d y n a m i c corrections are i n c l u d e d . There-f o r e the result is m o r e o r less acceptable as a There-first estimate. Havelock's expression f o r the mean added resistance i n waves is as f o l l o w s :

k

(F„z„ sin + M„0„ sin £„„) (8)

w h e r e : F„ and M„ are the amplitudes o f t h e e x c i t a t i o n force and m o m e n t i n heave and p i t c h , r„ and 0„ are the c o r r e s p o n d i n g m o t i o n amplitudes w i t h phase lags £.,• and

C A L C U L A T I O N S ACCORDING TO PRESENT E Q U A T I O N S • C A L C U L A T I O N S A C C O R D I N G TO PREVIOUS E Q U A T I O N S E X P E R I M E N T S 0 2 5 0 5 0 0 7 5 , l O O 1 2 5 I S O 0 7 5

!

\ \ F n . 0 1 0 Pn.QS Ü Ï Ü 0 \ \ *

^^^^^

0 2 5 0 5 0 0 7 5 1 0 0 1 2 5 1.50 9 0 = MC F n . 0 I V JL \ \ \ p 2 0 \ • 010_

J

a Fn.Q 010_ \ ( g O \ \ 0 3 0; S 1 \ 0 2 5 0 . 5 0 0 7 5 f— 1 0 0

(15)

A n alternative m e t l i o d to find this expression is to equal-ize the w o r k done by the e x c i t i n g force and m o m e n t to the w o r k done by the f o r c e w h i c h is necessary to t o w the ship t h r o u g h the given wave field [30].

Havelock's p r e d i c t i o n fails i n t w o respects: as s h o w n by experiments the added resistance i n waves does n o t vanish when a ship model is restrained i n heave and p i t c h and secondly the p r e d i c t i o n overestimates the added resis-tance at or below resonance c o n d i t i o n s . I n order to get a m o r e satisfactory agreement the concept o f the relative vertical m o t i o n o f t h e ship w i t h respect to the water has to be used. Joosen calculated the added resistance o f a ship i n short waves by e x p a n d i n g M a r u o ' s expression i n t o an asymptotic series w i t h respect to the slenderness parameter [31]. T a k i n g i n t o account o n l y the first order terms, he f o u n d a reasonable agreement w i t h the experi-ment, a l t h o u g h this s i m p l i f i e d treatment results i n a speed independent added resistance.

O f p a r t i c u l a r interest is his expression f o r the added resistance:

, , 3

(9)

w h i c h is completely equivalent to H a v e l o c k ' s e q u a t i o n (8). However, e q u a t i o n (9) shows that the added resis-tance can be regarded as a result o f t h e radiated d a m p i n g waves. A s in the case o f e q u a t i o n (8) this expression does not take i n t o account the relative vertical n r o t i o n o f the ship, w i t h respect to the water.

T h e r e f o r e the f o l l o w i n g procedure is adopted f o r the c a l c u l a t i o n o f t h e radiated energy ƒ" o f the oscillating ship d u r i n g one p e r i o d o f encounter. W e consider l o n g i t u d i n a l reeular head waves.

P = where: 'Te f L 0 . 0 b' • vl clxull dm' (10)

b' = N' — V , the sectional d a m p i n g coeflRcient at dx,

f o r w a r d speed;

K- = i — x,0 + VO — ( * , the vertical relative water v e l o c i t y ;

a n d :

y / ' ' d x , ) ,

F o r this concept reference is made to [13]. As K , is a h a r m o n i c f u n c t i o n w i t h a m p l i t u d e V^„ and a frequency equal to the f r e q u e n c y o f encounter co,, we find:

P = b' Vldxu (11)

F o l l o w i n g the reasoning given i n [30] the w o r k being done by the t o w i n g f o r c e R^„, is also given b y :

P = RA^y {V + c)T, = R^,y • X (12)

where: c is the wave celerity and X is the wave length. F r o m (11) and (12) i t f o l l o w s t h a t :

k

2ü7 b' Kldx, (13)

F r o m (13) i t f o l l o w s that the added resistance varies as the wave height squared, because K,„ is p r o p o r t i o n a l t o the wave height. A ship w i t h o u t o s c i l l a t o r y m o t i o n i n waves can be represented b y : V^ = — ( * and the cor-r e s p o n d i n g avecor-rage cor-resistance f o l l o w s f cor-r o m : w h e r e : ko/ b'e-T * = ^ i n f l -k dx. (14)

F r o m the fact that the speed V. appears as a q u a d r a t i c f o r m i n the integrand i n the expression f o r R,,»-, it f o l l o w s that the resistance increase i n waves is n o t merely the sum o f the resistance increase o f a ship o s c i l l a t i n g i n c a l m water (C* = 0 i n e q u a t i o n (10)) and the resistance increase o f a motionless ship i n waves.

T h e resistance increase i n waves was calculated a c c o r d i n g to the equations (13) and (14) f o r a fast cargo ship, see F i g . 15.

The results are c o m p a r e d w i t h experimental values i n F i g . 16, w h i c h shows a very satisfactory agreement f o r the case o f a heaving and p i t c h i n g ship. F o r short waves (A/^ < 0,8) the experimental values are somewhat higher f o r speeds exceeding Fn = 0.15. A possible e x p l a n a t i o n c o u l d be the u n d e r e s t i m a t i o n o f the d a m p i n g at h i g h frequencies w h i c h is o f t e n observed (see also F i g . 1). T o show the i m p r o v e m e n t w i t h regard to H a v e l o c k ' s f o r -m u l a , the values o f R^^y c o r r e s p o n d i n g t o e q u a t i o n (9) are also given i n F i g . 16.

the effective vertical wave displacement f o r a cross section.

(16)

The resistanee increase o f the motionless ship is small but should n o t be neglected.

There is a f a i r agreement w i t h the experimental values at the lower speeds, b u t at the highest speed the d i f f r a c t i o n resistance is underestimated. W i t h regard to the t o t a l added resistance i n waves, the differences are o f m i n o r importance.

The model experiment, w h i c h was carried o u t t o check the calculated added resistance, was also used to i n

(17)

E X P E R I M E N T WITHOUT S U R G E . C A L C U L A T I O N - D E L F T .

Fig. 17 Influence of surge on the added resistance in waves and calculated values.

vestigate the relation between resistance and wave height. There is some discussion w i t h regard to the assumed linear r e l a t i o n between added resistance and wave height squared as used f o r s u p e r p o s i t i o n purposes, p a r t i c u l a r l y i n the case o f slender ship f o r m s [32].

H o w e v e r , the present tests, carried o u t w i t h a three metre m o d e l o f a fast cargo ship h a v i n g a b l o c k coeffi-cient = 0.56, c o n f i r m e d the square l a w to a large extent.

T h e experiments include an extensive series o f added resistance and m o t i o n measarements i n a large range o f wave lengths, f o r w a r d speeds and three to f o u r wave heights. I n one p a r t i c u l a r case the infiuence o f surge was also investigated s h o w i n g a negligible influence on m o t i o n s and the added resistance i n head waves see F i g . 17.

T h e various experimental results are summarized i n F i g . 18.

(18)

References

1 F. Ursell. On the heaving motion of a circular cylinder on the surface of a fluid. Quart. J. of Mechanics and Applied M a t h . 2, 1949.

2 O. G r i m . Berechnung der durch Schwingungen eines Schilïskörpers erzeugten hydrodynamischen Krafte. Jahrb. der Schiff bau Technische Gesellschaft 1953.

3 F. Tasai. On the damping force and added mass of ships heaving and pitching. Report of Research Institute f o r A p -plied Mechanics, Kyushu University, Vol. V I I no. 26, 1959. 4 W. R. Porter. Pressure distribution, added mass and damping coefficients for cylinders oscillating in a free surface. Institute of Engineering Research, University of California Report, 1960.

5 B. de Jong. Computation of the hydrodynamic coefficients of oscillating cylinders. D e l f t Shipbuilding Laboratory, Report no. 174A and Report no. 145-S, 1969. Netherlands Ship Research Centre T N O , 1970.

6 F. Tasai. Hydrodynamic force and moment produced by swaying and rolling oscillation of cylinders on the free surface. Reports of Research Institute for Applied Mechanics, Vol. I X no. 35, 1961.

7 F. Tasai. Measurements of fhe wave height produced by the forced heaving of the cylinders. Reports of Research Institute f o r Applied Mechanics, no. 29, I960.

8 J. H . Vugts. The hydrodynamic forces and ship motions in waves. Thesis Delft University ofTechnology, 1970, also Report no. 150S, Netherlands Ship Research Centre, T N O 1971.

9 W . Frank. Oscillation of cylinders in or below the free surface of deep fluids, N S R D C report no. 2375, 1967. 10 J. D . Opsteegh. Berekening van de hydrodynamische coëfficiënten van lichamen die zich bevinden in de vrije op-pervlakte van een uitgestrekt fluidum, met behulp van de eindige elementenmethode. Thesis D e l f t University o f T e c h -nology, 1971.

11 B . de Jong. The hydrodynamic coeflRcients of two parallel identical cylinders oscillating in the free surface. iSP no. 196, 1970.

12 M . Ohkusu. On the heaving motion of two circular cylinders on the surface o f a fluid. Report of Research Institute f o r Applied Mechanics, Kyushu University, V o l . X V I I no. 58, 1969.

13 J. Gerritsma and W . Beukelman. Analysis o f the modi-fied strip theory f o r the calculation of ship motions and wave bending motions, isp, 1967.

14 T. A . Loukakis. Coinputer-aided prediction o f seakeeping performance in ship design. Massachusetts Institute o f T e c h -nology, Department of Naval Arch, and Marine Engineering, Report N o . 70-3-1970.

15 B. V . K o r v i n - K r o u k o v s k y and W. R. Jacobs. Pitching and heaving motions o f a ship in regular waves. Trans. S N A M E , V o l 65, 1957.

16 R. Timman and J. N . Newman. The coupled damping coeffieients of symmetric ships. J. of Ship Research, V o l 5 no. 4, 1962.

17 J. Gerritsma and W. Beukelman. The distribution of the hydrodynamic forces on a heaving and pitching ship model in still water. F i f t h Symposium Naval Hydrodynamics, 1964. 18 A . Shintani. The new formulae of calculating pitch and heave of ships by the strip method, J S N A , Japan, 1968. 19 H . Söding. Eine Modification der Streifenmethode. Schifl'stechnik, Heft 80, 1969.

20 W . W. Semenof-Tjan-Tsanskij, S.N. Blagowetsjenskij and A , N . Golodilin. Motions of Ships (in Russian). Publishing Office Shipbuilding, Leningrad, 1969.

21 F. Tasai. Improvements in the theory of ship motions in longitudinal waves. Appendix I I , Report Seakeeping Com-mittee, I T T C , Rome, 1969.

22 W. Beukelman. Pitch and heave characteristics of a destroyer, isp, 1970.

23 J. Gerritsma, C. C. Glansdorp and J. G. L . Pijfers. A note on damping and added mass f o r vertical motions. D e l f t Shipbuilding Laboratory, Report no. 343, 1972. 24 J. Gerritsma and W. Beukelman. The distribution of the hydrodynamic forces o n a heaving and pitching shipmodel in still water, I S P , 1964.

25 O. G r i m . Informal discussion Report Seakeeping Com-mittee. I T T C , London, 1963.

26 M . D . Haskind. The exciting forces and wetting of ships in waves. Izvestia Akademii Nauk SSSR, Otdelenie Tekhni-cheskikh N a u k , 1957, Taylor Model Basin Translation no. 307, 1962.

27 J. N . Newman. The exciting forces on a moving body in waves. J. of Ship Research, no. 3, 1965.

28 N . Salvesen, E. O. Tuck and O. Faltinsen. Ship motions and sea loads. Trans, S N A M E , 1970.

29 G . A . FirsoflT. Discussion o n : V. I . Pershin and A . 1. Vosnezsensky. Study of ship speed decrease in irregular sea. Proceedings Symposium on the behaviour o f ships in a seaway Wageningen, 1957.

30 V o l 8, Chapter 5. Resistance in waves. 60th Anniversary Series, The Society o f Naval Architects of Japan, 1963. 31 W . P. A . Joosen. Added resistance of ships in wa\ es. Sixth Symposium, Naval Hydrodynamics, Washington, 1966. 32 O. J. Sibul. Increase of ship resistance in waves. College of Engineering, University of California, Report NA-67-2,

Cytaty

Powiązane dokumenty

Similarly to the coherently driven mechanical amplitude detection discussed above, this thermal motion or thermomechanical noise can be measured by optomechanical sideband generation

Wojciech Trojanowski nigdy specjalnie nie zajmował się polityką, nie otrzy­ mywał też w RWE żadnych specjalnych, politycznych ról, choć niewątpliwie trud­ no

Podobne rezultaty uzyskali Chioqueta i Stiles (6) , lecz w ich 

De als gevolg lage geaggregeerde vraag verergert de productiviteitscrisis, want (zoals Adam Smith, Joseph Schumpeter en Nicholas Kaldor al wisten) als de economie slecht draait,

A diffraction potential q is proportional to the amplitude of the diffracted wave and it is conceived5 that the diffraction amplitude of a progressing two dimensional wave

[r]

Podobne korelacje istotne statystycznie zaobserwowano również pomiędzy pozytywną relacją z Bogiem i poczuciem związku z grupą (r=0.562; p=0.010) oraz pomiędzy negatywnymi

Voor sommige activiteiten zijn verschillende bronnen be- schikbaar (praten, handelen), andere activiteiten maken gebruik van dezelfde mentale bron (praten, lezen of naar een